Response to Intravenous N-Acetylcysteine Supplementation in Critically Ill Patients with COVID-19
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Study Design
2.2. Treatment and Nutritional Support
2.3. NAC Intervention
2.4. Data Collection
2.5. Biochemical Parameters
2.6. Assessment of GSH and GSSG
2.7. Assessment of Erythrocyte Glutathione Peroxidase Activity (GPx1 Activity)
2.8. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Biochemical Parameters
3.3. Association of Mortality with GSH, GSSG, and GPx
3.4. Association between GSH, GSSG, and GPx with Clinical Outcomes and Severity Biomarkers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Takeuchi, O.; Akira, S. Innate Immunity to Virus Infection. Immunol. Rev. 2009, 227, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, J.; Zhan, Y.; Wu, L.; Yu, X.; Zhang, W.; Ye, L.; Xu, S.; Sun, R.; Wang, Y.; et al. Analysis of Serum Cytokines in Patients with Severe Acute Respiratory Syndrome. Infect. Immun. 2004, 72, 4410–4415. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.K.; Lam, C.W.K.; Wu, A.K.L.; Ip, W.K.; Lee, N.L.S.; Chan, I.H.S.; Lit, L.C.W.; Hui, D.S.C.; Chan, M.H.M.; Chung, S.S.C.; et al. Plasma Inflammatory Cytokines and Chemokines in Severe Acute Respiratory Syndrome. Clin. Exp. Immunol. 2004, 136, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Geng, M.; Peng, Y.; Meng, L.; Lu, S. Molecular Immune Pathogenesis and Diagnosis of COVID-19. J. Pharm. Anal. 2020, 10, 102–108. [Google Scholar] [CrossRef]
- Betteridge, D.J. What Is Oxidative Stress? Metabolism 2000, 49, 3–8. [Google Scholar] [CrossRef]
- Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical Predictors of Mortality Due to COVID-19 Based on an Analysis of Data of 150 Patients from Wuhan, China. Intensive Care Med. 2020, 46, 846–848. [Google Scholar] [CrossRef]
- Singhal, T. A Review of Coronavirus Disease-2019 (COVID-19). Indian. J. Pediatr. 2020, 87, 281–286. [Google Scholar] [CrossRef]
- Gu, J.; Gong, E.; Zhang, B.; Zheng, J.; Gao, Z.; Zhong, Y.; Zou, W.; Zhan, J.; Wang, S.; Xie, Z.; et al. Multiple Organ Infection and the Pathogenesis of SARS. J. Exp. Med. 2005, 202, 415–424. [Google Scholar] [CrossRef]
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; et al. Clinical Course and Outcomes of Critically Ill Patients with SARS-CoV-2 Pneumonia in Wuhan, China: A Single-Centered, Retrospective, Observational Study. Lancet Respir. Med. 2020, 8, 475–481. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H.; Rinna, A. Glutathione: Overview of Its Protective Roles, Measurement, and Biosynthesis. Mol. Asp. Med. 2009, 30, 1–12. [Google Scholar] [CrossRef]
- Horowitz, R.I.; Freeman, P.R.; Bruzzese, J. Efficacy of Glutathione Therapy in Relieving Dyspnea Associated with COVID-19 Pneumonia: A Report of 2 Cases. Respir. Med. Case Rep. 2020, 30, 101063. [Google Scholar] [CrossRef] [PubMed]
- Polonikov, A. Endogenous Deficiency of Glutathione as the Most Likely Cause of Serious Manifestations and Death in COVID-19 Patients. ACS Infect. Dis. 2020, 6, 1558–1562. [Google Scholar] [CrossRef] [PubMed]
- De Flora, S.; Balansky, R.; La Maestra, S. Rationale for the Use of N-Acetylcysteine in Both Prevention and Adjuvant Therapy of COVID-19. FASEB J. 2020, 34, 13185–13193. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical Course and Risk Factors for Mortality of Adult Inpatients with COVID-19 in Wuhan, China: A Retrospective Cohort Study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A. The Role of Antioxidants in the Chemistry of Oxidative Stress: A Review. Eur. J. Med. Chem. 2015, 97, 55–74. [Google Scholar] [CrossRef]
