Rice Bran: From Waste to Nutritious Food Ingredients
Abstract
:1. Introduction
2. Rice Demands
3. Production of Rice Bran
4. Effect of Processing on the Rice Bran
4.1. Lipid Oxidation in Rice Bran
4.2. Stabilization Techniques of Rice Bran
5. The Role of Rice Bran in Health and Chronic Diseases
5.1. Hypertension
5.2. Cancer
5.3. Neurodegenerative Disease
5.4. Cardiovascular Disease
5.5. Diabetes
6. Application in Food Products
6.1. Cooking Oils
6.2. Bakery Products
6.3. Food Colorant
6.4. Edible Coating
7. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Tan, B.L.; Norhaizan, M.E. Chapter 2—Rice demands: A brief description. In Rice by-Products: Phytochemicals and Food Products Application; Springer: Cham, Switzerland, 2020; pp. 7–11. [Google Scholar] [CrossRef]
- Esa, N.M.; Ling, T.B.; Peng, L.S. By-products of rice processing: An overview of health benefits and applications. J. Rice Res. 2013, 1, 107. [Google Scholar] [CrossRef]
- Tan, B.L.; Norhaizan, M.E. Chapter 3—Production of rice by-products. In Rice By-Products: Phytochemicals and Food Products Application; Springer: Cham, Switzerland, 2020; pp. 12–39. [Google Scholar] [CrossRef]
- Yadav, U.; Arora, S.; Kaushik, I. Rice (Oryza sativa) Bran. In Oilseeds: Health Attributes and Food Applications; Tanwar, B., Goyal, A., Eds.; Springer: Singapore, 2021; pp. 397–426. [Google Scholar] [CrossRef]
- Tan, B.L.; Norhaizan, M.E. Scientific evidence of rice by-products for cancer prevention: Chemopreventive properties of waste products from rice milling on carcinogenesis in vitro and in vivo. BioMed Res. Int. 2017, 2017, 9017902. [Google Scholar] [CrossRef] [PubMed]
- Phunikhom, K.; Sattayasai, J.; Tiamkao, S.; Gaysonsiri, D. A randomized, double blind clinical study to assess the effects of a gamma-oryzanol-enriched rice bran oil on lipid profile in the hypercholesterolemic patients. J. Med. Assoc. Thai 2021, 104, 64–69. [Google Scholar]
- Tan, B.L.; Norhaizan, M.E. Chapter 4—Phytonutrients and antioxidant properties of rice by-products. In Rice by-Products: Phytochemicals and Food Products Application; Springer: Cham, Switzerland, 2020; pp. 41–68. [Google Scholar] [CrossRef]
- Kim, S.; Cho, J.H.; Kim, H.B.; Song, M. Rice as an alternative feed ingredient in swine diets. J. Anim. Sci. Technol. 2021, 63, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Arya, S.K. A review on management of rice straw by use of cleaner technologies: Abundant opportunities and expectations for Indian farming. J. Clean. Prod. 2021, 291, 125278. [Google Scholar] [CrossRef]
- Tan, B.L.; Norhaizan, M.E. Chapter 6—Application in food products. In Rice by-Products: Phytochemicals and Food Products Application; Springer: Cham, Switzerland, 2020; pp. 103–115. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Rice Trade Glossary; FAO: Rome, Italy, 1957. [Google Scholar]
- International Rice Research Institute. World Rice Statistics 2013; IRRI: Los Baños, Philippines, 2013; Available online: http://irri.org/index.php?option=com_k2&view=item&id=9081&Itemid=100481&lang=en (accessed on 29 June 2013).
- Food and Agriculture Organization. Rice is Life; Food and Agriculture Organization: Rome, Italy, 2004; Available online: http://www.fao.org/newsroom/en/focus/200436887/index.html (accessed on 29 June 2013).
- Bandumula, N. Rice production in Asia: Key to global food security. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2018, 88, 1323–1328. [Google Scholar] [CrossRef]
- Dang, K.B.; Windhorst, W.; Burkhard, B.; Müller, F. A Bayesian Belief Network-based approach to link ecosystem functions with rice provisioning ecosystem services. Ecol. Indic. 2019, 100, 30–44. [Google Scholar] [CrossRef]
- United Nations Department of Economic and Social Affairs. World Population Projected to Reach 9.8 Billion in 2050, and 11.2 billion in 2100. 2017. Available online: https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html (accessed on 1 September 2021).
- Lim, J.S.; Manan, Z.A.; Hashim, H.; Wan Alwi, S.R. Towards an integrated, resource-efficient rice mill complex. Resour. Conserv. Recycl. 2013, 75, 41–51. [Google Scholar] [CrossRef]
- FAO. Bridging the Rice Yield Gap in the Asia-Pacific Region; Papademetriou, M.K., Dent, F.J., Herath, E.M., Eds.; Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific: Bangkok, Thailand, 2000; Available online: http://www.fao.org/3/x6905e/x6905e04.htm (accessed on 21 October 2019).
- Hu, W.; Wells, J.H.; Shin, T.-S.; Godber, J.S. Comparison of isopropanol and hexane for extraction of vitamin E and oryzanols from stabilized rice bran. J. Am. Oil Chem. Soc. 1996, 73, 1653–1656. [Google Scholar] [CrossRef]
- Lavanya, M.N.; Venkatachalapathy, N.; Manickavasagan, A. Chapter 5—Physicochemical characteristics of rice bran. In Brown Rice; Manickavasagan, A., Santhakumar, C., Venkatachalapathy, N., Eds.; Springer: Cham, Switzerland, 2017; pp. 79–90. [Google Scholar]
- International Rice Research Institute (IRRI). Milling Byproducts; International Rice Research Institute (IRRI): Manila, Philippines, 2016; Available online: http://www.knowledgebank (accessed on 21 March 2019).
