The Possible Influence of Vitamin D Levels on the Development of Atrial Fibrillation—An Update
Abstract
:1. Introduction
2. Pathogenesis of AF and Role of VitD in Its Induction
3. Relationship of VitD Deficiency and Supplementation to the Risk of PoAF and IAF
3.1. PoAF
3.2. IAF
4. Why Is It So Difficult to Determine the Effect of VitD on AF Incidence?—Limitations
5. Future Perspectives and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duarte, C.; Carvalheiro, H.; Rodrigues, A.M.; Dias, S.S.; Marques, A.; Santiago, T.; Canhão, H.; Branco, J.C.; da Silva, J.A.P. Prevalence of vitamin D deficiency and its predictors in the Portuguese population: A nationwide population-based study. Arch. Osteoporos. 2020, 15, 36. [Google Scholar] [CrossRef]
- Mogire, R.M.; Mutua, A.; Kimita, W.; Kamau, A.; Bejon, P.; Pettifor, J.M.; Adeyemo, A.; Williams, T.N.; Atkinson, S.H. Prevalence of Vitamin D Deficiency in Africa: A Systematic Review and Meta-Analysis. Lancet Glob. Health 2020, 8, e134–e142. [Google Scholar] [CrossRef] [Green Version]
- Siddiqee, M.H.; Bhattacharjee, B.; Siddiqi, U.R.; MeshbahurRahman, M. High prevalence of vitamin D deficiency among the South Asian adults: A systematic review and meta-analysis. BMC Public Health 2021, 21, 1823. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.D. Vitamin D Deficiency: Defining, Prevalence, Causes, and Strategies of Addressing. Calcif. Tissue Int. 2020, 106, 14–29. [Google Scholar] [CrossRef]
- Saponaro, F.; Saba, A.; Zucchi, R. An Update on Vitamin D Metabolism. Int. J. Mol. Sci. 2020, 21, 6573. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.B.; Motola, D.L.; Mangelsdorf, D.; Russell, D. De-Orphanization of Cytochrome P450 2R1. J. Biol. Chem. 2003, 278, 38084–38093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christakos, S.; Ajibade, D.V.; Dhawan, P.; Fechner, A.J.; Mady, L.J. Vitamin D: Metabolism. Endocrinol. Metab. Clin. N. Am. 2010, 39, 243–253. [Google Scholar] [CrossRef]
- Cantorna, M.T.; Zhu, Y.; Froicu, M.; Wittke, A. Vitamin D Status, 1, 25-Dihydroxyvitamin D3, and the Immune System. Am. J. Clin. Nutr. 2004, 80, 1717S–1720S. [Google Scholar] [CrossRef] [Green Version]
- Aranow, C. Vitamin D and the Immune System. J. Investig. Med. 2011, 59, 881–886. [Google Scholar] [CrossRef] [Green Version]
- Guillot, X.; Semerano, L.; Saidenberg-Kermanac’h, N.; Falgarone, G.; Boissier, M.-C. Vitamin D and Inflammation. Jt. Bone Spine 2010, 77, 552–557. [Google Scholar] [CrossRef]
- Prietl, B.; Treiber, G.; Pieber, T.R.; Amrein, K. Vitamin D and Immune Function. Nutrients 2013, 5, 2502–2521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathieu, C.; Gysemans, C.; Giulietti, A.; Bouillon, R. Vitamin D and Diabetes. Diabetologia 2005, 48, 1247–1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Zhi, H.; Sun, Y.; Wang, L. Circulating Vitamin D Levels and the Risk of Atrial Fibrillation: A Two-Sample Mendelian Randomization Study. Front. Nutr. 2022, 9, 837207. [Google Scholar] [CrossRef] [PubMed]
- Elliott, A.D.; Middeldorp, M.E.; Van Gelder, I.C.; Albert, C.M.; Sanders, P. Epidemiology and modifiable risk factors for atrial fibrillation. Nat. Rev. Cardiol. 2023, 20, 404–417. [Google Scholar] [CrossRef] [PubMed]
- Mh, K.; Ss, J.; Bc, C.; Mr, D.; Kl, S. Estimation of Total Incremental Health Care Costs in Patients With Atrial Fibrillation in the United States. Circ. Cardiovasc. Qual. Outcomes 2011, 4, 313–320. [Google Scholar] [CrossRef] [Green Version]
- Pastori, D.; Menichelli, D.; Violi, F.; Pignatelli, P.; Lip, G.Y.H. The Atrial fibrillation Better Care (ABC) pathway and cardiac complications in atrial fibrillation: A potential sex-based difference. The ATHERO-AF study. Eur. J. Intern. Med. 2020, 85, 80–85. [Google Scholar] [CrossRef]
- January, C.T.; Wann, L.S.; Alpert, J.S.; Calkins, H.; Cigarroa, J.E.; Cleveland, J.C., Jr.; Conti, J.B.; Ellinor, P.T.; Ezekowitz, M.D.; Field, M.E.; et al. 2014 AHA/ACC/HRS Guideline for the Management of Patients with Atrial Fibrillation: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. Circulation 2014, 130, 2071–2104. [Google Scholar] [CrossRef] [Green Version]
- Calkins, H.; Brugada, J.; Packer, D.L.; Cappato, R.; Chen, S.-A.; Crijns, H.J.; Damiano, R.J.; Davies, D.W.; Haines, D.E.; Haissaguerre, M.; et al. HRS/EHRA/ECAS Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation: Recommendations for Personnel, Policy, Procedures and Follow-Up. A report of the Heart Rhythm Society (HRS) Task Force on Catheter and Surgical Ablation of Atrial Fibrillation Developed in partnership with the European Heart Rhythm Association (EHRA) and the European Cardiac Arrhythmia Society (ECAS); in collaboration with the American College of Cardiology (ACC), American Heart Association (AHA), and the Society of Thoracic Surgeons (STS). Endorsed and Approved by the governing bodies of the American College of Cardiology, the American Heart Association, the European Cardiac Arrhythmia Society, the European Heart Rhythm Association, the Society of Thoracic Surgeons, and the Heart Rhythm Society. Europace 2007, 9, 335–379. [Google Scholar] [CrossRef]