- Borges do Nascimento, I.J.; Cacic, N.; Abdulazeem, H.M.; von Groote, T.C.; Jayarajah, U.; Weerasekara, I.; Esfahani, M.A.; Civile, V.T.; Marusic, A.; Jeroncic, A.; et al. Novel Coronavirus Infection (COVID-19) in Humans: A Scoping Review and Meta-Analysis. J. Clin. Med. 2020, 9, 941. [Google Scholar] [CrossRef]
- Schönrich, G.; Raftery, M.J.; Samstag, Y. Devilishly Radical NETwork in COVID-19: Oxidative Stress, Neutrophil Extracellular Traps (NETs), and T Cell Suppression. Adv. Biol. Regul. 2020, 77, 100741. [Google Scholar] [CrossRef]
- Kirchner, T.; Hermann, E.; Möller, S.; Klinger, M.; Solbach, W.; Laskay, T.; Behnen, M. Flavonoids and 5-Aminosalicylic Acid Inhibit the Formation of Neutrophil Extracellular Traps. Mediat. Inflamm. 2013, 2013, 710239. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Jahraus, B.; Balta, E.; Ziegler, J.D.; Hübner, K.; Blank, N.; Niesler, B.; Wabnitz, G.H.; Samstag, Y. Sulforaphane Inhibits Inflammatory Responses of Primary Human T-Cells by Increasing ROS and Depleting Glutathione. Front. Immunol. 2018, 9, 2584. [Google Scholar] [CrossRef]
- Ibrahim, H.; Perl, A.; Smith, D.; Lewis, T.; Kon, Z.; Goldenberg, R.; Yarta, K.; Staniloae, C.; Williams, M. Therapeutic Blockade of Inflammation in Severe COVID-19 Infection with Intravenous N-Acetylcysteine. Clin. Immunol. 2020, 219, 108544. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, M.; Luo, G.; Qian, X.; Wu, C.; Zhang, Y.; Chen, B.; Leung, E.L.-H.; Tang, Y. Experience of N-Acetylcysteine Airway Management in the Successful Treatment of One Case of Critical Condition with COVID-19: A Case Report. Medicine (Baltim.) 2020, 99, e22577. [Google Scholar] [CrossRef] [PubMed]
- Alamdari, D.H.; Moghaddam, A.B.; Amini, S.; Keramati, M.R.; Zarmehri, A.M.; Alamdari, A.H.; Damsaz, M.; Banpour, H.; Yarahmadi, A.; Koliakos, G. Application of Methylene Blue-Vitamin C-N-Acetyl Cysteine for Treatment of Critically Ill COVID-19 Patients, Report of a Phase-I Clinical Trial. Eur. J. Pharm. 2020, 885, 173494. [Google Scholar] [CrossRef] [PubMed]
- de Alencar, J.C.G.; Moreira, C.L.; Müller, A.D.; Chaves, C.E.; Fukuhara, M.A.; da Silva, E.A.; Miyamoto, M.F.S.; Pinto, V.B.; Bueno, C.G.; Lazar Neto, F.; et al. Double-Blind, Randomized, Placebo-Controlled Trial With N-Acetylcysteine for Treatment of Severe Acute Respiratory Syndrome Caused by Coronavirus Disease 2019 (COVID-19). Clin. Infect. Dis. 2021, 72, e736–e741. [Google Scholar] [CrossRef] [PubMed]
- Taher, A.; Lashgari, M.; Sedighi, L.; Rahimi-Bashar, F.; Poorolajal, J.; Mehrpooya, M. A Pilot Study on Intravenous N-Acetylcysteine Treatment in Patients with Mild-to-Moderate COVID19-Associated Acute Respiratory Distress Syndrome. Pharm. Rep. 2021, 73, 1650–1659. [Google Scholar] [CrossRef] [PubMed]
- National Health Commission & National Administration of Traditional Chinese Medicine. Diagnosis and treatment protocol for novel coronavirus pneumonia (Trial Version 7). Chin. Med. J. 2020, 133, 1087–1095. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Alhazzani, W.; Calder, P.C.; Casaer, M.P.; Hiesmayr, M.; Mayer, K.; Montejo, J.C.; Pichard, C.; et al. ESPEN Guideline on Clinical Nutrition in the Intensive Care Unit. Clin. Nutr. 2019, 38, 48–79. [Google Scholar] [CrossRef]
- Barazzoni, R.; Bischoff, S.C.; Breda, J.; Wickramasinghe, K.; Krznaric, Z.; Nitzan, D.; Pirlich, M.; Singer, P. ESPEN Expert Statements and Practical Guidance for Nutritional Management of Individuals with SARS-CoV-2 Infection. Clin. Nutr. 2020, 39, 1631–1638. [Google Scholar] [CrossRef]
- Prescott, L.F.; Illingworth, R.N.; Critchley, J.A.; Stewart, M.J.; Adam, R.D.; Proudfoot, A.T. Intravenous N-Acetylcystine: The Treatment of Choice for Paracetamol Poisoning. Br. Med. J. 1979, 2, 1097–1100. [Google Scholar] [CrossRef]
