Associations of Maternal Serum Iodine Concentration with Obstetric Complications and Birth Outcomes—Longitudinal Analysis Based on the Huizhou Mother–Infant Cohort, South China
Abstract
:1. Introduction
2. Methodology
2.1. Participant Recruitment
2.2. Data Collection and Biochemical Testing
2.3. Health Outcomes and Diagnosis Criteria
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Results of Multivariable Logistic and Linear Regression
3.3. Sensitivity Analyses
4. Discussion
4.1. Summary of Findings and Implications
4.2. SIC and Pregnancy Outcomes
4.3. SIC and GWG
4.4. SIC and Birth Outcomes
4.5. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mégier, C.; Dumery, G.; Luton, D. Iodine and Thyroid Maternal and Fetal Metabolism during Pregnancy. Metabolites 2023, 13, 633. [Google Scholar] [CrossRef] [PubMed]
- Farebrother, J.; Zimmermann, M.B.; Abdallah, F.; Assey, V.; Fingerhut, R.; Gichohi-Wainaina, W.N.; Hussein, I.; Makokha, A.; Sagno, K.; Untoro, J.; et al. Effect of Excess Iodine Intake from Iodized Salt and/or Groundwater Iodine on Thyroid Function in Nonpregnant and Pregnant Women, Infants, and Children: A Multicenter Study in East Africa. Thyroid. Off. J. Am. Thyroid. Assoc. 2018, 28, 1198–1210. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Diaz, E.; Pearce, E.N. Iodine status and supplementation before, during, and after pregnancy. Best Pract. Research. Clin. Endocrinol. Metab. 2020, 34, 101430. [Google Scholar] [CrossRef]
- Forhead, A.J.; Fowden, A.L. Thyroid hormones in fetal growth and prepartum maturation. J. Endocrinol. 2014, 221, R87–R103. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Assessment of Iodine Deficiency Disorders and Monitoring Their Elimination—A Guide for Programme Managers, 3rd ed.; WHO Press: Geneva, Switzerland, 2007. [Google Scholar]
- Nazarpour, S.; Ramezani Tehrani, F.; Behboudi-Gandevani, S.; Bidhendi Yarandi, R.; Azizi, F. Maternal Urinary Iodine Concentration and Pregnancy Outcomes in Euthyroid Pregnant Women: A Systematic Review and Meta-analysis. Biol. Trace Elem. Res. 2020, 197, 411–420. [Google Scholar] [CrossRef]
- Torlinska, B.; Bath, S.C.; Janjua, A.; Boelaert, K.; Chan, S.Y. Iodine Status during Pregnancy in a Region of Mild-to-Moderate Iodine Deficiency is not Associated with Adverse Obstetric Outcomes; Results from the Avon Longitudinal Study of Parents and Children (ALSPAC). Nutrients 2018, 10, 291. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Sun, H.; Li, C.; Li, Y.; Peng, S.; Fan, C.; Teng, W.; Shan, Z. Effect of Iodine Nutrition on Pregnancy Outcomes in an Iodine-Sufficient Area in China. Biol. Trace Elem. Res. 2018, 182, 231–237. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Andersson, M. Assessment of iodine nutrition in populations: Past, present, and future. Nutr. Rev. 2012, 70, 553–570. [Google Scholar] [CrossRef] [PubMed]