- Demir, M.; Uyan, U.; Melek, M. The Effects of Vitamin D Deficiency on Atrial Fibrillation. Clin. Appl. Thromb. 2014, 20, 98–103. [Google Scholar] [CrossRef]
- Galea, R.; Cardillo, M.T.; Caroli, A.; Marini, M.G.; Sonnino, C.; Narducci, M.L.; Biasucci, L.M. Inflammation and C-Reactive Protein in Atrial Fibrillation: Cause or Effect? Tex. Heart Inst. J. 2014, 41, 461–468. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.-F.; Chen, Y.-J.; Lin, Y.-J.; Chen, S.-A. Inflammation and the pathogenesis of atrial fibrillation. Nat. Rev. Cardiol. 2015, 12, 230–243. [Google Scholar] [CrossRef]
- Jabati, S.; Fareed, J.; Liles, J.; Otto, A.; Hoppensteadt, D.; Bontekoe, J.; Phan, T.; Walborn, A.; Syed, M. Biomarkers of Inflammation, Thrombogenesis, and Collagen Turnover in Patients with Atrial Fibrillation. Clin. Appl. Thromb. 2018, 24, 718–723. [Google Scholar] [CrossRef]
- Odeh, A.; Dungan, G.D.; Darki, A.; Hoppensteadt, D.; Siddiqui, F.; Kantarcioglu, B.; Fareed, J.; Syed, M.A. Collagen Remodeling and Fatty Acid Regulation Biomarkers in Understanding the Molecular Pathogenesis of Atrial Fibrillation. Clin. Appl. Thromb. Hemost 2022, 28, 10760296221145181. [Google Scholar] [CrossRef]
- Ozcan, O.U.; Gurlek, A.; Gursoy, E.; Gerede, D.M.; Erol, C. Relation of vitamin D deficiency and new-onset atrial fibrillation among hypertensive patients. J. Am. Soc. Hypertens. 2015, 9, 307–312. [Google Scholar] [CrossRef]
- Patel, D.; Druck, A.; Hoppensteadt, D.; Bansal, V.; Brailovsky, Y.; Syed, M.; Fareed, J. Relationship between 25-Hydroxyvitamin D, Renin, and Collagen Remodeling Biomarkers in Atrial Fibrillation. Clin. Appl. Thromb. Hemost. 2020, 26, 1076029619899702. [Google Scholar] [CrossRef] [Green Version]
- Duprez, D.A.; Heckbert, S.R.; Alonso, A.; Gross, M.D.; Ix, J.H.; Kizer, J.R.; Tracy, R.P.; Kronmal, R.; Jacobs, D.R. Collagen Biomarkers and Incidence of New Onset of Atrial Fibrillation in Subjects with No Overt Cardiovascular Disease at Baseline: The Multi-Ethnic Study of Atherosclerosis. Circ. Arrhythmia Electrophysiol. 2018, 11, e006557. [Google Scholar] [CrossRef]
- Mays, P.K.; Bishop, J.E.; Laurent, G.J. Age-related changes in the proportion of types I and III collagen. Mech. Ageing Dev. 1988, 45, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Fournier, D.; Luft, F.C.; Bader, M.; Ganten, D.; Andrade-Navarro, M.A. Emergence and evolution of the renin-angiotensin-aldosterone system. J. Mol. Med. 2012, 90, 495–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atlas, S.A. The Renin-Angiotensin Aldosterone System: Pathophysiological Role and Pharmacologic Inhibition. J. Manag. Care Pharm. 2007, 13, 9–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sayer, G.; Bhat, G. The Renin-Angiotensin-Aldosterone System and Heart Failure. Cardiol. Clin. 2014, 32, 21–32. [Google Scholar] [CrossRef]
- Weber, K.T. Extracellular Matrix Remodeling in Heart Failure. Circulation 1997, 96, 4065–4082. [Google Scholar] [CrossRef]
- Baker, K.M.; Aceto, J.F. Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am. J. Physiol. Circ. Physiol. 1990, 259, H610–H618. [Google Scholar] [CrossRef]
- Harada, E.; Yoshimura, M.; Yasue, H.; Nakagawa, O.; Nakagawa, M.; Harada, M.; Mizuno, Y.; Nakayama, M.; Shimasaki, Y.; Ito, T.; et al. Aldosterone Induces Angiotensin-Converting-Enzyme Gene Expression in Cultured Neonatal Rat Cardiocytes. Circulation 2001, 104, 137–139. [Google Scholar] [CrossRef] [Green Version]
- Everett, T.H.; Olgin, J.E. Atrial fibrosis and the mechanisms of atrial fibrillation. Heart Rhythm. 2007, 4, S24–S27. [Google Scholar] [CrossRef] [Green Version]
- Al Mheid, I.; Patel, R.S.; Tangpricha, V.; Quyyumi, A.A. Vitamin D and cardiovascular disease: Is the evidence solid? Eur. Heart J. 2013, 34, 3691–3698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vimaleswaran, K.S.; Berry, D.J.; Lu, C.; Tikkanen, E.; Pilz, S.; Hiraki, L.T.; Cooper, J.D.; Dastani, Z.; Li, R.; Houston, D.K.; et al. Causal Relationship between Obesity and Vitamin D Status: Bi-Directional Mendelian Randomization Analysis of Multiple Cohorts. PLoS Med. 2013, 10, e1001383. [Google Scholar] [CrossRef] [PubMed]
- Kirchhof, P.; Fabritz, L. Of hammers and screws: Renin-angiotensin-aldosterone system inhibition to prevent atrial fibrillation in patients with hypertension. Eur. Heart J. 2014, 35, 1169–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turin, A.; Bax, J.J.; Doukas, D.; Joyce, C.; Lopez, J.J.; Mathew, V.; Pontone, G.; Shah, F.; Singh, S.; Wilber, D.J.; et al. Interactions Among Vitamin D, Atrial Fibrillation, and the Renin-Angiotensin-Aldosterone System. Am. J. Cardiol. 2018, 122, 780–784. [Google Scholar] [CrossRef] [PubMed]
- Khatib, R.; Joseph, P.; Briel, M.; Yusuf, S.; Healey, J. Blockade of the renin–angiotensin–aldosterone system (RAAS) for primary prevention of non-valvular atrial fibrillation: A systematic review and meta analysis of randomized controlled trials. Int. J. Cardiol. 2013, 165, 17–24. [Google Scholar] [CrossRef]