- Saunders, R.M. The properties of rice bran as a food stuff. Cereal Foods World 1990, 35, 632–639. [Google Scholar]
- Irakli, M.N.; Katsantonis, D.N.; Ward, S. Rice Bran: A promising natural antioxidant component in breadmaking. J. Nutraceut. Food Sci. 2017, 2, 14. [Google Scholar]
- Borresen, E.C.; Ryan, E.P. Chapter 22: Rice bran: A food ingredient with global public health opportunities. In Wheat and Rice in Disease Prevention and Health: Benefits, Risks and Mechanisms of Whole Grains in Health Promotion; Academic Press: Cambridge, MA, USA, 2014; pp. 301–310. [Google Scholar] [CrossRef]
- Irakli, M.; Lazaridou, A.; Biliaderis, C.G. Comparative evaluation of the nutritional, antinutritional, functional, and bioactivity attributes of rice bran stabilized by different heat treatments. Foods 2021, 10, 57. [Google Scholar] [CrossRef] [PubMed]
- Bollinedi, H.; Singh, A.K.; Singh, N.; Gopala, K.S.; Bhowmick, P.K.; Vinod, K.K.; Nagarajan, M.; Ellur, R.K. Genetic and genomic approaches to address rapid rancidity of rice bran. Crit. Rev. Food Sci. Nutr. 2021, 61, 75–84. [Google Scholar] [CrossRef]
- Mohd Daud, N.S.; Zaidel, D.N.A.; Song, L.K.; Jusoh, Y.M.M.; Muhamad, I.I.; Ya’akob, H. Microwave-assisted stabilisation and storage stability study of rice bran oil from different varieties. Chem. Eng. Transact. 2017, 56, 1285–1290. [Google Scholar] [CrossRef]
- Gopinger, E.; Ziegler, V.; da Silva Catalan, A.A.; Krabbe, E.L.; Elias, M.C.; Xavier, E.G. Whole rice bran stabilization using a short chain organic acid mixture. J. Stored Prod. Res. 2015, 61, 108–113. [Google Scholar] [CrossRef]
- Thanonkaew, A.; Wongyai, S.; McClements, D.J.; Decker, E.A. Effect of stabilization of rice bran by domestic heating on mechanical extraction yield, quality, and antioxidant properties of cold-pressed rice bran oil (Oryza saltiva L.). LWT Food Sci. Technol. 2012, 48, 231–236. [Google Scholar] [CrossRef]
- Ahmed, F.; Platel, K.; Vishwanatha, S.; Puttaraj, S.; Srinivasan, K. Improved shelf-life of rice bran by domestic heat processing and assessment of its dietary consumption in experimental rats. J. Sci. Food Agric. 2007, 87, 60–67. [Google Scholar] [CrossRef]
- Tao, J.; Rao, R.; Liuzzo, J. Microwave heating for rice bran stabilization. J. Microw. Power Electromagn. Energy 1993, 28, 156–164. [Google Scholar] [CrossRef]
- Chandra, P.; Enespa; Singh, R.; Arora, P.K. Microbial lipases and their industrial applications: A comprehensive review. Microb. Cell Fact. 2020, 19, 169. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, K.; Raju, A.; Rajasekharan, R. Identification, purification, and characterization of a thermally stable lipase from rice bran: A new member of the (Phospho) lipase family. Plant Physiol. 2001, 127, 1728–1738. [Google Scholar] [CrossRef]
- Raghav, P.K.; Agarwal, N.; Sharma, A. Emerging health benefits of rice bran—A review. Int. J. Multidiscip. Res. Mod. Educ. 2016, 2, 367–382. [Google Scholar]
- Kumar, A.; Singh, B.; Raigond, P.; Sahu, C.; Mishra, U.N.; Sharma, S.; Lal, M.K. Phytic acid: Blessing in disguise, a prime compound required for both plant and human nutrition. Food Res. Int. 2021, 142, 110193. [Google Scholar] [CrossRef]
- Kreungngern, D.; Kongbangkerd, T.; Ruttarattanamongkol, K. Optimization of rice bran stabilization by infrared-vacuum process and storage stability. J. Food Process Eng. 2021, 44, e13668. [Google Scholar] [CrossRef]
- Kim, S.-M.; Chung, H.-J.; Lim, S.-T. Effect of various heat treatments on rancidity and some bioactive compounds of rice bran. J. Cereal Sci. 2014, 60, 243–248. [Google Scholar] [CrossRef]
- Irakli, M.; Kleisiaris, F.; Mygdalia, A.; Katsantonis, D. Stabilization of rice bran and its effect on bioactive compounds content, antioxidant activity and storage stability during infrared radiation heating. J. Cereal Sci. 2018, 80, 135–142. [Google Scholar] [CrossRef]
- Ramezanzadeh, F.M.; Rao, R.M.; Prinyawiwatkul, W.; Marshall, W.E.; Windhauser, M. Effects of microwave heat, packaging, and storage temperature on fatty acid and proximate compositions in rice bran. J. Agric. Food Chem. 2000, 48, 464–467. [Google Scholar] [CrossRef]
- Patil, S.S.; Kar, A.; Mohapatra, D. Stabilization of rice bran using microwave: Process optimization and storage studies. Food Bioprod. Process 2016, 99, 204–211. [Google Scholar] [CrossRef]
- Zigoneanu, I.G.; Williams, L.; Xu, Z.; Sabliov, C.M. Determination of antioxidant components in rice bran oil extracted by microwave-assisted method. Bioresour. Technol. 2008, 99, 4910–4918. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.-W.; Hu, Q.-R.; Wang, H.-W.; Deng, Z.-Y. Comparison of 11 rice bran stabilization methods by analyzing lipase activities. J. Food Process Preserv. 2020, 44, e14370. [Google Scholar] [CrossRef]
- Riadh, M.H.; Ahmad, S.A.B.; Marhaban, M.H.; Soh, A.C. Infrared heating in food drying: An overview. Dry. Technol. 2015, 33, 322–335. [Google Scholar] [CrossRef]
- Yan, W.; Liu, Q.; Wang, Y.; Tao, T.; Liu, B.; Liu, J.; Ding, C. Inhibition of lipid and aroma deterioration in rice bran by infrared heating. Food Bioprocess Technol. 2020, 13, 1677–1687. [Google Scholar] [CrossRef]
- Liao, M.; Damayanti, W.; Xu, Y.; Zhao, Y.; Xu, X.; Zheng, Y.; Jiao, S. Hot air-assisted radio frequency heating for stabilization of rice bran: Enzyme activity, phenolic content, antioxidant activity and microstructure. LWT 2020, 131, 109754. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Strappe, P.; Zhou, Z.K.; Blanchard, C. Impact on the nutritional attributes of rice bran following various stabilization procedures. Crit. Rev. Food Sci. Nutr. 2019, 59, 2458–2466. [Google Scholar] [CrossRef]
- Banwa, T.P.; Bawer, M.C.; Doctor, J.G.P. Potential of rice culture starter (RCS) for pre-fermenting parboiled rice bran (PRB) through solid-state fermentation (SSF). Ind. J. Sci. Technol. 2020, 13, 1036–1045. [Google Scholar] [CrossRef]
- Dos Santos Conceição Faria, S.A.; Bassinello, P.Z.; de Vuono Camargo Penteado, M. Nutritional composition of rice bran submitted to different stabilization procedures. Braz. J. Pharmaceut. Sci. 2012, 48, 651–657. [Google Scholar] [CrossRef]