- Knaus, W.A.; Draper, E.A.; Wagner, D.P.; Zimmerman, J.E. APACHE II: A Severity of Disease Classification System. Crit. Care Med. 1985, 13, 818–829. [Google Scholar] [CrossRef]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonça, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-Related Organ Failure Assessment) Score to Describe Organ Dysfunction/Failure. On Behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Assimakopoulos, S.F.; Aretha, D.; Komninos, D.; Dimitropoulou, D.; Lagadinou, M.; Leonidou, L.; Oikonomou, I.; Mouzaki, A.; Marangos, M. N-Acetyl-Cysteine Reduces the Risk for Mechanical Ventilation and Mortality in Patients with COVID-19 Pneumonia: A Two-Center Retrospective Cohort Study. Infect. Dis. 2021, 53, 847–854. [Google Scholar] [CrossRef] [PubMed]
- Gaynitdinova, V.V.; Avdeev, S.N.; Merzhoeva, Z.M.; Berikkhanov, Z.G.-M.; Medvedeva, I.V.; Gorbacheva, T.L. N-acetylcysteine as a part of complex treatment of moderate COVID-associated pneumonia. PULMONOLOGIYA 2021, 31, 21–29. [Google Scholar] [CrossRef]
- Connors, J.M.; Levy, J.H. COVID-19 and Its Implications for Thrombosis and Anticoagulation. Blood 2020, 135, 2033–2040. [Google Scholar] [CrossRef] [PubMed]
- Levi, M.; Thachil, J.; Iba, T.; Levy, J.H. Coagulation Abnormalities and Thrombosis in Patients with COVID-19. Lancet Haematol. 2020, 7, e438–e440. [Google Scholar] [CrossRef]
- Rostami, M.; Mansouritorghabeh, H. D-Dimer Level in COVID-19 Infection: A Systematic Review. Expert. Rev. Hematol. 2020, 13, 1265–1275. [Google Scholar] [CrossRef] [PubMed]
- Wool, G.D.; Miller, J.L. The Impact of COVID-19 Disease on Platelets and Coagulation. Pathobiology 2021, 88, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Seitz, R.; Lerch, L.; Immel, A.; Egbring, R. D-Dimer Tests Detect Both Plasmin and Neutrophil Elastase Derived Split Products. Ann. Clin. Biochem. 1995, 32 Pt 2, 193–195. [Google Scholar] [CrossRef]
- Ishii, T.; Doi, K.; Okamoto, K.; Imamura, M.; Dohi, M.; Yamamoto, K.; Fujita, T.; Noiri, E. Neutrophil Elastase Contributes to Acute Lung Injury Induced by Bilateral Nephrectomy. Am. J. Pathol. 2010, 177, 1665–1673. [Google Scholar] [CrossRef]
- Singh, P.; Schwartz, R.A. Disseminated Intravascular Coagulation: A Devastating Systemic Disorder of Special Concern with COVID-19. Dermatol. Ther. 2020, 33, e14053. [Google Scholar] [CrossRef]
- Sadowska, A.M.; Manuel-y-Keenoy, B.; Vertongen, T.; Schippers, G.; Radomska-Lesniewska, D.; Heytens, E.; De Backer, W.A. Effect of N-Acetylcysteine on Neutrophil Activation Markers in Healthy Volunteers: In Vivo and In Vitro Study. Pharm. Res. 2006, 53, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Tirouvanziam, R.; Conrad, C.K.; Bottiglieri, T.; Herzenberg, L.A.; Moss, R.B.; Herzenberg, L.A. High-Dose Oral N-Acetylcysteine, a Glutathione Prodrug, Modulates Inflammation in Cystic Fibrosis. Proc. Natl. Acad. Sci. USA 2006, 103, 4628–4633. [Google Scholar] [CrossRef] [PubMed]
- Rubio, M.L.; Martin-Mosquero, M.C.; Ortega, M.; Peces-Barba, G.; González-Mangado, N. Oral N-Acetylcysteine Attenuates Elastase-Induced Pulmonary Emphysema in Rats. Chest 2004, 125, 1500–1506. [Google Scholar] [CrossRef]
- Du, T.; Liang, J.; Dong, N.; Lu, J.; Fu, Y.; Fang, L.; Xiao, S.; Han, H. Glutathione-Capped Ag2S Nanoclusters Inhibit Coronavirus Proliferation through Blockage of Viral RNA Synthesis and Budding. ACS Appl. Mater. Interfaces 2018, 10, 4369–4378. [Google Scholar] [CrossRef]
- Geiler, J.; Michaelis, M.; Naczk, P.; Leutz, A.; Langer, K.; Doerr, H.-W.; Cinatl, J. N-Acetyl-L-Cysteine (NAC) Inhibits Virus Replication and Expression of pro-Inflammatory Molecules in A549 Cells Infected with Highly Pathogenic H5N1 Influenza A Virus. Biochem. Pharm. 2010, 79, 413–420. [Google Scholar] [CrossRef]