- Chaugai, S.; Meng, W.Y.; Sepehry, A. Effects of RAAS Blockers on Atrial Fibrillation Prophylaxis: An Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Cardiovasc. Pharmacol. Ther. 2016, 21, 388–404. [Google Scholar] [CrossRef]
- Healey, J.S.; Baranchuk, A.; Crystal, E.; Morillo, C.A.; Garfinkle, M.; Yusuf, S.; Connolly, S.J. Prevention of Atrial Fibrillation with Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers. J. Am. Coll. Cardiol. 2005, 45, 1832–1839. [Google Scholar] [CrossRef] [Green Version]
- Schneider, M.P.; Hua, T.A.; Böhm, M.; Wachtell, K.; Kjeldsen, S.E.; Schmieder, R.E. Prevention of Atrial Fibrillation by Renin-Angiotensin System Inhibition: A Meta-Analysis. J. Am. Coll. Cardiol. 2010, 55, 2299–2307. [Google Scholar] [CrossRef]
- Huang, W.-L.; Yang, J.; Yang, J.; Wang, H.-B.; Yang, C.-J.; Yang, Y. Vitamin D and new-onset atrial fibrillation: A meta-analysis of randomized controlled trials. Hell. J. Cardiol. 2018, 59, 72–77. [Google Scholar] [CrossRef]
- Liew, R.; Khairunnisa, K.; Gu, Y.; Tee, N.; Yin, N.O.; Naylynn, T.M.; Moe, K.T. Role of Tumor Necrosis Factor-α in the Pathogenesis of Atrial Fibrosis and Development of an Arrhythmogenic Substrate. Circ. J. 2013, 77, 1171–1179. [Google Scholar] [CrossRef] [Green Version]
- Rudolph, V.; Andrié, R.P.; Rudolph, T.K.; Friedrichs, K.; Klinke, A.; Hirsch-Hoffmann, B.; Schwoerer, A.P.; Lau, D.; Fu, X.; Klingel, K.; et al. Myeloperoxidase acts as a profibrotic mediator of atrial fibrillation. Nat. Med. 2010, 16, 470–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canning, M.O.; Grotenhuis, K.; De Wit, H.; Ruwhof, C.; Drexhage, H.A. 1-alpha,25-Dihydroxyvitamin D3 (1,25(OH)(2)D(3)) hampers the maturation of fully active immature dendritic cells from monocytes. Eur. J. Endocrinol. 2001, 145, 351–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatzinikolaou-Kotsakou, E.; Tziakas, D.; Hotidis, A.; Stakos, D.; Floros, D.; Papanas, N.; Chalikias, G.; Maltezos, E.; Hatseras, D.I. Relation of C-Reactive Protein to the First Onset and the Recurrence Rate in Lone Atrial Fibrillation. Am. J. Cardiol. 2006, 97, 659–661. [Google Scholar] [CrossRef]
- Shea, M.K.; Booth, S.L.; Massaro, J.M.; Jacques, P.F.; D’Agostino, R.B.; Dawson-Hughes, B.; Ordovas, J.M.; O’Donnell, C.J.; Kathiresan, S.; Keaney, J.F.; et al. Vitamin K and Vitamin D Status: Associations with Inflammatory Markers in the Framingham Offspring Study. Am. J. Epidemiol. 2007, 167, 313–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eleftheriadis, T.; Antoniadi, G.; Liakopoulos, V.; Stefanidis, I.; Galaktidou, G. Inverse association of serum 25-hydroxyvitamin D with markers of inflammation and suppression of osteoclastic activity in hemodialysis patients. Iran. J. Kidney Dis. 2012, 6, 129–135. [Google Scholar]
- Li, Q.; Dai, Z.; Cao, Y.; Wang, L. Association of C-reactive protein and vitamin D deficiency with cardiovascular disease: A nationwide cross-sectional study from National Health and Nutrition Examination Survey 2007 to 2008. Clin. Cardiol. 2019, 42, 663–669. [Google Scholar] [CrossRef] [Green Version]
- Sarhan, N.; Warda, A.E.A.; Sarhan, R.M.; Boshra, M.S.; Mostafa-Hedeab, G.; Alruwaili, B.F.; Ibrahim, H.S.G.; Schaalan, M.F.; Fathy, S. Evidence for the Efficacy of a High Dose of Vitamin D on the Hyperinflammation State in Moderate-to-Severe COVID-19 Patients: A Randomized Clinical Trial. Medicina 2022, 58, 1358. [Google Scholar] [CrossRef]
- Włodarczyk, M.; Nowicka, G. Obesity, DNA Damage, and Development of Obesity-Related Diseases. Int. J. Mol. Sci. 2019, 20, 1146. [Google Scholar] [CrossRef] [PubMed]
- Ortega, F.B.; Lavie, C.J.; Blair, S.N. Obesity and Cardiovascular Disease. Circ. Res. 2016, 118, 1752–1770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alpert, M.A.; Omran, J.; Bostick, B.P. Effects of Obesity on Cardiovascular Hemodynamics, Cardiac Morphology, and Ventricular Function. Curr. Obes. Rep. 2016, 5, 424–434. [Google Scholar] [CrossRef]
- Haemers, P.; Hamdi, H.; Guedj, K.; Suffee, N.; Farahmand, P.; Popovic, N.; Claus, P.; LePrince, P.; Nicoletti, A.; Jalife, J.; et al. Atrial fibrillation is associated with the fibrotic remodelling of adipose tissue in the subepicardium of human and sheep atria. Eur. Heart J. 2015, 38, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, R.; Lau, D.H.; Brooks, A.G.; Shipp, N.J.; Manavis, J.; Wood, J.P.; Finnie, J.W.; Samuel, C.S.; Royce, S.G.; Twomey, D.J.; et al. Electrophysiological, Electroanatomical, and Structural Remodeling of the Atria as Consequences of Sustained Obesity. J. Am. Coll. Cardiol. 2015, 66, 58. [Google Scholar] [CrossRef] [PubMed]
- Golaszewska, K.; Harasim-Symbor, E.; Polak-Iwaniuk, A.; Chabowski, A. Serum fatty acid binding proteins as a potential biomarker in atrial fibrillation. J. Physiol. Pharmacol. 2019, 70, 25–35. [Google Scholar] [CrossRef]