- Rezasoltani, P.; Elliyoun, N.; Ziaie, T.; Sobhani, A.; Leyli, E.K.; Aski, S.K. Double-blind controlled trial of vitamin E effects on serum lipid profile in menopausal women. Diabetes Metab. Syndr. Obes. 2022, 14, 1053–1060. [Google Scholar] [CrossRef]
- Mohammad, A.; Falahi, E.; Barakatun-Nisak, M.Y.; Hanipah, Z.N.; Mohd Redzwan, S.; Yusof, L.M.; Gheitasvand, M.; Rezaie, F. Systematic review and meta-analyses of vitamin E (alpha-tocopherol) supplementation and blood lipid parameters in patients with diabetes mellitus. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 102158. [Google Scholar] [CrossRef]
- Budin, S.B.; Othman, F.; Louis, S.R.; Bakar, M.A.; Das, S.; Mohamed, J. The effects of palm oil tocotrienol-rich fraction supplementation on biochemical parameters, oxidative stress and the vascular wall of streptozotocin-induced diabetic rats. Clinics 2009, 64, 235–244. [Google Scholar] [CrossRef]
- Ambrogini, P.; Minelli, A.; Galati, C.; Betti, M.; Lattanzi, D.; Ciffolilli, S.; Piroddi, M.; Galli, F.; Cuppi, R. Post-seizure α-tocopherol treatment decreases neuroinflammation and neuronal degeneration induced by status epilepticus in rat hippocampus. Mol. Neurobiol. 2014, 50, 246–256. [Google Scholar] [CrossRef]
- Rao, Y.P.C.; Pavan Kumar, P.; Lokesh, B.R. Molecular mechanisms for the modulation of selected inflammatory markers by dietary rice bran oil in rats fed partially hydrogenated vegetable fat. Lipids 2016, 51, 451–467. [Google Scholar] [CrossRef]
- Rao, Y.P.C.; Sugasini, D.; Lokesh, B.R. Dietary gamma oryzanol plays a significant role in the anti-inflammatory activity of rice bran oil by decreasing pro-inflammatory mediators secreted by peritoneal macrophages of rats. Biochem. Biophys. Res. Commun. 2016, 479, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Nagasaka, R.; Ohara, K.; Hosoya, T.; Ozaki, H.; Ushio, H.; Hori, M. Biological abilities of rice bran-derived antioxidant phytochemicals for medical therapy. Curr. Topics Med. Chem. 2011, 11, 1847–1853. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhao, H.; Zhang, C.; Lu, Y.; Zhu, X.; Lu, Z. γ-Aminobutyric acid-rich yogurt fermented by Streptococcus salivarius subsp. thermophiles fmb5 apprars to have anti-diabetic effect on streptozotocin-induced diabetic mice. J. Funct. Foods 2016, 20, 267–275. [Google Scholar] [CrossRef]
- Roohinejad, S.; Omidizadeh, A.; Mirhosseini, H.; Saari, N.; Mustafa, S.; Yusof, R.M.; Hussin, A.S.M.; Hamid, A.; Manap, A.Y.A. Effect of pre-germination time of brown rice on serum cholesterol levels of hypercholesterolaemic rats. J. Sci. Food Agric. 2010, 90, 245–251. [Google Scholar] [CrossRef]
- Yang, N.-C.; Jhou, K.-Y.; Tseng, C.-Y. Antihypertensive effect of mulberry leaf aqueous extract containing γ-aminobutyric acid in spontaneously hypertensive rats. Food Chem. 2012, 132, 1796–1801. [Google Scholar] [CrossRef]
- Nunes, M.A.; Pimentel, F.; Costa, A.S.G.; Alves, R.C.; Oliveira, M.B.P.P. Cardioprotective properties of grape seed proanthocyanidins: An update. Trends Food Sci. Technol. 2016, 57, 31–39. [Google Scholar] [CrossRef]
- Barnaba, C.; Medina-Meza, I.G. Flavonoids ability to disrupt inflammation mediated by lipid and cholesterol oxidation. In The Role of Bioactive Lipids in Cancer, Inflammation and Related Diseases; Honn, K.V., Zeldin, D.C., Eds.; Springer: Cham, Switzerland, 2019; Volume 1161, pp. 243–253. [Google Scholar]
- Jung, U.J.; Lee, M.-K.; Jeong, K.-S.; Choi, M.-S. The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice. J. Nutr. 2004, 134, 2499–2503. [Google Scholar] [CrossRef]
- Demir, Y.; Durmaz, L.; Taslimi, P.; Gulçin, İ. Antidiabetic properties of dietary phenolic compounds: Inhibition effects on α-amylase, aldose reductase, and α-glycosidase. Biotech. Appl. Biochem. 2019, 66, 781–786. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Hypertension. 2021. Available online: https://www.who.int/health-topics/hypertension#tab=tab_1 (accessed on 12 July 2021).
- Messerli, F.H.; Bangalore, S.; Bavishi, C.; Rimoldi, S.F. Angiotensin-converting enzyme inhibitors in hypertension: To use or not to use? J. Am. Coll. Cardiol. 2018, 71, 1474–1482. [Google Scholar] [CrossRef]
- Jiang, Q.; Chen, Q.; Zhang, T.; Liu, M.; Duan, S.; Sun, X. The antihypertensive effects and potential molecular mechanism of microalgal angiotensin I-converting enzyme inhibitor-like peptides: A mini review. Int. J. Mol. Sci. 2021, 22, 4068. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Ye, R.; Wu, Y.; Xia, W. Comparison of analytical methods to assay inhibitors of angiotensin I-converting enzyme. Food Chem. 2013, 141, 3329–3334. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, H.R.; Ahmed, A.S.; Miyata, T. Novel angiotensin-converting enzyme inhibitory peptides from caseins and whey proteins of goat milk. J. Adv. Res. 2017, 8, 63–71. [Google Scholar] [CrossRef]
- Tan, B.L.; Norhaizan, M.E. Chapter 5—Potential health benefits of rice by-products. In Rice by-Products: Phytochemicals and Food Products Application; Springer: Cham, Switzerland, 2020; pp. 69–102. [Google Scholar] [CrossRef]
- Ardiansyah, D.W.; Handoko, D.D.; Kusbiantoro, B.; Budijanto, S.; Shirakawa, H. Fermented rice bran extract improves blood pressure and glucose in stroke-prone spontaneously hypertensive rats. Nutr. Food Sci. 2019, 49, 844–853. [Google Scholar] [CrossRef]
- Ogawa, Y.; Shobako, N.; Fukuhara, I.; Satoh, H.; Kobayashi, E.; Kusakari, T.; Suwa, M.; Matsumoto, M.; Ishikado, A. Rice bran supplement containing a functional substance, the novel peptide Leu-Arg-Ala, has anti-hypertensive effects: A double-blind, randomized, placebo-controlled study. Nutrients 2019, 11, 726. [Google Scholar] [CrossRef] [PubMed]
- Piotrowicz, I.B.B.; Garcés-Rimón, M.; Moreno-Fernández, S.; Aleixandre, A.; Salas-Mellado, M.; Miguel-Castro, M. Antioxidant, angiotensin-converting enzyme inhibitory properties and blood-pressure-lowering effect of rice bran protein hydrolysates. Foods 2020, 9, 812. [Google Scholar] [CrossRef] [PubMed]