- Doggui, R.; El Ati-Hellal, M.; Traissac, P.; El Ati, J. Pre-analytical Factors Influence Accuracy of Urine Spot Iodine Assessment in Epidemiological Surveys. Biol. Trace Elem. Res. 2018, 186, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Pearce, E.N.; Caldwell, K.L. Urinary iodine, thyroid function, and thyroglobulin as biomarkers of iodine status. Am. J. Clin. Nutr. 2016, 104 (Suppl. 3), 898s–901s. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Jiang, P.; Liu, L.; Jia, Q.; Liu, P.; Meng, F.; Zhang, X.; Guan, Y.; Pang, Y.; Lu, Z.; et al. The application of serum iodine in assessing individual iodine status. Clin. Endocrinol. 2017, 87, 807–814. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Yin, Y.; Cheng, Q.; Han, J.; Cheng, X.; Guo, Y.; Sun, D.; Xie, S.; Qiu, L. Validation of a simple inductively coupled plasma mass spectrometry method for detecting urine and serum iodine and evaluation of iodine status of pregnant women in Beijing. Scand. J. Clin. Lab. Investig. 2018, 78, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Diagnosis and classification of diabetes mellitus. Diabetes Care 2014, 37 (Suppl. 1), S81–S90. [CrossRef] [Green Version]
- Society, C.N. Weight Monitoring and Evaluation during Pregnancy Period of Chinese Women: Group Standard T/CNSS 009-2021; Chinese Nutrition Society: Beijing, China, 2021. (In Chinese) [Google Scholar]
- Growth standard curves of birth weight, length and head circumference of Chinese newborns of different gestation. Zhonghua er ke za zhi = Chin. J. Pediatr. 2020, 58, 738–746. [CrossRef]
- Silva de Morais, N.; Ayres Saraiva, D.; Corcino, C.; Berbara, T.; Schtscherbyna, A.; Moreira, K.; Vaisman, M.; Alexander, E.K.; Teixeira, P. Consequences of Iodine Deficiency and Excess in Pregnancy and Neonatal Outcomes: A Prospective Cohort Study in Rio de Janeiro, Brazil. Thyroid. Off. J. Am. Thyroid. Assoc. 2020, 30, 1792–1801. [Google Scholar] [CrossRef]
- Nazeri, P.; Shab-Bidar, S.; Pearce, E.N.; Shariat, M. Do maternal urinary iodine concentration or thyroid hormones within the normal range during pregnancy affect growth parameters at birth? A systematic review and meta-analysis. Nutr. Rev. 2020, 78, 747–763. [Google Scholar] [CrossRef]
- Purdue-Smithe, A.C.; Männistö, T.; Bell, G.A.; Mumford, S.L.; Liu, A.; Kannan, K.; Kim, U.J.; Suvanto, E.; Surcel, H.M.; Gissler, M.; et al. The Joint Role of Thyroid Function and Iodine Status on Risk of Preterm Birth and Small for Gestational Age: A Population-Based Nested Case-Control Study of Finnish Women. Nutrients 2019, 11, 2573. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.M.; Li, G.; Wu, Y.; Zhang, D.; Zhang, S.; Hao, Y.T.; Chen, W.; Huang, Q.; Li, S.; Xie, Y.; et al. Increased Central and Peripheral Thyroid Resistance Indices During the First Half of Gestation Were Associated With Lowered Risk of Gestational Diabetes-Analyses Based on Huizhou Birth Cohort in South China. Front. Endocrinol. 2022, 13, 806256. [Google Scholar] [CrossRef]
- Murillo-Llorente, M.T.; Llorca-Colomer, F.; Pérez-Bermejo, M. Relationship between Thyroid Status during the First Trimester of Pregnancy and Neonatal Well-Being. Nutrients 2021, 13, 872. [Google Scholar] [CrossRef]
