Nutritional Status of People with a Coexisting Chronic Wound and Extended Assessment Using Bioelectrical Impedance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Subjects
2.3. Assessments
2.4. Statistical Analysis
2.5. Data Collection
2.6. Characteristics of the Respondents
3. Results
3.1. Wound Characteristics
3.2. Lab Tests
3.3. Wound Condition, Lab Measurement, and Test Results
3.4. Electrical Bioimpedance Measurements
3.5. Multiple Regression Model in the Group of Subjects with Pressure Ulcers
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Graue, N.; Körber, A.; Cesko, E.; Piel, S.; Jansen, T.; Dissemond, J. Malnutrition bei Patienten mit Ulcus cruris. Resultate einer klinischen Untersuchung [Malnutrition in patients with leg ulcers. Results of a clinical trial]. Hautarzt 2008, 59, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Herberger, K.; Müller, K.; Protz, K.; Zyriax, B.C.; Augustin, M.; Hagenström, K. Nutritional status and quality of nutrition in chronic wound patients. Int. Wound J. 2020, 17, 1246–1254. [Google Scholar] [CrossRef]
- Cederholm, T.; Barazzoni, R.; Austin, P.; Ballmer, P.; Biolo, G.; Bischoff, S.C.; Compher, C.; Correia, I.; Higashiguchi, T.; Holst, M.; et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin. Nutr. 2017, 36, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Badian, M.; Dzierżanowski, T. Malnutrition in palliative care. Medycyna Paliatywna 2018, 10, 12–18. [Google Scholar] [CrossRef]
- Horn, S.D.; Bender, S.A.; Ferguson, M.L.; Smout, R.J.; Bergstrom, N.; Taler, G.; Cook, A.S.; Sharkey, S.S.; Voss, A.C. The national pressure ulcer long-term care study: Pressure ulcer development in long-term care residents. J. Am. Geriatr. Soc. 2004, 52, 359–367. [Google Scholar] [CrossRef]
- Saghaleini, S.H.; Dehghan, K.; Shadvar, K.; Sanaie, S.; Mahmoodpoor, A.; Ostadi, Z. Pressure ulcer and nutrition. Indian. J. Crit. Care Med. 2018, 22, 283–289. [Google Scholar]
- Szewczyk, M.T.; Jawien, A.; Kedziora-Kornatowska, K.; Moscicka, P.; Cwajda, J.; Cierzniakowska, K.; Brazis, P. The nutritional status of older adults with and without venous ulcers: A comparative, descriptive study. Ostomy Wound Manag. 2008, 54, 34–42. [Google Scholar]
- Sullivan, D.H.; Johnson, L.E.; Bopp, M.M.; Roberson, P.K. Prognostic significance of monthly weight fluctuations among older nursing home residents. J. Gerontol. A Biol. Sci. Med. Sci. 2004, 59, 633–639. [Google Scholar] [CrossRef] [Green Version]
- Norman, K.; Haß, U.; Pirlich, M. Malnutrition in Older Adults—Recent Advances and Remaining Challenges. Nutrients 2021, 13, 2764. [Google Scholar] [CrossRef]
- Rothman, K.J. BMI-related errors in the measurement of obesity. Int. J. Obes. 2008, 32, 56–59. [Google Scholar] [CrossRef] [Green Version]
- Babiarczyk, B.; Turbiarz, A. Body Mass Index in elderly people: Do the reference ranges matter? Prog. Health Sci. 2012, 2, 58–67. [Google Scholar]
- Penar-Zadarko, B.; Socha, J. Malnutrition over 65 years of age. In Zdrowie Publiczne, Niedożywienia a Zdrowie Publiczne, 2nd ed.; Januszewicz, P., Mazur, A., Socha, J., Eds.; Uniwersytet Rzeszowski: Rzeszów, Poland, 2011; pp. 130–150. [Google Scholar]