- Shobako, N.; Ogawa, Y.; Ishikado, A.; Harada, K.; Kobayashi, E.; Suido, H.; Kusakari, T.; Maeda, M.; Suwa, M.; Matsumoto, M.; et al. A novel antihypertensive peptide identified in thermolysin-digested rice bran. Mol. Nutr. Food Res. 2018, 62, 1700732. [Google Scholar] [CrossRef]
- Jongsomchai, K.; Leardkamolkarn, V.; Mahatheeranont, S. A rice bran phytochemical, cyanidin 3-glucoside, inhibits the progression of PC3 prostate cancer cell. Anat. Cell Biol. 2020, 53, 481–492. [Google Scholar] [CrossRef]
- Han, W.; Chen, H.; Zhou, L.; Zou, H.; Luo, X.; Sun, B.; Zhuang, X. Polysaccharides from Ganoderma Sinense—Rice bran fermentation products and their anti-tumor activities on non-small-cell lung cancer. BMC Complement. Med. Ther. 2021, 21, 169. [Google Scholar] [CrossRef]
- Badr El-Din, N.K.; Ali, D.A.; Othman, R.; French, S.W.; Ghoneum, M. Chemopreventive role of arabinoxylan rice bran, MGN-3/Biobran, on liver carcinogenesis in rats. Biomed. Pharmacother. 2020, 126, 110064. [Google Scholar] [CrossRef]
- Tan, D.F.S.; Flores, J.A.S. The immunomodulating effects of arabinoxylan rice bran (Lentin) on hematologic profile, nutritional status and quality of life among head and neck carcinoma patients undergoing radiation therapy: A double blind randomized control trial. Radiol. J. 2020, 12, 11–15. [Google Scholar]
- Sirithunyalug, B.; Saenjum, C.; Charumanee, S.; Sivamaruthi, B.S.; Chaiyasut, C.; Sirithunyalug, J.; Tipduangta, P. Development of colorectal-targeted dietary supplement tablets containing natural purple rice bran oil as a colorectal chemopreventive. Nutrients 2018, 10, 444. [Google Scholar] [CrossRef]
- Avanthi, P.; Vigasini, K.N. In vitro antioxidant and anticancer activity of ethanolic extract of defatted rice bran on MCF-7 (breast) and A549 (lung) cancer cell lines. Asian J. Biol. Life Sci. 2021, 10, 210–216. [Google Scholar] [CrossRef]
- Takahashi, T.; Nakaso, K.; Horikoshi, Y.; Hanaki, T.; Yamakawa, M.; Nakasone, M.; Kitagawa, Y.; Koike, T.; Matsura, T. Rice bran dietary supplementation improves neurological symptoms and loss of Purkinje cells in vitamin E-deficient mice. Yonago Acta Med. 2016, 59, 188–195. [Google Scholar]
- Abd El Fattah, M.A.; Abdelhamid, Y.A.; Elyamany, M.F.; Badary, O.A.; Heikal, O.A. Rice bran extract protected against LPS-induced neuroinflammation in mice through targeting PPAR-γ nuclear receptor. Mol. Neurobiol. 2021, 58, 1504–1516. [Google Scholar] [CrossRef] [PubMed]
- Saad El-Din, S.; Elwahab, S.A.; Rashed, L.; Fayez, S.; Aboulhoda, B.E.; Heikal, O.A.; Galal, A.F.; Nour, Z.A. Possible role of rice bran extract in microglial modulation through PPAR-gamma receptors in Alzheimer’s disease mice model. Metab. Brain Dis. 2021, 36, 1903–1915. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, A.O.; Abdel-Kader, R.M.; Heikal, O.A. Enhancement of cognitive functions by rice bran extract in a neuroinflammatory mouse model via regulation of PPARγ. J. Funct. Foods 2018, 48, 314–321. [Google Scholar] [CrossRef]
- Ghoneum, M.H.; El-Sayed, N.S. Protective effect of Biobran/MGN-3 against sporadic Alzheimer’s disease mouse model: Possible role of oxidative stress and apoptotic pathways. Oxid. Med. Cell. Longev. 2021, 2021, 8845064. [Google Scholar] [CrossRef]
- Jang, J.Y.; Lee, H.K.; Yoo, H.-S.; Seong, Y.H. Protective effect of rice bran oil against β-amyloid protein-induced memory impairment and neuronal death in mice. Nat. Prod. Sci. 2020, 26, 221–229. [Google Scholar]
- Tan, X.W.; Kobayashi, K.; Shen, L.; Inagaki, J.; Ide, M.; Hwang, S.S.; Matsuura, E. Antioxidative attributes of rice bran extracts in ameliorative effects of atherosclerosis-associated risk factors. Heliyon 2020, 6, e05743. [Google Scholar] [CrossRef] [PubMed]
- Bumrungpert, A.; Chongsuwat, R.; Phosat, C.; Butacnum, A. Rice bran oil containing gamma-oryzanol improves lipid profiles and antioxidant status in hyperlipidemic subjects: A randomized double-blind controlled trial. J. Altern. Complement. Med. 2019, 25, 353–358. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, L.; Jia, X.; Liu, L.; Chi, J.; Huang, F.; Ma, Q.; Zhang, M.; Zhang, R. Bound phenolics ensure the antihyperglycemic effect of rice bran dietary fiber in db/db mice via activating the insulin signaling pathway in skeletal muscle and altering gut microbiota. J. Agric. Food Chem. 2020, 68, 4387–4398. [Google Scholar] [CrossRef]
- Kubota, M.; Watanabe, R.; Hosojima, M.; Saito, A.; Sasou, A.; Masumura, T.; Harada, Y.; Hashimoto, H.; Fujimura, S.; Kadowaki, M. Rice bran protein ameliorates diabetes, reduces fatty liver, and has renoprotective effects in Zucker Diabetic Fatty rats. J. Funct. Foods 2020, 70, 103981. [Google Scholar] [CrossRef]
- Nakamura, S.; Hara, T.; Joh, T.; Kobayashi, A.; Yamazaki, A.; Kasuga, K.; Ikeuchi, T.; Ohtsubo, K. Effects of super-hard rice bread blended with black rice bran on amyloid β peptide production and abrupt increase in postprandial blood glucose levels in mice. Biosci. Biotechnol. Biochem. 2017, 81, 323–334. [Google Scholar] [CrossRef]
- Shobako, N.; Ohinata, K. Anti-hypertensive effects of peptides derived from rice bran protein. Nutrients 2020, 12, 3060. [Google Scholar] [CrossRef]
- Yasunori, N.; Osamu, M.; Toshiaki, T. Decrease of tissue angiotensin I-converting enzyme activity upon feeding sour milk in spontaneously hypertensive rats. Biosci. Biotechnol. Biochem. 1996, 60, 488–489. [Google Scholar] [CrossRef]
- Shobako, N.; Ishikado, A.; Ogawa, Y.; Sono, Y.; Kusakari, T.; Suwa, M.; Matsumoto, M.; Ohinata, K. Vasorelaxant and antihypertensive effects that are dependent on the endothelial NO system exhibited by rice bran-derived tripeptide. J. Agric. Food Chem. 2019, 67, 1437–1442. [Google Scholar] [CrossRef] [PubMed]
- Wijesekara, I.; Kim, S.-K. Angiotensin-I-converting enzyme (ACE) inhibitors from marine resources: Prospects in the pharmaceutical industry. Mar. Drugs 2010, 8, 1080–1093. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Cancer. 2021. Available online: https://www.who.int/health-topics/cancer#tab=tab_1 (accessed on 11 August 2021).