- Cuellar-Rufino, S.; Navarro-Meza, M.; García-Solís, P.; Xochihua-Rosas, I.; Arroyo-Helguera, O. Iodine levels are associated with oxidative stress and antioxidant status in pregnant women with hypertensive disease. Nutr. Hosp. 2017, 34, 661–666. [Google Scholar] [CrossRef]
- Gulaboglu, M.; Borekci, B.; Delibas, I. Urine iodine levels in preeclamptic and normal pregnant women. Biol. Trace Elem. Res. 2010, 136, 249–257. [Google Scholar] [CrossRef]
- Borekci, B.; Gulaboglu, M.; Gul, M. Iodine and magnesium levels in maternal and umbilical cord blood of preeclamptic and normal pregnant women. Biol. Trace Elem. Res. 2009, 129, 1–8. [Google Scholar] [CrossRef]
- Reische, E.C.; Männistö, T.; Purdue-Smithe, A.; Kannan, K.; Kim, U.J.; Suvanto, E.; Surcel, H.M.; Gissler, M.; Mills, J.L. The Joint Role of Iodine Status and Thyroid Function on Risk for Preeclampsia in Finnish Women: A Population-Based Nested Case-Control Study. Biol. Trace Elem. Res. 2021, 199, 2131–2137. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liu, Y.; Liu, H.; Zheng, H.; Li, X.; Zhu, L.; Wang, Z. Associations of maternal iodine status and thyroid function with adverse pregnancy outcomes in Henan Province of China. J. Trace Elem. Med. Biol. Organ Soc. Miner. Trace Elem. (GMS) 2018, 47, 104–110. [Google Scholar] [CrossRef]
- Burton, G.J.; Redman, C.W.; Roberts, J.M.; Moffett, A. Pre-eclampsia: Pathophysiology and clinical implications. BMJ (Clin. Res. Ed.) 2019, 366, l2381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wujcicka, W.I.; Kacerovsky, M.; Krekora, M.; Kaczmarek, P.; Grzesiak, M. Single Nucleotide Polymorphisms from CSF2, FLT1, TFPI and TLR9 Genes Are Associated with Prelabor Rupture of Membranes. Genes 2021, 12, 1725. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Cui, J.; Li, L.; Chen, X.; Ouyang, L.; Fan, J.; Lin, S. Association between isolated maternal hypothyroxinemia during the first trimester and adverse pregnancy outcomes in Southern Chinese women: A retrospective study of 7051 cases. BMC Pregnancy Childbirth 2022, 22, 866. [Google Scholar] [CrossRef]
- Luisi, S.; Giorgi, M.; Riggi, S.; Messina, G.; Severi, F.M. Neonatal outcome in pregnancy hypotiroidee women. Gynecol. Endocrinol. Off. J. Int. Soc. Gynecol. Endocrinol. 2020, 36, 772–775. [Google Scholar] [CrossRef]
- Cano-Ibáñez, N.; Martínez-Galiano, J.M.; Luque-Fernández, M.A.; Martín-Peláez, S.; Bueno-Cavanillas, A.; Delgado-Rodríguez, M. Maternal Dietary Patterns during Pregnancy and Their Association with Gestational Weight Gain and Nutrient Adequacy. Int. J. Environ. Res. Public Health 2020, 17, 7908. [Google Scholar] [CrossRef]
- Gargari, S.S.; Fateh, R.; Bakhshali-Bakhtiari, M.; Saleh, M.; Mirzamoradi, M.; Bakhtiyari, M. Maternal and neonatal outcomes and determinants of iodine deficiency in third trimester of pregnancy in an iodine sufficient area. BMC Pregnancy Childbirth 2020, 20, 174. [Google Scholar] [CrossRef]