- Lai, Z.-W.; Hanczko, R.; Bonilla, E.; Caza, T.N.; Clair, B.; Bartos, A.; Miklossy, G.; Jimah, J.; Doherty, E.; Tily, H.; et al. N-Acetylcysteine Reduces Disease Activity by Blocking Mammalian Target of Rapamycin in T Cells from Systemic Lupus Erythematosus Patients: A Randomized, Double-Blind, Placebo-Controlled Trial. Arthritis Rheum. 2012, 64, 2937–2946. [Google Scholar] [CrossRef] [PubMed]
- Zuin, R.; Palamidese, A.; Negrin, R.; Catozzo, L.; Scarda, A.; Balbinot, M. High-Dose N-Acetylcysteine in Patients with Exacerbations of Chronic Obstructive Pulmonary Disease. Clin. Drug. Investig. 2005, 25, 401–408. [Google Scholar] [CrossRef]
- Porcu, M.; Urbano, M.R.; Verri, W.A.; Barbosa, D.S.; Baracat, M.; Vargas, H.O.; Machado, R.C.B.R.; Pescim, R.R.; Nunes, S.O.V. Effects of Adjunctive N-Acetylcysteine on Depressive Symptoms: Modulation by Baseline High-Sensitivity C-Reactive Protein. Psychiatry Res. 2018, 263, 268–274. [Google Scholar] [CrossRef]
- Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; et al. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis. 2020, 71, 762–768. [Google Scholar] [CrossRef]
- Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; et al. Pathological Findings of COVID-19 Associated with Acute Respiratory Distress Syndrome. Lancet Respir. Med. 2020, 8, 420–422. [Google Scholar] [CrossRef]
- Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; et al. Clinical and Immunological Features of Severe and Moderate Coronavirus Disease 2019. J. Clin. Investig. 2020, 130, 2620–2629. [Google Scholar] [CrossRef] [PubMed]
- Lai, K.Y.; Ng, W.Y.; Osburga Chan, P.K.; Wong, K.F.; Cheng, F. High-Dose N-Acetylcysteine Therapy for Novel H1N1 Influenza Pneumonia. Ann. Intern. Med. 2010, 152, 687–688. [Google Scholar] [CrossRef]
- Madu, I.G.; Belouzard, S.; Whittaker, G.R. SARS-Coronavirus Spike S2 Domain Flanked by Cysteine Residues C822 and C833 Is Important for Activation of Membrane Fusion. Virology 2009, 393, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Fajgenbaum, D.C.; Langan, R.-A.; Japp, A.S.; Partridge, H.L.; Pierson, S.K.; Singh, A.; Arenas, D.J.; Ruth, J.R.; Nabel, C.S.; Stone, K.; et al. Identifying and Targeting Pathogenic PI3K/AKT/MTOR Signaling in IL-6-Blockade-Refractory Idiopathic Multicentric Castleman Disease. J. Clin. Investig. 2019, 129, 4451–4463. [Google Scholar] [CrossRef] [PubMed]
- Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K.M.; O’Meara, M.J.; Rezelj, V.V.; Guo, J.Z.; Swaney, D.L.; et al. A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug Repurposing. Nature 2020, 583, 459–468. [Google Scholar] [CrossRef]
- Gamarra, Y.; Santiago, F.C.; Molina-López, J.; Castaño, J.; Herrera-Quintana, L.; Domínguez, Á.; Planells, E. Pyroglutamic Acidosis by Glutathione Regeneration Blockage in Critical Patients with Septic Shock. Crit. Care 2019, 23, 162. [Google Scholar] [CrossRef] [PubMed]
- Pastore, A.; Federici, G.; Bertini, E.; Piemonte, F. Analysis of Glutathione: Implication in Redox and Detoxification. Clin. Chim. Acta 2003, 333, 19–39. [Google Scholar] [CrossRef] [PubMed]
- Girgis, R.R.; Baker, S.; Mao, X.; Gil, R.; Javitt, D.C.; Kantrowitz, J.T.; Gu, M.; Spielman, D.M.; Ojeil, N.; Xu, X.; et al. Effects of Acute N-Acetylcysteine Challenge on Cortical Glutathione and Glutamate in Schizophrenia: A Pilot in Vivo Proton Magnetic Resonance Spectroscopy Study. Psychiatry Res. 2019, 275, 78–85. [Google Scholar] [CrossRef]
- Bernhard, M.C.; Junker, E.; Hettinger, A.; Lauterburg, B.H. Time Course of Total Cysteine, Glutathione and Homocysteine in Plasma of Patients with Chronic Hepatitis C Treated with Interferon-Alpha with and without Supplementation with N-Acetylcysteine. J. Hepatol. 1998, 28, 751–755. [Google Scholar] [CrossRef]