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Fiaschi, T.; Chiarugi, P. Oxidative stress, tumor microenvironment, and metabolic reprogramming: A diabolic liaison. Int. J. Cell Biol. 2012, 2012, 762825. [Google Scholar] [CrossRef]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef] [PubMed]
- Takeo, S.; Kado, H.; Yamamoto, H.; Kamimura, M.; Watanabe, N.; Uchida, K.; Mori, Y. Studies on an antitumor polysaccharide RBS derived from rice bran. II. Preparation and general properties of RON, an active fraction of RBS. Chem. Pharm. Bull. 1988, 36, 3609–3613. [Google Scholar] [CrossRef]
- Wang, L.; Huang, H.; Wei, Y.; Li, X.; Chen, Z. Characterization and anti-tumor activities of sulfated polysaccharide SRBPS2a obtained from defatted rice bran. Int. J. Biol. Macromol. 2009, 45, 427–431. [Google Scholar] [CrossRef]
- Takeshita, M.; Nakamura, S.; Makita, F.; Ohwada, S.; Miyamoto, Y.; Morishita, Y. Antitumor effect of RBS (rice bran saccharide) on ENNG-induced carcinogenesis. Mol. Biother. 1992, 4, 139–145. [Google Scholar] [CrossRef]
- Ghoneum, M. Anti-HIV activity in vitro of MGN-3, an activated arabinoxylane from rice bran. Biochem. Biophys. Res. Commun. 1998, 243, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Badr El-Din, N.K.; Noaman, E.; Ghoneum, M. In vivo tumor inhibitory effects of nutritional rice bran supplement MGN-3/Biobran on Ehrlich carcinoma-bearing mice. Nutr. Cancer 2008, 60, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Ghoneum, M. From bench to bedside: The growing use of arabinoxylan rice bran (MGN-3/Biobran) in cancer immunotherapy. Austin Immunol. 2016, 1, 1006. [Google Scholar]
- Ooi, S.L.; McMullen, D.; Golombick, T.; Nut, D.; Pak, S.C. Evidence-based review of BioBran/MGN-3 arabinoxylan compound as a complementary therapy for conventional cancer treatment. Integr. Cancer Ther. 2018, 17, 165–178. [Google Scholar] [CrossRef]
- Noaman, E.; Badr El-Din, N.K.; Bibars, M.A.; Mossallam, A.A.A.; Ghoneum, M. Antioxidant potential by arabinoxylan rice bran, MGN-3/biobran, represents a mechanism for its oncostatic effect against murine solid Ehrlich carcinoma. Cancer Lett. 2008, 268, 348–359. [Google Scholar] [CrossRef]
- Ghoneum, M.; Agrawal, S. Activation of human monocyte-derived dendritic cells in vitro by the biological response modifier arabinoxylan rice bran (MGN-3/Biobran). Int. J. Immunopathol. Pharmacol. 2011, 24, 941–948. [Google Scholar] [CrossRef]
- Badr El-Din, N.K.; Ali, D.A.; Alaa El-Dein, M.; Ghoneum, M. Enhancing the apoptotic effect of a low dose of Paclitaxel on tumor cells in mice by arabinoxylan rice bran (MGN-3/Biobran). Nutr. Cancer 2016, 68, 1010–1020. [Google Scholar] [CrossRef]
- Tan, B.L.; Esa, N.M.; Rahman, H.S.; Hamzah, H.; Karim, R. Brewers’ rice induces apoptosis in azoxymethane-induced colon carcinogenesis in rats via suppression of cell proliferation and the Wnt signaling pathway. BMC Complement. Altern. Med. 2014, 14, 304. [Google Scholar] [CrossRef]
- Tan, B.L.; Norhaizan, M.E.; Huynh, K.; Heshu, S.R.; Yeap, S.K.; Hazilawati, H.; Roselina, K. Water extract of brewers’ rice induces apoptosis in human colorectal cancer cells via activation of caspase-3 and caspase-8 and downregulates the Wnt/β-catenin downstream signaling pathway in brewers’ rice-treated rats with azoxymethane-induced colon carcinogenesis. BMC Complement. Altern. Med. 2015, 15, 205. [Google Scholar] [CrossRef]
- World Health Organization. Dementia. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed on 16 August 2021).
- Uddin, M.S.; Kabir, M.T. Oxidative stress in Alzheimer’s disease: Molecular hallmarks of underlying vulnerability. In Biological, Diagnostic and Therapeutic Advances in Alzheimer’s Disease; Ashraf, G., Alexiou, A., Eds.; Springer: Singapore, 2019; pp. 91–115. [Google Scholar] [CrossRef]
- Kumar, B.R.P.; Kumar, A.P.; Jose, J.A.; Prabitha, P.; Yuvaraj, S.; Chipurupalli, S.; Jeyarani, V.; Manisha, C.; Banerjee, S.; Jeyabalan, J.B.; et al. Minutes of PPAR-γ agonism and neuroprotection. Neurochem. Int. 2020, 140, 104814. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.L.; Norhaizan, M.E.; Liew, W.-P.-P. Nutrients and oxidative stress: Friend or foe? Oxid. Med. Cell. Longev. 2018, 2018, 9719584. [Google Scholar] [CrossRef]
- Poznyak, A.V.; Nikiforov, N.G.; Markin, A.M.; Kashirskikh, D.A.; Myasoedova, V.A.; Gerasimova, E.V.; Orekhov, A.N. Overview of OxLDL and its impact on cardiovascular health: Focus on atherosclerosis. Front. Pharmacol. 2021, 11, 613780. [Google Scholar] [CrossRef]
- Saji, N.; Francis, N.; Schwarz, L.J.; Blanchard, C.L.; Santhakumar, A.B. Rice bran derived bioactive compounds modulate risk factors of cardiovascular disease and type 2 diabetes mellitus: An updated review. Nutrients 2019, 11, 2736. [Google Scholar] [CrossRef]
- Pourrajab, B.; Sohouli, M.H.; Amirinejad, A.; Fatahi, S.; Găman, M.-A.; Shidfar, F. The impact of rice bran oil consumption on the serum lipid profile in adults: A systematic review and meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2022, 62, 6005–6015. [Google Scholar] [CrossRef]
- World Health Organization. Diabetes. 2021. Available online: https://www.who.int/health-topics/diabetes#tab=tab_1 (accessed on 13 October 2021).