- Iacobellis, G.; Bianco, A. Epicardial adipose tissue: Emerging physiological, pathophysiological and clinical features. Trends Endocrinol. Metab. 2011, 22, 450–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venteclef, N.; Guglielmi, V.; Balse, E.; Gaborit, B.; Cotillard, A.; Atassi, F.; Amour, J.; Leprince, P.; Dutour, A.; Clément, K.; et al. Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines. Eur. Heart J. 2015, 36, 795–805. [Google Scholar] [CrossRef] [Green Version]
- Choromańska, B.; Myśliwiec, P.; Dadan, J.; Hady, H.; Chabowski, A. The clinical significance of fatty acid binding proteins. Postep. Hig. Med. Dosw. 2011, 65, 759–763. [Google Scholar] [CrossRef]
- Otaki, Y.; Watanabe, T.; Kubota, I. Heart-type fatty acid-binding protein in cardiovascular disease: A systemic review. Clin. Chim. Acta 2017, 474, 44–53. [Google Scholar] [CrossRef]
- Shingu, Y.; Takada, S.; Yokota, T.; Shirakawa, R.; Yamada, A.; Ooka, T.; Katoh, H.; Kubota, S.; Matsui, Y. Correlation between increased atrial expression of genes related to fatty acid metabolism and autophagy in patients with chronic atrial fibrillation. PLoS ONE 2020, 15, e0224713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanlint, S. Vitamin D and Obesity. Nutrients 2013, 5, 949–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, J.; Bowles, S.; Evans, A.L. Vitamin D in obesity. Curr. Opin. Endocrinol. Diabetes Obes. 2017, 24, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Pereira-Santos, M.; Costa, P.R.F.; Assis, A.M.O.; Santos, C.A.S.T.; Santos, D.B. Obesity and vitamin D deficiency: A systematic review and meta-analysis. Obes. Rev. 2015, 16, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, S.; Li, Y.; Detrano, R.C.; Chen, K.; Li, X.; Zhao, L.; Benjamin, E.J.; Wu, Y. Association of obesity and atrial fibrillation among middle-aged and elderly Chinese. Int. J. Obes. 2009, 33, 1318–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tedrow, U.B.; Conen, D.; Ridker, P.M.; Cook, N.R.; Koplan, B.A.; Manson, J.E.; Buring, J.E.; Albert, C.M. The Long- and Short-Term Impact of Elevated Body Mass Index on the Risk of New Atrial Fibrillation: The WHS (Women’s Health Study). J. Am. Coll. Cardiol. 2010, 55, 2319–2327. [Google Scholar] [CrossRef] [Green Version]
- Bellia, A.; Garcovich, C.; D’Adamo, M.; Lombardo, M.; Tesauro, M.; Donadel, G.; Gentileschi, P.; Lauro, D.; Federici, M.; Lauro, R.; et al. Serum 25-hydroxyvitamin D levels are inversely associated with systemic inflammation in severe obese subjects. Intern. Emerg. Med. 2011, 8, 33–40. [Google Scholar] [CrossRef]
- Gawałko, M.; Saljic, A.; Na Li, N.; Abu-Taha, I.; Jespersen, T.; Linz, D.; Nattel, S.; Heijman, J.; Fender, A.; Dobrev, D. Adiposity-associated atrial fibrillation: Molecular determinants, mechanisms, and clinical significance. Cardiovasc. Res. 2023, 119, 614–630. [Google Scholar] [CrossRef]
- Cabandugama, P.K.; Gardner, M.J.; Sowers, J.R. The Renin Angiotensin Aldosterone System in Obesity and Hypertension: Roles in the Cardiorenal Metabolic Syndrome. Med. Clin. N. Am. 2016, 101, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Schütten, M.T.J.; Houben, A.J.H.M.; de Leeuw, P.W.; Stehouwer, C.D.A. The Link Between Adipose Tissue Renin-Angiotensin-Aldosterone System Signaling and Obesity-Associated Hypertension. Physiology 2017, 32, 197–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Post-Operative Atrial Fibrillation: Current Treatments and Etiologies for a Persistent Surgical Complication. J. Surg. Res. 2022, 5, 159–172. [CrossRef]
- Albini, A.; Malavasi, V.L.; Vitolo, M.; Imberti, J.F.; Marietta, M.; Lip, G.Y.; Boriani, G. Long-term outcomes of postoperative atrial fibrillation following non cardiac surgery: A systematic review and metanalysis. Eur. J. Intern. Med. 2021, 85, 27–33. [Google Scholar] [CrossRef] [PubMed]
- AbdelGawad, A.M.E.; Hussein, M.A.; Naeim, H.; Abuelatta, R.; Alghamdy, S. A Comparative Study of TAVR versus SAVR in Moderate and High-Risk Surgical Patients: Hospital Outcome and Midterm Results. Heart Surg. Forum 2019, 22, E331–E339. [Google Scholar] [CrossRef] [Green Version]
- Almassi, G.H. Postoperative atrial fibrillation; the search goes on. J. Surg. Res. 2015, 198, 57–58. [Google Scholar] [CrossRef]
- Da Silva, R.G.; De Lima, G.G.; Guerra, N.; Bigolin, A.V.; Petersen, L.C. Risk Index Proposal to Predict Atrial Fibrillation after Cardiac Surgery. Rev. Bras. Cir. Cardiovasc. 2010, 25, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Dobrev, D.; Aguilar, M.; Heijman, J.; Guichard, J.-B.; Nattel, S. Postoperative atrial fibrillation: Mechanisms, manifestations and management. Nat. Rev. Cardiol. 2019, 16, 417–436. [Google Scholar] [CrossRef]
- Chen, Y.-L.; Zeng, M.; Liu, Y.; Xu, Y.; Bai, Y.; Cao, L.; Ling, Z.; Fan, J.; Yin, Y. CHA2DS2-VASc Score for Identifying Patients at High Risk of Postoperative Atrial Fibrillation After Cardiac Surgery: A Meta-analysis. Ann. Thorac. Surg. 2020, 109, 1210–1216. [Google Scholar] [CrossRef]