- Darmaun, D.; Smith, S.D.; Sweeten, S.; Hartman, B.K.; Welch, S.; Mauras, N. Poorly Controlled Type 1 Diabetes Is Associated with Altered Glutathione Homeostasis in Adolescents: Apparent Resistance to N-Acetylcysteine Supplementation. Pediatr. Diabetes 2008, 9, 577–582. [Google Scholar] [CrossRef]
- Szkudlinska, M.A.; von Frankenberg, A.D.; Utzschneider, K.M. The Antioxidant N-Acetylcysteine Does Not Improve Glucose Tolerance or β-Cell Function in Type 2 Diabetes. J. Diabetes Complicat. 2016, 30, 618–622. [Google Scholar] [CrossRef] [PubMed]
- Bernard, G.R. N-Acetylcysteine in Experimental and Clinical Acute Lung Injury. Am. J. Med. 1991, 91, 54S–59S. [Google Scholar] [CrossRef] [PubMed]
- Soltan-Sharifi, M.S.; Mojtahedzadeh, M.; Najafi, A.; Reza Khajavi, M.; Reza Rouini, M.; Moradi, M.; Mohammadirad, A.; Abdollahi, M. Improvement by N-Acetylcysteine of Acute Respiratory Distress Syndrome through Increasing Intracellular Glutathione, and Extracellular Thiol Molecules and Anti-Oxidant Power: Evidence for Underlying Toxicological Mechanisms. Hum. Exp. Toxicol. 2007, 26, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A.; Buhl, R.; Magnussen, H. The Effect of Oral N-Acetylcysteine on Lung Glutathione Levels in Idiopathic Pulmonary Fibrosis. Eur. Respir. J. 1994, 7, 431–436. [Google Scholar] [CrossRef]
- Behr, J.; Degenkolb, B.; Krombach, F.; Vogelmeier, C. Intracellular Glutathione and Bronchoalveolar Cells in Fibrosing Alveolitis: Effects of N-Acetylcysteine. Eur. Respir. J. 2002, 19, 906–911. [Google Scholar] [CrossRef]
- De Rosa, S.C.; Zaretsky, M.D.; Dubs, J.G.; Roederer, M.; Anderson, M.; Green, A.; Mitra, D.; Watanabe, N.; Nakamura, H.; Tjioe, I.; et al. N-Acetylcysteine Replenishes Glutathione in HIV Infection. Eur. J. Clin. Investig. 2000, 30, 915–929. [Google Scholar] [CrossRef]
- Safe, I.P.; Amaral, E.P.; Araújo-Pereira, M.; Lacerda, M.V.G.; Printes, V.S.; Souza, A.B.; Beraldi-Magalhães, F.; Monteiro, W.M.; Sampaio, V.S.; Barreto-Duarte, B.; et al. Adjunct N-Acetylcysteine Treatment in Hospitalized Patients with HIV-Associated Tuberculosis Dampens the Oxidative Stress in Peripheral Blood: Results From the RIPENACTB Study Trial. Front. Immunol. 2020, 11, 602589. [Google Scholar] [CrossRef]
- Pirabbasi, E.; Shahar, S.; Manaf, Z.A.; Rajab, N.F.; Manap, R.A. Efficacy of Ascorbic Acid (Vitamin C) and/N-Acetylcysteine (NAC) Supplementation on Nutritional and Antioxidant Status of Male Chronic Obstructive Pulmonary Disease (COPD) Patients. J. Nutr. Sci. Vitam. 2016, 62, 54–61. [Google Scholar] [CrossRef]
- Hirai, D.M.; Jones, J.H.; Zelt, J.T.; da Silva, M.L.; Bentley, R.F.; Edgett, B.A.; Gurd, B.J.; Tschakovsky, M.E.; O’Donnell, D.E.; Neder, J.A. Oral N-Acetylcysteine and Exercise Tolerance in Mild Chronic Obstructive Pulmonary Disease. J. Appl. Physiol. (1985) 2017, 122, 1351–1361. [Google Scholar] [CrossRef]
- Esalatmanesh, K.; Jamali, A.; Esalatmanesh, R.; Soleimani, Z.; Khabbazi, A.; Malek Mahdavi, A. Effects of N-Acetylcysteine Supplementation on Disease Activity, Oxidative Stress, and Inflammatory and Metabolic Parameters in Rheumatoid Arthritis Patients: A Randomized Double-Blind Placebo-Controlled Trial. Amino Acids 2022, 54, 433–440. [Google Scholar] [CrossRef]