- Neven, K.Y.; Cox, B.; Vrijens, K.; Plusquin, M.; Roels, H.A.; Ruttens, A.; Nawrot, T.S. Determinants of placental iodine concentrations in a mild-to-moderate iodine-deficient population: An ENVIRONAGE cohort study. J. Transl. Med. 2020, 18, 426. [Google Scholar] [CrossRef]
- Greenwood, D.C.; Webster, J.; Keeble, C.; Taylor, E.; Hardie, L.J. Maternal Iodine Status and Birth Outcomes: A Systematic Literature Review and Meta-Analysis. Nutrients 2023, 15, 387. [Google Scholar] [CrossRef]
- Chen, R.; Li, Q.; Cui, W.; Wang, X.; Gao, Q.; Zhong, C.; Sun, G.; Chen, X.; Xiong, G.; Yang, X.; et al. Maternal Iodine Insufficiency and Excess Are Associated with Adverse Effects on Fetal Growth: A Prospective Cohort Study in Wuhan, China. J. Nutr. 2018, 148, 1814–1820. [Google Scholar] [CrossRef] [Green Version]
- Vidal, Z.E.; Rufino, S.C.; Tlaxcalteco, E.H.; Trejo, C.H.; Campos, R.M.; Meza, M.N.; Rodríguez, R.C.; Arroyo-Helguera, O. Oxidative stress increased in pregnant women with iodine deficiency. Biol. Trace Elem. Res. 2014, 157, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Pearce, E.N.; Lazarus, J.H.; Moreno-Reyes, R.; Zimmermann, M.B. Consequences of iodine deficiency and excess in pregnant women: An overview of current knowns and unknowns. Am. J. Clin. Nutr. 2016, 104 (Suppl. 3), 918s–923s. [Google Scholar] [CrossRef] [Green Version]
- Harding, K.B.; Peña-Rosas, J.P.; Webster, A.C.; Yap, C.M.; Payne, B.A.; Ota, E.; De-Regil, L.M. Iodine supplementation for women during the preconception, pregnancy and postpartum period. Cochrane Database Syst. Rev. 2017, 3, Cd011761. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, W.; Du, C.; Fan, L.; Wang, W.; Gao, M.; Zhang, Y.; Cui, T.; Hao, Y.; Pearce, E.N.; et al. Iodine Nutrition and Thyroid Function in Pregnant Women Exposed to Different Iodine Sources. Biol. Trace Elem. Res. 2019, 190, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, U.; Grant, F.; Goldenberg, T.; Zongrone, A.; Martorell, R. Effect of women’s nutrition before and during early pregnancy on maternal and infant outcomes: A systematic review. Paediatr. Perinat. Epidemiol. 2012, 26 (Suppl. 1), 285–301. [Google Scholar] [CrossRef]
- Michalke, B.; Witte, H. Characterization of a rapid and reliable method for iodide biomonitoring in serum and urine based on ion chromatography-ICP-mass spectrometry. J. Trace Elem. Med. Biol. Organ Soc. Miner. Trace Elem. (GMS) 2015, 29, 63–68. [Google Scholar] [CrossRef] [PubMed]
Variables | n | Mean ± SD, Median (P25–P75) or n (%) |
---|---|---|
Maternal age (y) | 1101 | 28.1 ± 3.3 |
Pre-pregnancy BMI (kg/m2) | 1101 | 20.8 ± 3.1 |
Gestational weight gain (kg) | 719 | 13.5 ± 4.6 |
Excessive weight gain, n (%) | 719 | 189 (26.3) |
Insufficient weight gain, n (%) | 719 | 219 (30.5) |
Education level: university and above, n (%) | 1101 | 272 (24.7) |
Nulliparity, n (%) | 1101 | 599 (54.4) |
Smoking, n (%) | 1077 | 28 (2.6) |
Alcohol drinking, n (%) | 1097 | 34 (3.1) |