- Więch, P.; Dąbrowski, M.; Bazaliński, D.; Sałacińska, I.; Korczowski, B.; Binkowska-Bury, M. Bioelectrical Impedance Phase Angle as an Indicator of Malnutrition in Hospitalized Children with Diagnosed Inflammatory Bowel Diseases-A Case Control Study. Nutrients. 2018, 10, 499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahoney, F.I.; Barthel, D.W. Functional Evaluation: The Barthel Index. Md. State Med. J. 1965, 14, 61–65. [Google Scholar]
- Wagner, F.W. The dysvascular foot: A system for diagnosis and treatment. Foot Ankle 1981, 2, 64–122. [Google Scholar] [CrossRef] [PubMed]
- Kottner, J.; Cuddigan, J.; Carville, K.; Balzer, K.; Berlowitz, D.; Law, S.; Litchford, M.; Mitchell, P.; Moore, Z.; Pittman, J.; et al. Prevention and treatment of pressure ulcers/injuries: The protocol for the second update of the international Clinical Practice Guideline 2019. J. Tissue Viability 2019, 28, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Eskes, A.M.; Gerbens, L.A.; van der Horst, C.M.; Vermeulen, H.; Ubbink, D.T. Is the red-yellow-black scheme suitable to classify donor site wounds? An inter-observer analysis. Burns 2011, 37, 823–827. [Google Scholar] [PubMed]
- Bień, B.; Błędowski, P.; Broczek, K.; Derejczyk, J.; Grodzki, T.; Kędziora-Kornatowska, K.; Kokoszka-Paszkot, J.; Przygucka-Gawlik, M.; Klich-Rączka, A.; Kostka, T.; et al. Standards of practice in geriatric care. Position of the Polish Gerontological Society developed by experts of the Gerontology Team of the Minister of Health. Gerontol. Pol. 2013, 21, 33–47. [Google Scholar]
- Baumgartner, R.N.; Chumlea, W.C.; Roche, A.F. Bioelectric impedance phase angle and body composition. Am. J. Clin. Nutr. 1988, 48, 16–23. [Google Scholar] [CrossRef]
- Buzby, G.P.; Knox, L.S.; Crosby, L.O.; Eisenberg, J.M.; Haakenson, C.M.; McNeal, G.E.; Page, C.P.; Peterson, O.L.; Reinhardt, G.F.; Williford, W.O. Study protocol: A randomized clinical trial of total parenteral nutrition in malnourished surgical patients. Am. J. Clin. Nutr. 1988, 47, 366–381. [Google Scholar] [CrossRef]
- Więch, P.; Wołoszyn, F.; Trojnar, P.; Skórka, M.; Bazaliński, D. Does Body Position Influence Bioelectrical Impedance? An Observational Pilot Study. Int. J. Environ. Res. Public Health 2022, 19, 9908. [Google Scholar] [CrossRef]
- Kyle, U.G.; Bosaeus, I.; de Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Manuel Gómez, J.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.C.; Pirlich, M.; et al. Bioelectrical impedance analysis—Part II: Utilization in clinical practice. Clin. Nutr. 2004, 23, 1430–1453. [Google Scholar] [CrossRef] [PubMed]
- Yanovski, S.Z.; Hubbard, V.S.; Heymsfield, S.B.; Lukaski, H.C. Bioelectrical impedance analysis in body composition measurement: National institutes of health technology assessment conference statement. Am. J. Clin. Nutr. 1996, 64, 524–532. [Google Scholar]
- Kushner, R.F. Bioelectrical impedance analysis: A review of principles and applications. J. Am. Coll. Nutr. 1992, 11, 199–209. [Google Scholar] [CrossRef]
- Lukaski, H.C.; Bolonchuk, W.W.; Hall, C.B.; Siders, W.A. Validation of tetrapolar bioelectrical impedance method to assess human body composition. J. Appl. Physiol. 1986, 60, 1327–1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2019. Safeguarding against Economic Slowdowns and Downturns. FAO. Available online: http://www.fao.org/3/ca5162en/ca5162en.pdf (accessed on 2 February 2023).