- Rushworth, G.F.; Megson, I.L. Existing and Potential Therapeutic Uses for N-Acetylcysteine: The Need for Conversion to Intracellular Glutathione for Antioxidant Benefits. Pharmacol. Ther. 2014, 141, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Moradi, M.; Mojtahedzadeh, M.; Mandegari, A.; Soltan-Sharifi, M.S.; Najafi, A.; Khajavi, M.R.; Hajibabayee, M.; Ghahremani, M.H. The Role of Glutathione-S-Transferase Polymorphisms on Clinical Outcome of ALI/ARDS Patient Treated with N-Acetylcysteine. Respir. Med. 2009, 103, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Gusdon, A.M.; Faraday, N.; Aita, J.S.; Kumar, S.; Mehta, I.; Choi, H.A.; Cleland, J.L.; Robinson, K.; McCullough, L.D.; Ng, D.K.; et al. Dendrimer Nanotherapy for Severe COVID-19 Attenuates Inflammation and Neurological Injury Markers and Improves Outcomes in a Phase2a Clinical Trial. Sci. Transl. Med. 2022, 14, eabo2652. [Google Scholar] [CrossRef] [PubMed]
Treated Patients (n = 72) | Control Group Patients (n = 68) | p-Value (Treated vs. Control Group) | |
---|---|---|---|
Age, (years) | 61.4 (12.3) | 62.2 (10.2) | 0.696 |
Male, number (%) | 56 (78.9%) | 50 (73.5%) | 0.294 |
ICU stay (days) | 26.2 (25.5) | 22.1 (19.1) | 0.403 |
Mechanic ventilation (days) | 24.6 (23.1) | 20.7 (16.2) | 0.460 |
Mechanic ventilation, number (%) | 60 (84.5%) | 50 (73.5%) | 0.083 |
SOFA score | 4.51 (1.96) | 5.01 (2.57) | 0.197 |
APACHE II score | 13.5 (5.8) | 17.5 (13.9) | 0.262 |
Mortality, number (%) | 25 (35.2%) | 28 (41.2%) | 0.291 |
MBP (mmHg) | 98.9 (16.3) | 96.2 (16.5) | 0.153 |
PaO2/FiO2 | 168.6 (74.9) | 179.0 (73.1) | 0.478 |
Control Group Patients | p-Value (Initial vs. Final) | Treated Patients | p-Value (Initial vs. Final) | p-Value (Treated vs. Control Group) Initial | p-Value (Treated vs. Control Group) Final | |||
---|---|---|---|---|---|---|---|---|
Initial | Final | Initial | Final | |||||
SOFA score | 4.51 (1.96) | 4.74 (2.79) | 0.425 | 5.01 (2.57) | 4.89 (2.62) | 0.554 | 0.197 | 0.758 |
HR (bpm) | 76.5 (16.6) | 67.0 (17.1) | 0.001 | 80.2 (20.3) | 68.6 (18.5) | 0.001 | 0.313 | 0.377 |
BF (bpm) | 26.0 (6.2) | 21.8 (3.7) | 0.001 | 26.8 (6.3) | 22.0 (5.6) | 0.001 | 0.008 | 0.714 |
MBP (mm Hg) | 98.9 (16.3) | 86.9 (13.2) | 0.001 | 96.2 (16.5) | 89.3 (14.9) | 0.566 | 0.153 | 0.364 |
PEEP (cm H2O) | 11.8 (2.7) | 11.9 (1.7) | 0.858 | 13.4 (2.4) | 12.4 (2.2) | 0.001 | 0.002 | 0.101 |
FiO2 (%) | 0.81 (0.19) | 0.63 (0.15) | 0.001 | 0.75 (0.18) | 0.62 (0.16) | 0.001 | 0.050 | 0.144 |
PaO2/FiO2 | 179.0 (73.1) | 185.7 (58.3) | 0.412 | 168.6 (74.9) | 204.8 (69.1) | 0.014 | 0.478 | 0.054 |
pH | 7.37 (0.10) | 7.41 (0.07) | 0.179 | 7.34 (0.10) | 7.44 (0.06) | 0.001 | 0.018 | 0.323 |
Lactic acid (mmol/L) | 1.66 (0.82) | 1.36 (0.32) | 0.188 | 1.82 (1.28) | 1.68 (0.45) | 0.600 | 0.932 | 0.014 |
Ferritin (ng/mL) | 1579 (1182) | 2212 (3143) | 0.092 | 2011 (1833) | 2066 (2093) | 0.811 | 0.913 | 0.790 |
D-dimer (ng/mL) | 2229 (8269) | 3778 (7570) | 0.044 | 4903 (14,616) | 2786 (3702) | 0.042 | 0.057 | 0.040 |
Creatinine (mg/dL) | 1.11 (0.75) | 1.07 (0.92) | 0.565 | 1.06 (0.67) | 1.02 (0.75) | 0.623 | 0.577 | 0.754 |
Urea (mg/dL) | 82.6 (49.2) | 88.4 (51.6) | 0.338 | 89.7 (60.5) | 103.8 (61.1) | 0.381 | 0.231 | 0.782 |
Sodium (mmol/L) | 139.0 (4.0) | 139.0 (4.3) | 0.931 | 139.6 (4.4) | 141.8 (5.3) | 0.001 | 0.544 | 0.001 |
Potassium (mmol/L) | 4.11 (0.50) | 4.09 (0.55) | 0.891 | 4.06 (0.54) | 3.98 (0.49) | 0.314 | 0.801 | 0.195 |
GOT or AST (U/L) | 42.4 (28.2) | 109.7 (590.8) | 0.354 | 50.9 (53.4) | 35.1 (22.8) | 0.016 | 0.290 | 0.320 |
GPT or ALT (U/L) | 43.3 (34.9) | 72 (163) | 0.147 | 61.2 (84.2) | 63.5 (73.0) | 0.749 | 0.113 | 0.740 |
CRP (mg/L) | 114.6 (78.5) | 93.8 (92.9) | 0.023 | 131.3 (93.0) | 71.4 (68.0) | 0.001 | 0.266 | 0.108 |
Procalcitonin (ng/dL) | 0.33 (0.52) | 1.00 (6.15) | 0.401 | 0.51 (1.32) | 0.26 (0.46) | 0.164 | 0.298 | 0.284 |
LDH (U/L) | 544.8 (187.9) | 584.4 (800.8) | 0.686 | 546.5 (220.6) | 456.0 (135.3) | 0.001 | 0.682 | 0.450 |
Leukocytes (∗103/µL) | 11.96 (5.75) | 11.35 (5.69) | 0.328 | 11.32 (5.29) | 10.52 (4.48) | 0.176 | 0.380 | 0.348 |