Hormone usage, n (%) | 1099 | 245 (22.3) |
Folate supplementation, n (%) | 1100 | 1068 (97.1) |
Iodine-fortified salt usage, n (%) | 311 | 276 (88.7) |
Habitual kelp and seaweed intake (g/d) | 132 | 27.1 ± 40.0 |
Gestational diabetes, n (%) | 968 | 164 (16.9) |
Gestational hypertension, n (%) | 809 | 16 (2.0) |
PROM, n (%) | 809 | 95 (11.7) |
Full-term delivery (≥37 GWs), n (%) | 808 | 771 (95.4%) |
Abnormal amniotic fluid (<300 or >2000 mL), n (%) | 589 | 76 (12.9) |
Apgar scores at 1 min after delivery | 809 | 9.83 ± 0.448 |
Medical and family history, n (%) | 1099 | |
Family history of T2M among first-degree relatives | 89 (8.1) | |
History of gestational diabetes | 47 (4.6) | |
Family history of thyroid disorders | 44 (4.0) | |
Any positive thyroid antibodies, n (%) | 9 (0.8) | |
Serum iodine levels at T1 (μg/L) | 1101 | 87.6 (77.4, 97.7) |
Serum iodine levels at T2 (μg/L) | 402 | 77.4 (71.1, 87.6) |
Urinary iodine at T1 (μg/L) | 389 | 190.6 (131.2, 260.0) |
Urinary creatine at T1 (mg/L) | 389 | 172.3 (114.4, 240.7) |
UI/UCr at T1 (μg/g) | 389 | 106.7 (76.7, 173.6) |
Birth weight (kg) | 809 | 3.16 ± 0.44 |
Birth length (cm) | 809 | 49.9 ± 1.9 |
Ponderal index (kg/m3) | 809 | 25.3 ± 2.0 |
Quartiles of Serum Iodine Concentrations during Early Pregnancy (μg/L, Min~Max) | |||||
---|---|---|---|---|---|
Q1 (45.68~77.41) | Q2 (78.68~87.56) | Q3 (88.83~97.71) | Q4 (98.98~229.69) | Ptrend | |
n = 288 | n = 281 | n = 271 | n = 261 | ||
Gestational diabetes mellitus (GDM) | |||||
Cases (%) | 41 (15.47) | 46 (18.04) | 40 (15.94) | 42 (18.03) | |
Crude OR | 1.0 | 1.202 (0.758~1.907) | 1.036 (0.644~1.665) | 1.201 (0.750~1.925) | 0.600 |
Adjusted OR | 1.0 | 1.323 (0.803~2.178) | 1.135 (0.681~1.892) | 1.476 (0.890~2.448) | 0.215 |
Gestational hypertension (GH) | |||||
Cases (%) | 7 (3.3) | 5 (2.4) | 3(1.5) | 1 (0.5) | |
Crude OR | 1.0 | 0.718 (0.224, 2.299) | 0.431(0.110, 1.689) | 0.156 (0.019–1.279) | 0.062 |
Adjusted OR | 1.0 | 0.803 (0.234–2.748) | 0.471(0.112–1.987) | 0.206 (0.024–1.754) | 0.090 |
PROM | |||||
Cases (%) | 19 (9.0) | 27 (13.0) | 22 (10.7) | 27 (14.4) | |
Crude OR | 1.0 | 1.586 (0.844, 2.981) | 1.263 (0.656, 2.434) | 1.724 (0.911, 3.262) | 0.180 |
Adjusted OR | 1.0 | 1.771 (0.920, 3.408) | 1.397 (0.711, 2.747) | 1.960 (1.010, 3.804) | 0.103 |
Small for gestation age (SGA) | |||||
Cases (%) | 25 (11.9) | 28 (13.5) | 15 (7.3) | 32 (17.1) | |
Crude OR | 0.719 (0.396, 1.305) | 0.813 (0.458, 1.445) | 0.385 (0.192, 0.771) | 1.0 | 0.684 |
Adjusted OR | 0.875 (0.458, 1.604) | 0.855 (0.468, 1.563) | 0.405 (0.198, 0.829) | 1.0 | 0.887 |
Large for gestation age (LGA) | |||||
Cases (%) | 6 (2.9) | 5 (2.4) | 3 (1.5) | 6 (3.2) | |
Crude OR | 1.105 (0.331, 3.690) | 0.867 (0.247, 3.048) | 0.546 (0.129, 2.322) | 1.0 | 0.833 |
Adjusted OR | 0.646 (0.179, 2.334) | 0.607 (0.163, 2.262) | 0.385 (0.085, 1.757) | 1.0 | 0.958 |
n | UnstandardizedCoefficients B (95% CI) | Standardized Coefficients β | p | |
---|---|---|---|---|