- Jacob, K.A.; Nathoe, H.M.; Dieleman, J.; van Osch, D.; Kluin, J.; Van Dijk, D. Inflammation in new-onset atrial fibrillation after cardiac surgery: A systematic review. Eur. J. Clin. Investig. 2014, 44, 402–428. [Google Scholar] [CrossRef] [Green Version]
- Barker, T.; May, H.T.; Doty, J.R.; Lappe, D.L.; Knowlton, K.U.; Carlquist, J.; Konery, K.; Inglet, S.; Chisum, B.; Galenko, O.; et al. Vitamin D supplementation protects against reductions in plasma 25-hydroxyvitamin D induced by open-heart surgery: Assess-d trial. Physiol. Rep. 2021, 9, e14747. [Google Scholar] [CrossRef]
- McNally, J.D.; O’Hearn, K.; Lawson, M.L.; Maharajh, G.; Geier, P.; Weiler, H.; Redpath, S.; McIntyre, L.; Fergusson, D.; Menon, K. Prevention of vitamin D deficiency in children following cardiac surgery: Study protocol for a randomized controlled trial. Trials 2015, 16, 402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gode, S.; Aksu, T.; Demirel, A.; Sunbul, M.; Gul, M.; Bakır, I.; Yeniterzi, M. Effect of vitamin D deficiency on the development of postoperative atrial fibrillation in coronary artery bypass patients. J. Cardiovasc. Thorac. Res. 2016, 8, 140–146. [Google Scholar] [CrossRef] [Green Version]
- Maesen, B.; Nijs, J.; Maessen, J.; Allessie, M.; Schotten, U. Post-operative atrial fibrillation: A maze of mechanisms. Europace 2011, 14, 159–174. [Google Scholar] [CrossRef]
- Tønnesen, R.; Schwarz, P.; Hovind, P.; Jensen, L.T. Modulation of the sympathetic nervous system in youngsters by vitamin-D supplementation. Physiol. Rep. 2018, 6, e13635. [Google Scholar] [CrossRef] [Green Version]
- Alexandre, J.; Saloux, E.; Chequel, M.; Allouche, S.; Ollitrault, P.; Plane, A.-F.; Legallois, D.; Fischer, M.-O.; Saplacan, V.; Buklas, D.; et al. Preoperative plasma aldosterone and the risk of atrial fibrillation after coronary artery bypass surgery: A Prospective Cohort Study. J. Hypertens. 2016, 34, 2449–2457. [Google Scholar] [CrossRef]
- Chequel, M.; Ollitrault, P.; Saloux, E.; Parienti, J.-J.; Fischer, M.-O.; Desgué, J.; Allouche, S.; Milliez, P.; Alexandre, J. Preoperative Plasma Aldosterone Levels and Postoperative Atrial Fibrillation Occurrence Following Cardiac Surgery: A Review of Literature and Design of the ALDO-POAF Study (ALDOsterone for Prediction of Post-Operative Atrial Fibrillation). Curr. Clin. Pharmacol. 2016, 11, 150–158. [Google Scholar] [CrossRef]
- Cerit, L.; Özcem, B.; Cerit, Z.; Duygu, H. Preventive Effect of Preoperative Vitamin D Supplementation on Postoperative Atrial Fibrillation. Braz. J. Cardiovasc. Surg. 2018, 33, 347–352. [Google Scholar] [CrossRef]
- Fan, G.; Liu, J.; Dong, S.; Chen, Y. Postoperative Atrial Fibrillation after Minimally Invasive Direct Coronary Artery Bypass: A Single-Center, 5-Year Follow-Up Study. Heart Surg. Forum 2021, 24, E456–E460. [Google Scholar] [CrossRef] [PubMed]
- Yaman, B.; Cerit, L.; Günsel, H.K.; Cerit, Z.; Usalp, S.; Yüksek, Ü.; Coşkun, U.; Duygu, H.; Akpınar, O. Is There Any Link between Vitamin d and Recurrence of Atrial Fibrillation after Cardioversion? Braz. J. Cardiovasc. Surg. 2020, 35, 191–197. [Google Scholar] [CrossRef]
- Fakhry, E.E.; Ibrahim, M.T. Relationship between vitamin D deficiency and success of cardioversion in patients with atrial fibrillation. Herzschrittmacherther. Elektrophysiol. 2022, 33, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Cerit, L.; Kemal, H.; Gulsen, K.; Ozcem, B.; Cerit, Z.; Duygu, H. Relationship between Vitamin D and the development of atrial fibrillation after on-pump coronary artery bypass graft surgery. Cardiovasc. J. Afr. 2017, 28, 104–107. [Google Scholar] [CrossRef] [Green Version]
- Emren, S.V.; Aldemir, M.; Ada, F. Does Deficiency of Vitamin D Increase New Onset Atrial Fibrillation after Coronary Artery Bypass Grafting Surgery? Heart Surg. Forum 2016, 19, 180–184. [Google Scholar] [CrossRef]
- Kara, H.; Yasim, A. Effects of high-dose vitamin D supplementation on the occurrence of post-operative atrial fibrillation after coronary artery bypass grafting: Randomized controlled trial. Gen. Thorac. Cardiovasc. Surg. 2019, 68, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Ohlrogge, A.H.; Brederecke, J.; Ojeda, F.M.; Pecha, S.; Börschel, C.S.; Conradi, L.; Rimkus, V.; Blankenberg, S.; Zeller, T.; Schnabel, R.B. The Relationship Between Vitamin D and Postoperative Atrial Fibrillation: A Prospective Cohort Study. Front. Nutr. 2022, 9, 851005. [Google Scholar] [CrossRef] [PubMed]
- Sahu, M.K.; Bipin, C.; Niraghatam, H.V.; Karanjkar, A.; Singh, S.P.; Rajashekar, P.; Ramakrishnan, L.; Devagourou, V.; Upadhyay, A.D.; Choudhary, S.K. Vitamin D Deficiency and Its Response to Supplementation as “Stoss Therapy” in Children with Cyanotic Congenital Heart Disease Undergoing Open Heart Surgery. J. Card. Crit. Care TSS 2019, 3, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Özsin, K.K.; Sanrı, U.S.; Toktaş, F.; Kahraman, N.; Yavuz, Ş. Effect of Plasma Level of Vitamin D on Postoperative Atrial Fibrillation in Patients Undergoing Isolated Coronary Artery Bypass Grafting. Rev. Bras. Cir. Cardiovasc. 2018, 33, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Talasaz, A.H.; Salehiomran, A.; Heidary, Z.; Gholami, K.; Aryannejad, H.; Jalali, A.; Daei, M. The effects of vitamin D supplementation on postoperative atrial fibrillation after coronary artery bypass grafting in patients with vitamin D deficiency. J. Card. Surg. 2022, 37, 2219–2224. [Google Scholar] [CrossRef] [PubMed]