Neutrophils (∗103/µL) | 10.74 (5.42) | 9.78 (5.40) | 0.116 | 9.59 (4.67) | 8.94 (4.23) | 0.233 | 0.137 | 0.294 |
Lymphocytes (∗103/µL) | 0.71 (0.34) | 0.91 (0.48) | 0.001 | 0.70 (0.44) | 0.93 (0.92) | 0.039 | 0.551 | 0.959 |
Rate N/L Total | 18.1 (10.5) | 15.4 (18.2) | 0.194 | 18.6 (14.5) | 17.0 (22.0) | 0.439 | 0.674 | 0.642 |
Hemoglobin (g/dL) | 13.7 (2.0) | 12.7 (1.8) | 0.001 | 13.0 (2.1) | 12.2 (2.3) | 0.001 | 0.103 | 0.147 |
GSH (µM) (plasma) | 6.03 (6.66) | 6.71 (3.46) | 0.786 | 4.12 (1.80) | 4.74 (2.05) | 0.407 | 0.155 | 0.377 |
GSSG (µM) (plasma) | 1.89 (1.64) | 2.50 (2.13) | 0.489 | 1.15 (0.92) | 1.67 (1.33) | 0.265 | 0.108 | 0.790 |
GSH/GSSG (plasma) | 10.33 (18.77) | 5.52 (4.05) | 0.479 | 7.01 (10.27) | 5.64 (8.02) | 0.717 | 0.572 | 0.831 |
GSH (µM) (erythrocyte) | 224 (227) | 119 (121) | 0.191 | 159 (151) | 117 (109) | 0.041 | 0.022 | 0.893 |
GSSG (µM) (erythrocyte) | 109 (66) | 63 (52) | 0.010 | 119 (83) | 104 (73) | 0.039 | 0.451 | 0.001 |
GSH/GSSG (erythrocyte) | 1.72 (1.30) | 1.84 (1.40) | 0.857 | 2.02 (3.45) | 1.13 (0.64) | 0.100 | 0.064 | 0.001 |
Total GSH (µM) | 467 (311) | 251 (186) | 0.047 | 404 (265) | 325 (241) | 0.004 | 0.311 | 0.057 |
GPx1 (mU/mL) (erythrocyte) | 2797 (1143) | 3172 (1729) | 0.368 | 2978 (700) | 2925 (687) | 0.592 | 0.224 | 0.211 |
28-Day Mortality First Day | 28-Day Mortality Third Day | |||||
---|---|---|---|---|---|---|
Survivors (Mean ± SD) | Deceased (Mean ± SD) | p-Value | Survivors (Mean ± SD) | Deceased (Mean ± SD) | p-Value | |
Control group patients | ||||||
GSH (µM) (erythrocyte) | 196.5 (192.1) | 322.7 (295.3) | 0.184 | 105.4 (171.6) | 119.5 (132.2) | 0.770 |
GSSG (µM) (erythrocyte) | 88.1 (70.6) | 145.5 (71.0) | 0.034 | 65.2 (68.2) | 51.4 (39.6) | 0.441 |
GSH/GSSG (erythrocyte) | 3.24 (4.04) | 3.11 (2.95) | 0.936 | 2.30 (2.10) | 2.82 (1.48) | 0.383 |
Total GSH (µM) | 372.4 (304.6) | 630.4 (361.9) | 0.069 | 224.9 (272.2) | 221.9 (199.1) | 0.969 |
NAC-treated patients | ||||||
GSH (µM) (erythrocyte) | 118.6 (100.9) | 200.4 (191.5) | 0.040 | 96.3 (97.2) | 134.5 (120.0) | 0.216 |
GSSG (µM) (erythrocyte) | 110.5 (81.8) | 140.7 (83.7) | 0.150 | 98.3 (77.1) | 113.9 (63.9) | 0.390 |
GSH/GSSG (erythrocyte) | 1.56 (2.65) | 2.19 (3.96) | 0.482 | 0.96 (0.58) | 1.08 (0.81) | 0.532 |
Total GSH (µM) | 339.7 (239.0) | 486.5 (258.5) | 0.041 | 305.4 (239.3) | 353.5 (212.6) | 0.476 |
Control Group Patients | NAC-Treated Patients | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GSHeri (µM) First Day | GSHeri (µM) Third Day | GSSGeri (µM) First Day | GSSGeri (µM) Third Day | GSH/GSSGeri First Day | GSH/GSSGeri Third Day | Total GSHeri (µM) First Day | Total GSHeri (µM) Third Day | GSHeri (µM) First Day | GSHeri (µM) Third Day | GSSGeri (µM) First Day | GSSGeri (µM) Third Day | GSH/GSSGeri First Day | GSH/GSSGeri Third Day | Total GSHeri (µM) First Day | Total GSHeri (µM) Third Day | |
SOFA score | 0.216 | −0.167 | 0.098 | −0.072 | 0.276 | 0.024 | 0.148 | −0.211 | 0.426 ** | 0.497 ** | 0.378 ** | 0.262 ** | −0.005 | 0.375 ** | 0.508 ** | 0.392 ** |
Lactic acid (mmol/L) | −0.238 | −0.141 | 0.003 | −0.104 | −0.196 | −0.113 | −0.162 | −0.132 | 0.603 ** | 0.693 ** | 0.171 | 0.260 | 0.238 | 0.649 ** | 0.504 ** | 0.501 ** |
Fibrinogen mg/dL | −0.240 | −0.175 | −0.002 | −0.089 | −0.141 | 0.006 | −0.176 | −0.206 | −0.174 | 0.005 | −0.143 | −0.266 ** | −0.048 | 0.024 | −0.247 | −0.172 |
INR | 0.170 | −0.094 | 0.229 | −0.098 | −0.090 | 0.124 | 0.228 | −0.106 | 0.062 | 0.298 * | 0.202 | 0.084 | −0.032 | 0.150 | 0.173 | 0.233 |
aPTT (sg) | 0.372 | −0.024 | 0.304 | −0.164 | −0.123 | −0.029 | 0.423 * | −0.057 | 0.077 | 0.223 | 0.110 | −0.025 | 0.077 | 0.272 | 0.164 | 0.115 |