- International Diabetes Federation. IDF Diabetes Atlas, 7th ed.; International Diabetes Federation: Brussels, Belgium, 2015. [Google Scholar]
- Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. A comprehensive review on anti-diabetic property of rice bran. Asian Pac. J. Trop. Biomed. 2018, 8, 79–84. [Google Scholar] [CrossRef]
- Gheith, O.; Farouk, N.; Nampoory, N.; Halim, M.A.; Al-Otaibi, T. Diabetic kidney disease: World wide difference of prevalence and risk factors. J. Nephropharmacol. 2016, 5, 49–56. [Google Scholar] [CrossRef]
- Tauchi, E.; Hanai, K.; Babazono, T. Effects of dietary protein intake on renal outcome and mortality in patients with advanced diabetic nephropathy. Clin. Exp. Nephrol. 2020, 24, 119–125. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Joshi, S.; Schlueter, R.; Cooke, J.; Brown-Tortorici, A.; Donnelly, M.; Schulman, S.; Lau, W.-L.; Rhee, C.M.; Streja, E.; et al. Plant-dominant low-protein diet for conservative management of chronic kidney disease. Nutrients 2020, 12, 1931. [Google Scholar] [CrossRef]
- Kubota, M.; Watanabe, R.; Yamaguchi, M.; Hosojima, M.; Saito, A.; Fujii, M.; Fujimura, S.; Kadowaki, M. Rice endosperm protein slows progression of fatty liver and diabetic nephropathy in Zucker diabetic fatty rats. Br. J. Nutr. 2016, 116, 1326–1335. [Google Scholar] [CrossRef]
- Boonloh, K.; Lee, E.S.; Kim, H.M.; Kwon, M.H.; Kim, Y.M.; Pannangpetch, P.; Kongyingyoes, B.; Kukongviriyapan, U.; Thawornchinsombut, S.; Lee, E.Y.; et al. Rice bran protein hydrolysates attenuate diabetic nephropathy in diabetic animal model. Eur. J. Nutr. 2018, 57, 761–772. [Google Scholar] [CrossRef]
- Leko, V.; Varnum-Finney, B.; Li, H.; Gu, Y.; Flowers, D.; Nourigat, C.; Bernstein, I.D.; Bedalov, A. SIRT1 is dispensable for function of hematopoietic stem cells in adult mice. Blood J. Am. Soc. Hematol. 2012, 119, 1856–1860. [Google Scholar] [CrossRef] [PubMed]
- Keane, K.N.; Cruzat, V.F.; Carlessi, R.; de Bittencourt, P.I.H., Jr.; Newsholme, P. Molecular events linking oxidative stress and inflammation to insulin resistance and β-cell dysfunction. Oxid. Med. Cell Longev. 2015, 2015, 181643. [Google Scholar] [CrossRef] [PubMed]
- Saji, N.; Francis, N.; Schwarz, L.J.; Blanchard, C.L.; Santhakumar, A.B. Rice bran phenolic extracts modulate insulin secretion and gene expression associated with β-cell function. Nutrients 2020, 12, 1889. [Google Scholar] [CrossRef] [PubMed]
- Maulani, R.R.; Sumardi, D.; Pancoro, A. Total flavonoids and anthocyanins content of pigmented rice. Drug Invent. Today 2019, 12, 369–373. [Google Scholar]
- Hlaing, E.E.; Rungcharoenarrichit, S.; Lailerd, N.; Roytrakul, S.; Piamrojanaphat, P. Chapter 25—Purple rice bran improves hepatic insulin signaling via activation of Akt and stabilization of IGF in diabetic rats. In Dietary Interventions in Liver Disease: Foods, Nutrients, and Dietary Supplements; Watson, R.R., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 297–312. [Google Scholar] [CrossRef]
- Tan, B.L.; Norhaizan, M.E.; Liew, W.-P.-P.; Rahman, H.S. Antioxidant and oxidative stress: A mutual interplay in age-related diseases. Front. Pharmacol. 2018, 9, 1162. [Google Scholar] [CrossRef]
- Chayawat, J.; Rumpagaporn, P. Reducing chicken nugget oil content with fortified defatted rice bran in batter. Food Sci. Biotechnol. 2020, 29, 1355–1363. [Google Scholar] [CrossRef]
- Da Rocha Lemos Mendes, G.; Rodrigues, P.S.; de Las Mercedes Salas-Mellado, M.; de Medeiros Burkert, J.F.; Badiale-Furlong, E. Defatted rice bran as a potential raw material to improve the nutritional and functional quality of cakes. Plant Foods Hum. Nutr. 2021, 76, 46–52. [Google Scholar] [CrossRef]
- Pandolsook, S.; Kupongsak, S. Influence of bleached rice bran wax on the physicochemical properties of organogels and water-in-oil emulsions. J. Food Eng. 2017, 214, 182–192. [Google Scholar] [CrossRef]
- Loypimai, P.; Moongngarm, A.; Naksawat, S. Application of natural colorant from black rice bran for fermented Thai pork sausage—Sai Krok Isan. Int. Food Res. J. 2017, 24, 1529–1537. [Google Scholar]
- Zhang, L.; Chen, F.; Zhang, P.; Lai, S.; Yang, H. Influence of rice bran wax coating on the physicochemical properties and pectin nanostructure of cherry tomatoes. Food Bioprocess Technol. 2017, 10, 349–357. [Google Scholar] [CrossRef]
- Wolfer, T.L.; Acevedo, N.C.; Prusa, K.J.; Sebranek, J.G.; Tarté, R. Replacement of pork fat in frankfurter-type sausages by soybean oil oleogels structured with rice bran wax. Meat Sci. 2018, 145, 352–362. [Google Scholar] [CrossRef] [PubMed]
- Winkler-Moser, J.K.; Anderson, J.; Byars, J.A.; Singh, M.; Hwang, H.-S. Evaluation of beeswax, candelilla wax, rice bran wax, and sunflower wax as alternative stabilizers for peanut butter. J. Am. Oil Chem. Soc. 2019, 96, 1235–1248. [Google Scholar] [CrossRef]
- Huang, Z.; Guo, B.; Deng, C.; Luo, S.; Liu, C.; Hu, X. Stabilization of peanut butter by rice bran wax. J. Food Sci. 2020, 85, 1793–1798. [Google Scholar] [CrossRef]
- Abhirami, P.; Modupalli, N.; Natarajan, V. Novel postharvest intervention using rice bran wax edible coating for shelf-life enhancement of Solanum lycopersicum fruit. J. Food Process Preserv. 2020, 44, e14989. [Google Scholar] [CrossRef]
- Chen, Y.; Gavaliatsis, T.; Kuster, S.; Städeli, C.; Fischer, P.; Windhab, E.J. Crust treatments to reduce bread staling. Curr. Res. Food Sci. 2021, 4, 182–190. [Google Scholar] [CrossRef]
- Podchong, P.; Sonwai, S.; Rousseau, D. Margarines produced from rice bran oil and fractionated palm stearin and their characteristics during storage. J. Am. Oil Chem. Soc. 2018, 95, 433–445. [Google Scholar] [CrossRef]
- Santiwattana, P.; Siramard, S. Trans-free fat spread produced from rice bran oil and rice bran oil shortening blends. CMUJ Nat. Sci. 2021, 20, e2021038. [Google Scholar] [CrossRef]
- Christ-Ribeiro, A.; Chiattoni, L.M.; Mafaldo, C.R.F.; Badiale-Furlong, E.; de Souza-Soares, L.L. Fermented rice-bran by Saccharomyces cerevisiae: Nutritious ingredient in the formulation of gluten-free cookies. Food Biosci. 2021, 40, 100859. [Google Scholar] [CrossRef]
- Liu, T.; Wang, K.; Xue, W.; Wang, L.; Zhang, C.; Zhang, X.; Chen, Z. In vitro starch digestibility, edible quality and microstructure of instant rice noodles enriched with rice bran insoluble dietary fiber. LWT 2021, 142, 111008. [Google Scholar] [CrossRef]