- Suliga, E.; Kozieł, D.; Assessment of Nutritional Status; Suliga, E.; Kozieł, D.; Głuszek-Osuch, M.; Żak, M.; Głuszek, S. Zaburzenia Stanu Odżywienia u Osób w Starszym Wieku Diagnostyka i Postępowanie Terapeutyczne, 2nd ed.; Uniwersytet Jana Kochanowskiego: Kielce, Poland, 2020; pp. 21–44. [Google Scholar]
- Munoz, N.; Posthauer, M.E.; Cereda, E.; Schols, J.M.G.A.; Haesler, E. The Role of Nutrition for Pressure Injury Prevention and Healing: The 2019 International Clinical Practice Guideline Recommendations. Adv. Ski. Wound Care 2020, 33, 123–136. [Google Scholar] [CrossRef] [Green Version]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. Clin Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mziray, M.; Żuralska, R.; Książek, J.; Domagała, P. Malnutrition in the elderly, methods of its assessment, prevention and treatment. Ann. Acad. Med. Gedan. 2016, 46, 95–105. [Google Scholar]
- Crogan, N.L.; Pasvogel, A. The influence of protein-calorie malnutrition on quality of life in nursing homes. J. Gerontol. 2003, 58, 159–164. [Google Scholar] [CrossRef] [Green Version]
- Lamghamp-Henken, B.; Hudgens, J.; Stechmiller, J.K.; Herrlinger-Garcia, K.A. Mini nutritional assessment and screening scores are associated with nutritional indicators in elderly people with pressure ulcers. J. Am. Diet. Assoc. 2005, 105, 1590–1596. [Google Scholar] [CrossRef]
- Hengstermann, S.; Fischer, A.; Steinhagen-Thiessen, E.; Schulz, R. Nutrition status and pressure ulcer: What we need for nutrition screening. JPEN J. Parenter. Enteral. Nutr. 2007, 31, 288–294. [Google Scholar] [CrossRef]
- Molnar, J.A.; Underdown, M.J.; Clark, W.A. Nutrition and Chronic Wounds. Adv. Wound Care 2014, 3, 663–681. [Google Scholar] [CrossRef] [PubMed]
- Allen, B. Effect sofa comprehensive nutritional program on pressure ulcer healing, length of hospital stay, and charges to patients. Clin. Nurs. Res. 2013, 22, 186–205. [Google Scholar] [CrossRef] [PubMed]
- Herberger, K.; Rustenbach, S.J.; Haartje, O.; Blome, C.; Franzke, N.; Schäfer, I.; Radtke, M.; Augustin, M. Quality of life and satisfaction of patients with leg ulcers—Results of a community-based study. Vasa 2011, 40, 131–138. [Google Scholar] [CrossRef]
- Bosley, B.N.; Weiner, D.K.; Rudy, T.E.; Granieri, E. Is chronic nonmalignant pain associated with decreased appetite in older adults? Preliminary evidence. J. Am. Geriatr. Soc. 2004, 52, 247–251. [Google Scholar] [CrossRef]
- Bazaliński, D.; Przybek-Mita, J.; Barańska, B.; Więch, P. Marjolin’s ulcer in chronic wounds—Review of available literature. Contemp. Oncol. 2017, 21, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Kapp, S.; Santamaria, N. The financial and quality-of-life cost to patients living with a chronic wound in the community. Int. Wound. J. 2017, 14, 1108–1119. [Google Scholar] [CrossRef]
- Phillips, C.J.; Humphreys, I.; Thayer, D.; Elmessary, M.; Collins, H.; Roberts, C.; Naik, G.; Harding, K. Cost of managing patients with venous leg ulcers. Int. Wound. J. 2020, 17, 1074–1082. [Google Scholar] [CrossRef]