- Shadvar, K.; Ramezani, F.; Sanaie, S.; Maleki, T.E.; Arbat, B.K.; Nagipour, B. Relationship between plasma level of vitamin D and post operative atrial fibrillation in patients undergoing CABG. Pak. J. Med. Sci. 2016, 32, 900–904. [Google Scholar] [CrossRef]
- Daie, M.; Talasaz, A.H.; Karimi, A.; Gholami, K.; Salehiomran, A.; Ariannejad, H.; Jalali, A. Relationship between Vitamin D Levels and the Incidence of Post Coronary Artery Bypass Graft Surgery Atrial Fibrillation. J. Tehran Univ. Heart Cent. 2019, 13, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Skuladottir, G.V.; Cohen, A.; Arnar, D.O.; Hougaard, D.M.; Torfason, B.; Palsson, R.; Indridason, O.S. Plasma 25-hydroxyvitamin D2 and D3 levels and incidence of postoperative atrial fibrillation. J. Nutr. Sci. 2016, 5, e10. [Google Scholar] [CrossRef] [Green Version]
- Ansari, S.A.; Dhaliwal, J.S.S.; Ansari, Y.; Ghosh, S.; Khan, T.M.A. The Role of Vitamin D Supplementation Before Coronary Artery Bypass Grafting in Preventing Postoperative Atrial Fibrillation in Patients With Vitamin D Deficiency or Insufficiency: A Systematic Review and Meta-Analysis. Cureus 2023, 15, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Bej, P. Effect of Vitamin D Supplementation on Postoperative Outcomes in Cardiac Surgery Patients: A Systematic Review. J. Card. Crit. Care TSS 2022, 06, 195–200. [Google Scholar] [CrossRef]
- Liu, X.; Wang, W.; Tan, Z.; Zhu, X.; Liu, M.; Wan, R.; Hong, K. The relationship between vitamin D and risk of atrial fibrillation: A dose-response analysis of observational studies. Nutr. J. 2019, 18, 73. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, I. Atrial fibrillation after cardiac surgery and preoperative vitamin D levels: A systematic review and meta-analysis. Turk. J. Thorac. Cardiovasc. Surg. 2020, 28, 101–107. [Google Scholar] [CrossRef]
- Rahimi, M.; Taban-Sadeghi, M.; Nikniaz, L.; Pashazadeh, F. The relationship between preoperative serum vitamin D deficiency and postoperative atrial fibrillation: A systematic review and meta-analysis. J. Cardiovasc. Thorac. Res. 2021, 13, 102–108. [Google Scholar] [CrossRef]
- Hameed, I.; Malik, S.; Nusrat, K.; Siddiqui, O.M.; Khan, M.O.; Mahmood, S.; Memon, A.; Usman, M.S.; Siddiqi, T.J. Effect of vitamin D on postoperative atrial fibrillation in patients who underwent coronary artery bypass grafting: A systematic review and Meta-analysis. J. Cardiol. 2023, in press. [Google Scholar] [CrossRef]
- Acharya, P.; Safarova, M.S.; Dalia, T.; Bharati, R.; Ranka, S.; Vindhyal, M.; Jiwani, S.; Barua, R.S. Effects of Vitamin D Supplementation and 25-Hydroxyvitamin D Levels on the Risk of Atrial Fibrillation. Am. J. Cardiol. 2022, 173, 56–63. [Google Scholar] [CrossRef]
- Albert, C.M.; Cook, N.R.; Pester, J.; Moorthy, M.V.; Ridge, C.; Danik, J.S.; Gencer, B.; Siddiqi, H.K.; Ng, C.; Gibson, H.; et al. Effect of Marine Omega-3 Fatty Acid and Vitamin D Supplementation on Incident Atrial Fibrillation: A Randomized Clinical Trial. JAMA 2021, 325, 1061–1073. [Google Scholar] [CrossRef]
- Qayyum, F.; Landex, N.L.; Agner, B.R.; Rasmussen, M.; Jøns, C.; Dixen, U. Vitamin D deficiency is unrelated to type of atrial fibrillation and its complications. Dan. Med. J. 2012, 59, 1–5. [Google Scholar]
- Vitezova, A.; Cartolano, N.S.; Heeringa, J.; Zillikens, M.C.; Hofman, A.; Franco, O.H.; Jong, J.C.K.-D. Vitamin D and the Risk of Atrial Fibrillation—The Rotterdam Study. PLoS ONE 2015, 10, e0125161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belen, E.; Aykan, A.; Kalay, E.; Sungur, M.; Sungur, A.; Çetin, M. Low-Level Vitamin D Is Associated with Atrial Fibrillation in Patients with Chronic Heart Failure. Adv. Clin. Exp. Med. 2016, 25, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Boursiquot, B.C.; Larson, J.C.; Shalash, O.A.; Vitolins, M.Z.; Soliman, E.Z.; Perez, M.V. Vitamin D with calcium supplementation and risk of atrial fibrillation in postmenopausal women. Am. Heart J. 2019, 209, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.B.; May, H.T.; Blair, T.L.; Anderson, J.L.; Muhlestein, J.B.; Horne, B.D.; Lappe, D.L.; Day, J.D.; Crandall, B.G.; Weiss, P.; et al. Abstract 14699: Vitamin D Excess Is Significantly Associated with Risk of Atrial Fibrillation. Circulation 2011, 124, A14699. [Google Scholar] [CrossRef]
- Trevisan, C.; Piovesan, F.; Lucato, P.; Zanforlini, B.M.; De Rui, M.; Maggi, S.; Noale, M.; Corti, M.C.; Perissinotto, E.; Manzato, E.; et al. Parathormone, vitamin D and the risk of atrial fibrillation in older adults: A prospective study. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 939–945. [Google Scholar] [CrossRef]