- Hanis-Syazwani, M.; Bolarinwa, I.F.; Lasekan, O.; Muhammad, K. Influence of starter culture on the physicochemical properties of rice bran sourdough and physical quality of sourdough bread. Food Res. 2018, 2, 340–349. [Google Scholar] [CrossRef]
- Bultum, L.E.; Emire, S.A.; Wolde, Y.T. Influence of full fat rice bran from Ethiopian rice milling industries on nutritional qualities, physicochemical and sensory properties of bread and biscuits. J. Food Meas. Charact. 2020, 14, 2253–2261. [Google Scholar] [CrossRef]
- Tayefe, M.; Shahidi, S.A.; Mohammadzadeh Milani, J.; Sadeghi, M. Effect of hydrothermaled rice bran addition on bread physical, textural and sensory characteristics. Iran J. Food Sci. Technol. 2021, 18, 43–52. [Google Scholar] [CrossRef]
- Wang, L.; Duan, W.; Zhou, S.; Qian, H.; Zhang, H.; Qi, X. Effect of rice bran fibre on the quality of rice pasta. Int. J. Food Sci. Technol. 2018, 53, 81–87. [Google Scholar] [CrossRef]
- Punia, S.; Kumar, M.; Siroha, A.K.; Purewal, S.S. Rice bran oil: Emerging trends in extraction, health benefit, and its industrial application. Rice Sci. 2021, 28, 217–232. [Google Scholar] [CrossRef]
- Lai, O.-M.; Jacoby, J.J.; Leong, W.-F.; Lai, W.T. Chapter 2—Nutritional studies of rice bran oil. In Rice Bran and Rice Bran Oil: Chemistry, Processing and Utilization; Cheong, L.-Z., Xu, X., Eds.; AOCS Press: Urbana, IL, USA, 2019; pp. 19–54. [Google Scholar] [CrossRef]
- Nayik, G.A.; Majid, I.; Gull, A.; Muzaffar, K. Rice bran oil, the future edible oil of India: A mini review. J. Rice Res. 2015, 3, 151. [Google Scholar] [CrossRef]
- Diamante, L.M.; Lan, T. Absolute viscosities of vegetable oils at different temperatures and shear rate range of 64.5 to 4835 s−1. J. Food Process. 2014, 2014, 234583. [Google Scholar] [CrossRef]
- Lai, H.M.; Lin, T.C. Bakery Products: Science and Technology; Hui, Y.H., Corke, H., De Leyn, I., Nip, W.-K., Cross, N.A., Eds.; Wiley-Blackwell: New York, NY, USA, 2007; pp. 3–65. [Google Scholar]
- Noort, M.W.J.; Van Haaster, D.; Hemery, Y.; Schols, A.A.; Hamer, R.J. The effect of particle size of wheat bran fractions on bread quality—Evidence for fibre–protein interactions. J. Cereal Sci. 2010, 52, 59–64. [Google Scholar] [CrossRef]
- Sun, L.; Li, X.; Zhang, Y.; Yang, W.; Ma, G.; Ma, N.; Hu, Q.; Pei, F. A novel lactic acid bacterium for improving the quality and shelf life of whole wheat bread. Food Control 2020, 109, 106914. [Google Scholar] [CrossRef]
- Torrieri, E.; Pepe, O.; Ventorino, V.; Masi, P.; Cavella, S. Effect of sourdough at different concentrations on quality and shelf life of bread. LWT Food Sci. Technol. 2014, 56, 508–516. [Google Scholar] [CrossRef]
- Gobbetti, M.; Rizzello, C.G.; Di Cagno, R.; De Angelis, M. How the sourdough may affect the functional features of leavened baked goods. Food Microbiol. 2014, 37, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Chinma, C.E.; Ilowefah, M.; Muhammad, K. Optimization of rice bran fermentation conditions enhanced by baker’s yeast for extraction of protein concentrate. Niger. Food J. 2014, 32, 126–132. [Google Scholar] [CrossRef]
- Clydesdale, F.M. Color perception and food quality. J. Food Qual. 1991, 14, 61–74. [Google Scholar] [CrossRef]
- Oplatowska-Stachowiak, M.; Elliott, C.T. Food colors: Existing and emerging food safety concerns. Crit. Rev. Food Sci. Nutr. 2017, 57, 524–548. [Google Scholar] [CrossRef]
- Awuchi, C.G.; Twinomuhwezi, H.; Igwe, V.S.; Amagwula, I.O. Food additives and food preservatives for domestic and industrial food applications. J. Anim. Health 2020, 2, 1–16. [Google Scholar]
- Poorniammal, R.; Prabhu, S.; Dufossé, L.; Kannan, J. Safety evaluation of fungal pigments for food applications. J. Fungi 2021, 7, 692. [Google Scholar] [CrossRef] [PubMed]
- Amchova, P.; Kotolova, H.; Ruda-Kucerova, J. Health safety issues of synthetic food colorants. Regul. Toxicol. Pharmacol. 2015, 73, 914–922. [Google Scholar] [CrossRef]
- Pollock, I.; Warner, J.O. Effect of artificial food colours on childhood behaviour. Arch. Dis. Child. 1990, 65, 74–77. [Google Scholar] [CrossRef]
- Bearth, A.; Cousin, M.-E.; Siegrist, M. The consumer’s perception of artificial food additives: Influences on acceptance, risk and benefit perceptions. Food Qual. Prefer. 2014, 38, 14–23. [Google Scholar] [CrossRef]
- Loypimai, P.; Moongngarm, A.; Chottanom, P.; Moontree, T. Ohmic heating-assisted extraction of anthocyanins from black rice bran to prepare a natural food colourant. Innov. Food Sci. Emerg. Technol. 2015, 27, 102–110. [Google Scholar] [CrossRef]
- Les, F.; Cásedas, G.; Gómez, C.; Moliner, C.; Valero, M.S.; López, V. The role of anthocyanins as antidiabetic agents: From molecular mechanisms to in vivo and human studies. J. Physiol. Biochem. 2021, 77, 109–131. [Google Scholar] [CrossRef] [PubMed]
- Jun, H., II; Song, G.-S.; Yang, E.-I.; Youn, Y.; Kim, Y.-S. Antioxidant activities and phenolic compounds of pigmented rice bran extracts. J. Food Sci. 2012, 77, C759–C764. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Ameer, K.; Eun, J.-B. Encapsulation of hot air-dried Asian pear powders using rice bran dietary fiber. Food Biosci. 2020, 38, 100742. [Google Scholar] [CrossRef]
Country | Population (Million) 1995 | Annual Growth Rate (%) | Percentage Increase 1995–2025 | Projected Population (Million) in 2025 | |
---|---|---|---|---|---|
2020–2025 | 1995–2000 | ||||
Asia (excluding China) | 2244 | 1.1 | 1.8 | 51 | 3389 |
China | 1199 | 0.5 | 0.9 | 23 | 1471 |
India | 934 | 1.0 | 1.7 | 47 | 1370 |
Indonesia | 192 | 0.8 | 1.4 | 38 | 265 |
Pakistan | 130 | 1.6 | 2.7 | 87 | 243 |
Japan | 125 | −0.3 | 0.3 | −1 | 124 |
Bangladesh | 121 | 1.1 | 1.8 | 50 | 182 |
Vietnam | 74.1 | 1.2 | 2.0 | 58 | 117 |
Philippines | 69.2 | 1.2 | 2.2 | 66 | 115 |
Thailand | 60.5 | 0.7 | 1.3 | 34 | 80.8 |
Myanmar | 46.8 | 1.1 | 2.1 | 56 | 72.9 |
Republic of Korea | 44.8 | 0.3 | 0.8 | 18 | 52.9 |
Phytochemical | Metabolic Ailments | Findings | References |
---|---|---|---|
Tocopherols and tocotrienols | Cardiovascular disease | No remarkable effect on the lipid profile in menopausal women | [49] |
Did not affect blood lipid parameters in patients with diabetes | [50] | ||
Reduce lipoprotein-lipid profile | [51] | ||
Neurodegenerative disease | Protect mouse hippocampal neurons from apoptosis | [52] | |
Gamma-oryzanol | Cardiovascular disease | Decreased secretion of IL-1β by peritoneal macrophages | [53] |