- Bazaliński, D.; Szymańska, P.; Szewczyk, M. Hell pressure ulcers in the context of word guidelines (EPUAP/NPIAP) and own experience. Literature review. Leczenie Ran 2020, 17, 185–193. [Google Scholar] [CrossRef]
- Baron, M.; Hudson, M.; Steele, R.; Canadian Scleroderma Research Group (CSRG). Is serum albumin a marker of malnutrition in chronic disease? The scleroderma paradigm. J. Am. Coll. Nutr. 2010, 29, 144–151. [Google Scholar]
- Iizaka, S.; Sanada, H.; Matsui, Y.; Furue, M.; Tachibana, T.; Nakayama, T.; Sugama, J.; Furuta, K.; Tachi, M.; Tokunaga, K.; et al. Serum albumin level is a limited nutritional marker for predicting wound healing in patients with pressure ulcer: Two multicenter prospective cohort studies. Clin. Nutr. 2011, 30, 738–745. [Google Scholar] [CrossRef]
- Frangos, E.; Trombetti, A.; Graf, C.E.; Lachat, V.; Samaras, N.; Vischer, U.M.; Zekry, D.; Rizzoli, R.; Herrmann, F.R. Malnutrition in Very Old Hospitalized Patients: A New Etiologic Factor of Anemia? J. Nutr. Health Aging. 2016, 20, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Eckart, A.; Struja, T.; Kutz, A.; Baumgartner, A.; Baumgartner, T.; Zurfluh, S.; Neeser, O.; Huber, A.; Stanga, Z.; Mueller, B.; et al. Relationship of Nutritional Status, Inflammation, and Serum Albumin Levels During Acute Illness: A Prospective Study. Am. J. Med. 2020, 133, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Billman, G.E. Homeostasis: The Underappreciated and Far Too Often Ignored Central Organizing Principle of Physiology. Front. Physiol. 2020, 11, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gluyas, H. Patient-centred care: Improving healthcare outcomes. Nurs. Stand. 2015, 30, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Zieliński, M.; Markiewicz, S.; Gabriel, M.; Krasiński, Z. Exudate in the wound healing process. Leczenie Ran 2021, 18, 37–44. [Google Scholar] [CrossRef]
- Pigłowska, M.; Guligowska, A.; Kostka, T. Nutritional Status Plays More Important Role in Determining Functional State in Older People Living in the Community than in Nursing Home Residents. Nutrients 2020, 12, 2042. [Google Scholar] [CrossRef]
- Zamboni, M.; Mazzali, G.; Fantin, F.; Rossi, A.; Di Francesco, V. Sarcopenic obesity: A new category of obesity in the elderly. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 388–395. [Google Scholar] [CrossRef]
- Donini, L.M.; Busetto, L.; Bischoff, S.C.; Cederholm, T.; Ballesteros-Pomar, M.D.; Batsis, J.A.; Bauer, J.M.; Boirie, Y.; Cruz-Jentoft, A.J.; Dicker, D.; et al. Definition and Diagnostic Criteria for Sarcopenic Obesity: ESPEN and EASO Consensus Statement. Obes. Facts. 2022, 15, 321–335. [Google Scholar] [CrossRef]
- Barazzoni, R.; Gortan Cappellari, G. Double burden of malnutrition in persons with obesity. Rev. Endocr. Metab. Disord. 2020, 21, 307–313. [Google Scholar] [CrossRef]
- Więch, P. Application of Bioelectrical Impedance, Phase Angle and Bioelectrical Impedance Vector Analysis in Assessing the Nutritional Status of Healthy Adult and Child Populations; Uniwersytet Rzeszowski: Rzeszów, Poland, 2019. [Google Scholar]