- Chen, W.R.; Liu, Z.Y.; Shi, Y.; Yin, D.W.; Wang, H.; Sha, Y.; Chen, Y.D. Relation of Low Vitamin D to Nonvalvular Persistent Atrial Fibrillation in Chinese Patients. Ann. Noninvasive Electrocardiol. 2013, 19, 166–173. [Google Scholar] [CrossRef]
- Rienstra, M.; Cheng, S.; Larson, M.G.; McCabe, E.L.; Booth, S.L.; Jacques, P.F.; Lubitz, S.A.; Yin, X.; Levy, D.; Magnani, J.W.; et al. Vitamin D status is not related to development of atrial fibrillation in the community. Am. Heart J. 2011, 162, 538–541. [Google Scholar] [CrossRef] [Green Version]
- Kavanagh, M.; Bradley, E.; Hoey, L.; Hughes, C.; McNulty, H.; Ward, M.; Strain, J.; Tracey, F.; Molloy, A.; Laird, E.; et al. 51 vitamin D deficiency is associated with increased risk of atrial fibrillation: A cross-sectional analysis. Age Ageing 2022, 51, afac218.041. [Google Scholar] [CrossRef]
- Thompson, J.; Nitiahpapand, R.; Bhatti, P.; Kourliouros, A. Vitamin D deficiency and atrial fibrillation. Int. J. Cardiol. 2015, 184, 159–162. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Y.; Ng, C.Y.; Wang, D.; Wang, J.; Li, G.; Liu, T. Meta-analysis of Vitamin D Deficiency and Risk of Atrial Fibrillation. Clin. Cardiol. 2016, 39, 537–543. [Google Scholar] [CrossRef] [Green Version]
- Bie, L. The Status and Research Progress on Vitamin D Deficiency and Atrial Fibrillation. Braz. J. Cardiovasc. Surg. 2019, 34, 605–609. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, N.; Campodonico, J.; Milazzo, V.; De Metrio, M.; Brambilla, M.; Camera, M.; Marenzi, G. Vitamin D and Cardiovascular Disease: Current Evidence and Future Perspectives. Nutrients 2021, 13, 3603. [Google Scholar] [CrossRef] [PubMed]
- Morillo, C.A.; Banerjee, A.; Perel, P.; Wood, D.; Jouven, X. Atrial Fibrillation: The Current Epidemic. J. Geriatr. Cardiol. JGC 2017, 14, 195. [Google Scholar] [PubMed]
- Bouillon, R.; Carmeliet, G.; Verlinden, L.; van Etten, E.; Verstuyf, A.; Luderer, H.F.; Lieben, L.; Mathieu, C.; Demay, M. Vitamin D and Human Health: Lessons from Vitamin D Receptor Null Mice. Endocr. Rev. 2008, 29, 726–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lips, P. Vitamin D Physiology. Prog. Biophys. Mol. Biol. 2006, 92, 4–8. [Google Scholar] [CrossRef]
- Norman, A.W. Vitamin D Receptor: New Assignments for an Already Busy Receptor. Endocrinology 2006, 147, 5542–5548. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhu, J.; DeLuca, H.F. Where Is the Vitamin D Receptor? Arch. Biochem. Biophys. 2012, 523, 123–133. [Google Scholar] [CrossRef]
- Bhattarai, H.K.; Shrestha, S.; Rokka, K.; Shakya, R. Vitamin D, Calcium, Parathyroid Hormone, and Sex Steroids in Bone Health and Effects of Aging. J. Osteoporos. 2020, 2020, 9324505. [Google Scholar] [CrossRef]
- Khundmiri, S.J.; Murray, R.D.; Lederer, E. PTH and Vitamin D. Comprehensive Physiology 2011, 6, 561–601. [Google Scholar]
- Saraiva, G.L.; Cendoroglo, M.S.; Ramos, L.R.; Araújo, L.M.Q.; Vieira, J.G.H.; Kunii, I.; Hayashi, L.F.; Corrêa, M.d.P.; Lazaretti-Castro, M. Influence of ultraviolet radiation on the production of 25 hydroxyvitamin D in the elderly population in the city of São Paulo (23 o 34’S), Brazil. Osteoporos. Int. 2005, 16, 1649–1654. [Google Scholar] [CrossRef]
- Lugg, S.T.; Howells, P.A.; Thickett, D.R. Optimal Vitamin D Supplementation Levels for Cardiovascular Disease Protection. Dis. Markers 2015, 2015, 864370. [Google Scholar] [CrossRef] [Green Version]
- Acharya, P.; Dalia, T.; Ranka, S.; Sethi, P.; Oni, O.A.; Safarova, M.S.; Parashara, D.; Gupta, K.; Barua, R.S. The Effects of Vitamin D Supplementation and 25-hydroxyvitamin D Levels on The Risk of MI and Mortality. J. Endocr. Soc. 2021, 5, bvab124. [Google Scholar] [CrossRef] [PubMed]
- Maurya, V.K.; Aggarwal, M. Factors influencing the absorption of vitamin D in GIT: An overview. J. Food Sci. Technol. 2017, 54, 3753–3765. [Google Scholar] [CrossRef] [PubMed]
- Tripkovic, L.; Lambert, H.; Hart, K.; Smith, C.P.; Bucca, G.; Penson, S.; Chope, G.; Hyppönen, E.; Berry, J.; Vieth, R.; et al. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2012, 95, 1357–1364. [Google Scholar] [CrossRef] [Green Version]
- Hollander, D.; Muralidhara, K.S.; Zimmerman, A. Vitamin D-3 intestinal absorption in vivo: Influence of fatty acids, bile salts, and perfusate pH on absorption. Gut 1978, 19, 267–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Compston, J.E.; Merrett, A.L.; Hammett, F.G.; Magill, P. Comparison of the Appearance of Radiolabelled Vitamin D3 and 25-Hydroxy-Vitamin D3 in the Chylomicron Fraction of Plasma after Oral Administration in Man. Clin. Sci. 1981, 60, 241–243. [Google Scholar] [CrossRef]
- Bennour, I.; Haroun, N.; Sicard, F.; Mounien, L.; Landrier, J.-F. Vitamin D and Obesity/Adiposity—A Brief Overview of Recent Studies. Nutrients 2022, 14, 2049. [Google Scholar] [CrossRef]