Increased expression of IL-10 and IL-4 compared to control group | [54] | ||
Cancer | Decreased inflammatory response by reducing NF-κB transcriptional activity | [55] | |
γ-aminobutyric acid | Type 2 diabetes mellitus | Improved hyperglycemia | [56] |
Cardiovascular disease | Decreased risk of cardiovascular disease | [57] | |
Hypertension | Only observed during acute administration but no effect after chronic administration | [58] | |
Polyphenols | Cardiovascular disease | Prevent cardiovascular disease | [59] |
Exert pro-oxidant effect in Cu2+-induced oxidation of LDL | [60] | ||
Type 2 diabetes mellitus | Improved insulin action and β-cell function | [61] | |
Decreased α-glycosidase, α-amylase, and AR enzymes | [62] |
Metabolic Ailments | Cell Lines/Animal Studies/Subjects | Treatment | Findings | References |
---|---|---|---|---|
Hypertension | Stroke-prone spontaneously hypertensive rats | Fermented rice bran | Improved high blood pressure after 6 h of administration | [69] |
Individuals with grade 1 hypertension or high-normal blood pressure | Rice bran supplement containing processed rice bran | Reduced in systolic blood pressure | [70] | |
Spontaneously hypertensive rats | Rice bran protein hydrolysates 1A <3 kDa | Decreased systolic blood pressure | [71] | |
Spontaneously hypertensive rats | Leu-Arg-Ala, from thermolysin-digested rice bran | Decreased SBP levels | [72] | |
Cancer | Prostate cancer PC-3 cells | Cyanidin 3-glucoside derived from rice bran | Reduced the percentage of cell survival and decreased the expression of p-FAK and β-catenin | [73] |
H1299 non-small-cell lung cancer-bearing mice | Defatted rice bran and rice bran polysaccharides | Inhibited H1299 non-small-cell lung cancer | [74] | |
Rats | Arabinoxylan rice bran | Inhibited cancer cell proliferation, suppressed inflammation, and induced apoptosis | [75] | |
Head and neck carcinoma patients undergoing radiation therapy | Arabinoxylan rice bran | Enhanced quality of life | [76] | |
Colorectal cancer cells including HCT-116 carcinoma cells and HT-29 adenocarcinoma cells | Natural purple rice bran oil | Suppressed LPS/IFN-γ-mediated induction of COX-2, iNOS, and nitric oxide | [77] | |
Breast cancer (MCF-7) and lung cancer (A549) cells | Ethanolic extract of defatted rice bran | Reduced the viability of MCF-7 and A549 cells | [78] | |
Neurodegenerative disease | Vitamin E-deficient mice | 2 and 5% of rice bran | Improved histological abnormalities and motor function, reduced oxidative stress, and increased α-tocopherol in the brain | [79] |
Swiss albino mice | Rice bran extract | Reduced inflammatory mediator levels in mice brains | [80] | |
Rice bran extract | Reduced proinflammatory microglial marker (CD45) and NF-κB expression | [81] | ||
Neuroinflammatory mouse model | Rice bran extract | Improved cognitive performance | [82] | |
Streptozotocin-induced mice | BioBran/MGN-3 | Upregulated ARE and Nrf2 | [83] | |
Mice | Rice bran oil | Protects against Aβ (25–35)-induced memory impairment | [84] | |
Cardiovascular disease | Murine J774A.1 macrophage-like cells | Rice bran extract | Downregulates IL-6, iNOS, TNF-α, IL-1β, and IL-1α, and ameliorates NO overproduction | [85] |
High-fat diet-induced low-density lipoprotein receptor knockout (Ldlr−/−) mice | Rice bran extract | Significantly decreased pro-atherogenic oxLDL/β2GPI complexes, TG, and TC plasma levels | [85] | |
Hyperlipidemic participants | Rice bran oil | Reduced LDL-C levels and improved antioxidant status | [86] | |
Diabetes | db/db mice | Rice bran dietary fiber | Significantly decreased fasting blood glucose levels | [87] |
Zucker diabetic fatty rats | Rice bran protein | Significantly improved plasma adiponectin levels and hemoglobin A1c | [88] | |
Mice | Super-hard rice bread blended with black rice bran | Suppressed the abrupt increase in postprandial blood glucose levels | [89] |
Rice Bran | Purpose of Addition | Food Products | References |
---|---|---|---|
Defatted rice bran | Reduced oil content | Chicken nugget | [131] |
Defatted rice bran | Increased antioxidant capacity, phenolic compounds, and fiber content | Cakes | [132] |
Bleached rice bran wax | Improved hardness and color of cookies | Cookies | [133] |
Black rice bran colorant powder | Increased bioactive constituents and improved color formation | Fermented Thai pork sausage | [134] |
Rice bran wax | Decreased weight loss | Cherry tomatoes | [135] |
Rice bran wax | Inhibit lipid oxidation | Frankfurter-type sausages | [136] |
Rice bran wax | Improved oil-binding capacity and increased firmness | Peanut butter | [137] |
Rice bran wax | Enhanced stability | Peanut butter | [138] |
Rice bran wax | Extend shelf-life | Tomatoes | [139] |
Rice bran wax | Reduced crumb hardening and moisture loss | Bread | [140] |
Rice bran oil | Enhanced stability | Margarine | [141] |
Rice bran oil | Improved oxidative stability | Fat spreads | [142] |
Fermented rice bran | Increased antioxidant activity, phenolic compounds, and protein levels | Cookies | [143] |
Rice bran insoluble dietary fiber | Reduced in vitro starch digestibility | Noodles | [144] |
Rice bran | Increased bread volume | Sourdough bread | [145] |
Full fat rice bran | Improved mineral contents (zinc, iron, calcium, sodium, and potassium) and proximate composition (ash, crude fiber, crude fat, and crude protein) | Bread and biscuits | [146] |
Rice bran | Increased gumminess and firmness | Bread | [147] |
Rice bran fiber | Enhanced total dietary fiber, insoluble dietary fiber, and soluble dietary fiber contents | Rice pasta | [148] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, B.L.; Norhaizan, M.E.; Chan, L.C. Rice Bran: From Waste to Nutritious Food Ingredients. Nutrients 2023, 15, 2503. https://doi.org/10.3390/nu15112503
Tan BL, Norhaizan ME, Chan LC. Rice Bran: From Waste to Nutritious Food Ingredients. Nutrients. 2023; 15(11):2503. https://doi.org/10.3390/nu15112503
Chicago/Turabian StyleTan, Bee Ling, Mohd Esa Norhaizan, and Lee Chin Chan. 2023. "Rice Bran: From Waste to Nutritious Food Ingredients" Nutrients 15, no. 11: 2503. https://doi.org/10.3390/nu15112503
APA StyleTan, B. L., Norhaizan, M. E., & Chan, L. C. (2023). Rice Bran: From Waste to Nutritious Food Ingredients. Nutrients, 15(11), 2503. https://doi.org/10.3390/nu15112503