CK U/L | 0.017 | −0.058 | −0.001 | −0.093 | −0.133 | −0.098 | 0.004 | −0.053 | 0.062 | 0.070 | 0.331 ** | 0.185 | −0.104 | −0.065 | 0.248 | 0.158 |
LDH (U/L) | −0.138 | −0.200 | −0.003 | −0.141 | 0.077 | −0.129 | −0.154 | −0.160 | 0.036 | 0.217 | 0.159 | 0.186 | −0.051 | 0.148 | 0.112 | 0.221 |
TnT (ng/L) | −0.197 | −0.115 | 0.035 | 0.254 | −0.137 | −0.249 | −0.033 | 0.118 | 0.209 | 0.177 | 0.281 * | −0.114 | −0.061 | −0.015 | 0.318* | 0.163 |
CRP (mg/L) | −0.334 | −0.119 | 0.013 | −0.081 | −0.281 | −0.034 | −0.267 | −0.147 | 0.044 | 0.207 | 0.119 | −0.090 | −0.007 | 0.083 | 0.087 | 0.061 |
PCT (ng/dL) | 0.101 | −0.109 | 0.301 | −0.159 | −0.170 | 0.025 | 0.192 | −0.145 | 0.119 | 0.217 | 0.034 | −0.002 | 0.019 | 0.148 | 0.053 | 0.186 |
Ferritin (ng/mL) | −0.203 | 0.055 | −0.005 | −0.060 | −0.117 | −0.175 | −0.144 | 0.043 | 0.024 | −0.084 | −0.173 | −0.245 * | 0.149 | −0.194 | −0.159 | −0.217 |
Creatinine (ng/mL) | 0.259 | −0.148 | 0.179 | −0.195 | −0.105 | −0.103 | 0.324 | −0.169 | 0.262 | 0.327 * | 0.287 * | 0.302 * | −0.058 | 0.193 | 0.329 * | 0.344 * |
Urea (ng/mL) | 0.409 | −0.139 | 0.096 | −0.196 | 0.171 | −0.131 | 0.358 | −0.172 | 0.425 * | 0.595 ** | 0.206 | 0.464 ** | 0.433 | 0.269 | 0.281 | 0.611 ** |
Sodium mEq/L | 0.219 | 0.048 | −0.184 | 0.039 | 0.362 | −0.121 | 0.076 | 0.077 | 0.033 | 0.212 | −0.168 | −0.052 | 0.012 | 0.373 ** | −0.035 | 0.054 |
Proteins g/dL | 0.156 | −0.288 | 0.090 | −0.053 | 0.280 | −0.154 | 0.099 | −0.207 | −0.350 * | 0.067 | −0.030 | −0.079 | −0.298 * | 0.150 | −0.203 | −0.044 |
Leukocytes ∗103/µL | −0.215 | 0.206 | 0.013 | 0.105 | 0.041 | 0.067 | −0.152 | 0.158 | −0.058 | 0.153 | 0.042 | 0.332 ** | −0.046 | 0.072 | −0.093 | 0.287 * |
Neutrophils ∗103/µL | −0.379 * | −0.234 | −0.099 | −0.189 | −0.039 | −0.334 * | −0.400 * | −0.252 | −0.064 | 0.351 * | −0.019 | 0.290 * | 0.044 | 0.130 | −0.068 | 0.377 ** |
Lymphocytes ∗103/µL | 0.321 | 0.340 * | 0.181 | 0.287 | −0.071 | 0.300 | 0.351 | 0.382 * | −0.055 | −0.349 * | 0.041 | −0.278 * | −0.016 | −0.100 | 0.043 | −0.355 ** |
N/L rate | −0.218 | −0.178 | −0.263 | −0.197 | −0.008 | −0.175 | −0.249 | −0.211 | 0.160 | 0.262 | 0.111 | 0.295 * | −0.031 | 0.080 | 0.152 | 0.332 * |
Hemoglobin (gr/dL) | 0.055 | 0.014 | 0.208 | 0.002 | −0.009 | −0.157 | 0.015 | 0.073 | 0.179 | −0.182 | −0.120 | −0.296 * | 0.138 | 0.002 | 0.029 | −0.333 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gamarra-Morales, Y.; Herrera-Quintana, L.; Molina-López, J.; Vázquez-Lorente, H.; Machado-Casas, J.F.; Castaño-Pérez, J.; Pérez-Villares, J.M.; Planells, E. Response to Intravenous N-Acetylcysteine Supplementation in Critically Ill Patients with COVID-19. Nutrients 2023, 15, 2235. https://doi.org/10.3390/nu15092235
Gamarra-Morales Y, Herrera-Quintana L, Molina-López J, Vázquez-Lorente H, Machado-Casas JF, Castaño-Pérez J, Pérez-Villares JM, Planells E. Response to Intravenous N-Acetylcysteine Supplementation in Critically Ill Patients with COVID-19. Nutrients. 2023; 15(9):2235. https://doi.org/10.3390/nu15092235
Chicago/Turabian StyleGamarra-Morales, Yenifer, Lourdes Herrera-Quintana, Jorge Molina-López, Héctor Vázquez-Lorente, Juan Francisco Machado-Casas, José Castaño-Pérez, José Miguel Pérez-Villares, and Elena Planells. 2023. "Response to Intravenous N-Acetylcysteine Supplementation in Critically Ill Patients with COVID-19" Nutrients 15, no. 9: 2235. https://doi.org/10.3390/nu15092235
APA StyleGamarra-Morales, Y., Herrera-Quintana, L., Molina-López, J., Vázquez-Lorente, H., Machado-Casas, J. F., Castaño-Pérez, J., Pérez-Villares, J. M., & Planells, E. (2023). Response to Intravenous N-Acetylcysteine Supplementation in Critically Ill Patients with COVID-19. Nutrients, 15(9), 2235. https://doi.org/10.3390/nu15092235