- Małecka-Massalska, T.; Popiołek, J.; Teter, M.; Homa-Mlak, I.; Dec, M.; Makarewicz, A.; Karakuła-Juchnowicz, H. Use of phase angle to assess the nutritional status of patients with mental anorexia nervosa. Psychiatr. Pol. 2017, 51, 1121–1131. [Google Scholar]
- Lee, Y.; Kwon, O.; Shin, C.S.; Lee, S.M. Use of bioelectrical impedance analysis for the assessment of nutritional status in critically ill patients. Clin. Nutr. Res. 2015, 4, 32–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyle, U.G.; Genton, L.; Pichard, C. Low phase angle determined by bioelectrical impedance analysis is associated with malnutrition and nutritional risk at hospital admission. Clin. Nutr. 2013, 32, 294–299. [Google Scholar] [CrossRef] [Green Version]
- Buscemi, S.; Batsis, J.A.; Parrinello, G.; Massenti, F.M.; Rosafio, G.; Sciascia, V.; Costa, F.; Pollina Addario, S.; Mendola, S.; Barile, A.; et al. Nutritional predictors of mortality after discharge in elderly patients on a medical ward. Eur. J Clin. Invest. 2016, 46, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; Heymsfield, S.B.; Ross, R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J. Am. Geriatr. Soc. 2002, 50, 889–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, M.C.; Heymsfield, S.B. Bioelectrical impedance analysis for diagnosing sarcopenia and cachexia: What are we really estimating? J. Cachexia Sarcopenia Muscle 2017, 8, 187–189. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. European Working Group on Sarcopenia in Older People. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [Green Version]
Parameters | PI—I N = 20 | DFU—II N = 20 | VLU—III N = 20 | Chi-Square Pearson/p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
N | % | N | % | N | % | χ² | p | ||
Sex | Female | 10 | 50.0 | 5 | 25.0 | 16 | 80.0 | 12.15 | 0.002 |
Male | 10 | 50.0 | 15 | 75.0 | 4 | 20.0 | |||
Place of residence | Rural area | 14 | 70.0 | 17 | 85.0 | 16 | 80.0 | 1.37 | 0.503 |
Urban area | 6 | 30.0 | 3 | 15.0 | 4 | 20.0 | |||
Marital status | Married | 9 | 45.0 | 14 | 70.0 | 8 | 40.0 | 7.95 | 0.242 |
Single | 3 | 15.0 | 3 | 15.0 | 2 | 10.0 | |||
Widowed | 7 | 35.0 | 3 | 15.0 | 10 | 50.0 | |||
Divorced | 1 | 5.0 | 0 | 0.0 | 0 | 0.0 | |||
People living with the subject | Children | 4 | 20.0 | 0 | 0.0 | 1 | 5.0 | 7.26 | 0.297 |
Family | 10 | 50.0 | 10 | 50.0 | 11 | 55.0 | |||
Spouse | 4 | 20.0 | 5 | 25.0 | 3 | 15.0 | |||
Lonely | 2 | 10.0 | 5 | 25.0 | 5 | 25.0 | |||
Education level | Primary | 8 | 40.0 | 7 | 35.0 | 8 | 40.0 | 4.09 | 0.665 |
Vocational | 3 | 15.0 | 5 | 25.0 | 7 | 35.0 | |||
Secondary | 5 | 25.0 | 6 | 30.0 | 4 | 20.0 | |||
Higher | 4 | 20.0 | 2 | 10.0 | 1 | 5.0 | |||
Economic status | National average | 2 | 10.0 | 5 | 25.0 | 1 | 5.0 | 5.72 | 0.221 |
Below national average | 17 | 85.0 | 15 | 75.0 | 19 | 95.0 | |||
Over national average | 1 | 5.0 | 0 | 0.0 | 0 | 0.0 | |||
ICD-10 | L89 | 20 | 100.0 | 0 | 0.0 | 0 | 0.0 | 120.0 | <0.001 |
E10.5 | 0 | 0.0 | 20 | 100.0 | 0 | 0.0 | |||
I83.0 | 0 | 0.0 | 0 | 0.0 | 20 | 100.0 |
Parameters | PI –I N = 20 | DFU—II N = 20 | VLU—III N = 20 | Chi-Square Pearson/ p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
N | % | N | % | N | % | χ² | p | ||