Maternal log10 SIC at the first trimester (T1) | ||||
Sum of Z-scores by OGTT | 957 | 0.904 (−0.892, 2.700) | 0.030 | 0.323 |
Apgar score at 1 min | 806 | 0.448 (0.053, 0.844) | 0.077 | 0.026 |
Gestational weight gain (kg) | 715 | −4.934 (−9.234, −0.634) | −0.082 | 0.025 |
Birth weight (kg) | 715 | −0.047 (−0.368, 0.274) | −0.008 | 0.775 |
Birth length (cm) | 715 | 0.478 (−0.946, 1.903) | 0.019 | 0.726 |
Ponderal index (kg/m3) | 715 | −1.002 (−2.819, 0.814) | −0.038 | 0.279 |
Maternal log10 SIC at the second trimester (T2) | ||||
Sum of Z-scores by OGTT | 388 | −0.091 (−2.893, 2.711) | −0.003 | 0.949 |
Apgar score at 1 min | 354 | 0.667 (0.010, 1.324) | 0.105 | 0.047 |
Gestational weight gain (kg) | 311 | −13.006 (−20.084, −5.928) | −0.198 | <0.001 |
Birth weight (kg) | 311 | −0.269 (−0.804, 0.267) | −0.043 | 0.325 |
Birth length (cm) | 311 | −0.333 (−2.715, 2.049) | −0.012 | 0.783 |
Ponderal index (kg/m3) | 311 | −1.183 (−4.219, 1.853) | −0.042 | 0.444 |
Maternal SIC change % from T1 to T2 | ||||
Sum of Z-scores by OGTT | 388 | −0.007 (−0.021, 0.007) | −0.048 | 0.319 |
Apgar score at 1 min | 354 | 0.000 (−0.003, 0.003) | −0.004 | 0.937 |
Gestational weight gain (kg) | 311 | −0.043 (−0.080, −0.007) | −0.131 | 0.019 |
Birth weight (kg) | 311 | −0.003 (−0.005, 0.000) | −0.085 | 0.054 |
Birth length (cm) | 311 | −0.013 (−0.025, −0.001) | −0.092 | 0.038 |
Ponderal index (kg/m3) | 311 | −0.002 (−0.018, 0.013) | −0.017 | 0.753 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.-M.; Wu, Y.; Long, H.-H.; Chen, C.-G.; Wang, C.; Ye, Y.-B.; Shen, Z.-Y.; Ye, M.-T.; Zhang, S.-J.; Li, M.-M.; et al. Associations of Maternal Serum Iodine Concentration with Obstetric Complications and Birth Outcomes—Longitudinal Analysis Based on the Huizhou Mother–Infant Cohort, South China. Nutrients 2023, 15, 2868. https://doi.org/10.3390/nu15132868
Liu Z-M, Wu Y, Long H-H, Chen C-G, Wang C, Ye Y-B, Shen Z-Y, Ye M-T, Zhang S-J, Li M-M, et al. Associations of Maternal Serum Iodine Concentration with Obstetric Complications and Birth Outcomes—Longitudinal Analysis Based on the Huizhou Mother–Infant Cohort, South China. Nutrients. 2023; 15(13):2868. https://doi.org/10.3390/nu15132868
Chicago/Turabian StyleLiu, Zhao-Min, Yi Wu, Huan-Huan Long, Chao-Gang Chen, Cheng Wang, Yan-Bin Ye, Zhen-Yu Shen, Ming-Tong Ye, Su-Juan Zhang, Min-Min Li, and et al. 2023. "Associations of Maternal Serum Iodine Concentration with Obstetric Complications and Birth Outcomes—Longitudinal Analysis Based on the Huizhou Mother–Infant Cohort, South China" Nutrients 15, no. 13: 2868. https://doi.org/10.3390/nu15132868
APA StyleLiu, Z. -M., Wu, Y., Long, H. -H., Chen, C. -G., Wang, C., Ye, Y. -B., Shen, Z. -Y., Ye, M. -T., Zhang, S. -J., Li, M. -M., & Pan, W. -J. (2023). Associations of Maternal Serum Iodine Concentration with Obstetric Complications and Birth Outcomes—Longitudinal Analysis Based on the Huizhou Mother–Infant Cohort, South China. Nutrients, 15(13), 2868. https://doi.org/10.3390/nu15132868