- Li, Y.; Chen, C.; Liu, H.L.; Qian, G. Vitamin D, Parathyroid Hormone, and Heart Failure in A Chinese Elderly Population. Endocr. Pract. 2015, 21, 30–40. [Google Scholar] [CrossRef]
- Ding, F.; Nie, X.; Li, X.; He, Y.; Li, G. Data mining: Biological and temporal factors associated with blood parathyroid hormone, vitamin D, and calcium concentrations in the Southwestern Chinese population. Clin. Biochem. 2021, 90, 50–57. [Google Scholar] [CrossRef]
- Taheri, M.; Tavasoli, S.; Shokrzadeh, F.; Amiri, F.B.; Basiri, A. Effect of vitamin D supplementation on 24-hour urine calcium in patients with calcium Urolithiasis and vitamin D deficiency. Int. Braz. J. Urol. 2019, 45, 340–346. [Google Scholar] [CrossRef]
- Fisher, A.; Srikusalanukul, W.; Fisher, L.; Smith, P.N. Comparison of Prognostic Value of 10 Biochemical Indices at Admission for Prediction Postoperative Myocardial Injury and Hospital Mortality in Patients with Osteoporotic Hip Fracture. J. Clin. Med. 2022, 11, 6784. [Google Scholar] [CrossRef]
- Hanel, A.; Carlberg, C. Skin colour and vitamin D: An update. Exp. Dermatol. 2020, 29, 864–875. [Google Scholar] [CrossRef] [PubMed]
- Allan, V.; Honarbakhsh, S.; Casas, J.-P.; Wallace, J.; Hunter, R.; Schilling, R.; Perel, P.; Morley, K.; Banerjee, A.; Hemingway, H. Are cardiovascular risk factors also associated with the incidence of atrial fibrillation? Thromb. Haemost. 2017, 117, 837–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutierrez, C.; Blanchard, D.G. Atrial fibrillation: Diagnosis and treatment. Am. Fam. Physician 2011, 83, 61–68. [Google Scholar] [PubMed]
- Benedetto, U.; Gaudino, M.F.; Dimagli, A.; Gerry, S.; Gray, A.; Lees, B.; Flather, M.; Taggart, D.P.; ART Investigators. Postoperative Atrial Fibrillation and Long-Term Risk of Stroke After Isolated Coronary Artery Bypass Graft Surgery. Circulation 2020, 142, 1320–1329. [Google Scholar] [CrossRef]
Author [Ref.] | Country | Study Design | Study Population | Patients (n) | Age (yrs) | Gender (Males) | State of VitD | Dose of VitD | Endpoint Considered | Major Findings |
---|---|---|---|---|---|---|---|---|---|---|
[108] | USA | Randomized Double-blind Placebo-controlled | Randomized | 25,119 | 66.7 | 49.2% | n/d | 2000 IU | Incidents of AF | VitD supplementation had no significant effect. |
[107] | USA | Case-controlled | Veterans | 39,845 | 57.5 | 63.1% | Deficiency (25-OH) D <20 ng/mL / Insufficiency 20 <(25-OH) D <30 ng/mL | n/d | Incidents of AF | (25-OH) D >20 ng/mL with VitD for ≥6 months associated with lower AF risk. |
[114] | - | Prospective study | Older adults | 2481 | 76.0 | - | Deficiency (25-OH) D <20 ng/mL / 20 < Insufficiency <30 ng/mL | n/d | Incidents of AF | Treatment of VitD deficiency may contribute to lower the risk of AF. |
[91] | Cyprus | Retrospective study | CABG surgery | 128 | 67.6 | 85.4% | Present POAF–19.9 ± 6.1 (19.5) ng/mL Absent PAOF-26 ± 8.2 (26.4) ng/mL | n/d | New-onset postop AF | VitD level was not an independent predictor for POAF. |
[97] | - | Randomized Prospective study | CABG surgery | 196 | 59.29 | 70.0% | 14.43 ng/mL | 600 000 IU 5 days before surgery | POAF during the first 5 days after CABG surgery | VitD supplementation reduces the incidence of POAF. |
[94] | Germany | Prospective cohort study | CABG surgery | 201 | 66.6 | 84.6% | Deficiency 17.7 ng/mL | - | New-onset postop AF | Elevated 25(OH)D concentration and VitD supplementation rather revealed an increased OR for POAF. |
[93] | - | Randomized Double-blind | CABG surgery | 116 | 65.05 | 25% | Deficiency 10.77 ± 3.21 ng/mL / Insufficiency 25.13 ± 3.45 ng/mL | 150 000 IU / 300 000 IU 48 h before surgery | New-onset postop AF | Preoperative short-term high-dose VitD supplementation significantly preventive of POAF. |
[87] | Cyprus | Case-controlled | CAGB surgery | 328 | 63.8 | 43.7% | Deficiency 11.4 ± 4.9 ng/mL / Insufficiency 24.6 ± 3.7 ng/mL | 50 000 IU 48 h before surgery | New-onset postop AF | VitD administered 48 h before the operation reduces the risk of PoAF in the deficiency group but not in the insufficiency group |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graczyk, S.; Grzeczka, A.; Pasławska, U.; Kordowitzki, P. The Possible Influence of Vitamin D Levels on the Development of Atrial Fibrillation—An Update. Nutrients 2023, 15, 2725. https://doi.org/10.3390/nu15122725
Graczyk S, Grzeczka A, Pasławska U, Kordowitzki P. The Possible Influence of Vitamin D Levels on the Development of Atrial Fibrillation—An Update. Nutrients. 2023; 15(12):2725. https://doi.org/10.3390/nu15122725
Chicago/Turabian StyleGraczyk, Szymon, Arkadiusz Grzeczka, Urszula Pasławska, and Pawel Kordowitzki. 2023. "The Possible Influence of Vitamin D Levels on the Development of Atrial Fibrillation—An Update" Nutrients 15, no. 12: 2725. https://doi.org/10.3390/nu15122725
APA StyleGraczyk, S., Grzeczka, A., Pasławska, U., & Kordowitzki, P. (2023). The Possible Influence of Vitamin D Levels on the Development of Atrial Fibrillation—An Update. Nutrients, 15(12), 2725. https://doi.org/10.3390/nu15122725