RYB classification | Yellow-black | 4 | 20.0 | 0 | 0.0 | 0 | 0.0 | 15.24 | 0.055 |
Yellow | 2 | 10.0 | 4 | 20.0 | 3 | 15.0 | |||
Red | 5 | 25.0 | 9 | 45.0 | 8 | 40.0 | |||
Black | 0 | 0.0 | 2 | 10.0 | 0 | 0.0 | |||
Red-yellow | 9 | 45.0 | 5 | 25.0 | 9 | 45.0 | |||
Wound location | Sacrum | 15 | 75.0 | 0 | 0.0 | 0 | 0.0 | 120.0 | <0.001 |
Trochanter | 1 | 5.0 | 0 | 0.0 | 0 | 0.0 | |||
Sacrum + heel | 4 | 20.0 | 0 | 0.0 | 0 | 0.0 | |||
Toe | 0 | 0.0 | 6 | 30.0 | 0 | 0.0 | |||
Heel | 0 | 0.0 | 4 | 20.0 | 0 | 0.0 | |||
Foot | 0 | 0.0 | 8 | 40.0 | 0 | 0.0 | |||
Medial ankle | 0 | 0.0 | 0 | 0.0 | 1 | 5.0 | |||
Lower leg | 0 | 0.0 | 0 | 0.0 | 19 | 95.0 | |||
Foot + toes | 0 | 0.0 | 2 | 10.0 | 0 | 0.0 |
Parameters | PI—I N = 20 | DFU—II N = 20 | VLU—III N = 20 | One-Way ANOVA F/p-Value | Post-hoc (Tukey’s) p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | I-II | I-III | II-III | |||
Barthel (pts) | 24.50 | 26.10 | 71.75 | 27.64 | 77.00 | 18.88 | 27.85 | <0.001 | <0.001 | <0.001 | 0.777 |
Pain (pts) | 2.95 | 2.68 | 3.15 | 2.16 | 5.45 | 2.01 | 7.27 | 0.002 | 0.959 | 0.003 | 0.007 |
Time since wound onset (years) | 0.87 | 0.93 | 1.21 | 1.75 | 10.23 | 10.54 | 14.69 | <0.001 | 0.983 | <0.001 | <0.001 |
Wound area (cm2) | 89.25 | 93.87 | 21.60 | 16.37 | 94.60 | 82.71 | 6.24 | 0.004 | 0.013 | 0.971 | 0.007 |
Exudate (0–4) | 2.25 | 1.02 | 1.80 | 1.06 | 2.20 | 0.70 | 1.38 | 0.259 | - | - | - |
NPIAP (1–4) | 3.18 | 0.44 | 2.60 | 0.62 | 2.38 | 0.43 | 13.49 | <0.001 | 0.002 | <0.001 | 0.339 |
Wagner scale * | * 1.85 | 0.88 | |||||||||
MNA (pts) | 14.73 | 4.30 | 20.48 | 3.80 | 21.85 | 2.22 | 22.60 | <0.001 | <0.001 | <0.001 | 0.445 |
Parameters | PI—I N = 20 | DFU—II N = 20 | VLU—III N = 20 | One-Way ANOVA F/p-Value | Post-hoc (Tukey’s) p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | I-II | I-III | II-III | |||
Albumin (g/dL) | 3.20 | 0.56 | 3.79 | 0.47 | 3.90 | 0.38 | 12.74 | <0.001 | 0.001 | <0.001 | 0.765 |
Hemoglobin (g/dL) | 10.81 | 1.57 | 12.19 | 1.76 | 11.97 | 1.55 | 4.14 | 0.021 | 0.026 | 0.072 | 0.905 |
CRP (mg/L) | 49.40 | 61.09 | 33.96 | 35.96 | 18.26 | 21.03 | 2.66 | 0.079 | - | - | - |
NRI (pts) | 88.13 | 8.71 | 98.58 | 7.25 | 100.26 | 5.65 | 16.18 | <0.001 | <0.001 | <0.001 | 0.747 |
Variable | Time Since Wound Onset (years) | Wound Area (cm2) | Exudate (0–4) | NPIAP (1–4) |
---|---|---|---|---|
Barthel (pts) | r = 0.31 | r = −0.24 | r = −0.14 | r = −0.62 |
p = 0.018 | p = 0.069 | p = 0.296 | p < 0.001 | |
Pain (pts) | r = 0.39 | r = 0.12 | r = 0.31 | r = 0.02 |
p = 0.002 | p = 0.343 | p = 0.016 | p = 0.902 | |
MNA (pts) | r = 0.31 | r = −0.12 | r = −0.17 | r = −0.59 |
p = 0.017 | p = 0.355 | p = 0.191 | p < 0.001 | |
Albumin (g/dL) | r = 0.15 | r = −0.26 | r = −0.33 | r = −0.65 |
p = 0.243 | p = 0.044 | p = 0.009 | p < 0.001 | |
Hemoglobin (g/dL) | r = 0.08 | r = −0.30 | r = −0.41 | r = −0.44 |
p = 0.526 | p = 0.020 | p = 0.001 | p = 0.001 | |
CRP (mg/L) | r = −0.09 | r = 0.16 | r = 0.31 | r = 0.27 |
p = 0.475 | p = 0.209 | p = 0.016 | p = 0.038 | |
NRI (pts) | r = 0.18 | r = −0.25 | r = −0.34 | r = −0.66 |
p = 0.178 | p = 0.053 | p = 0.008 | p < 0.001 |
Parameters | PI—I N = 20 | DFU—II N = 20 | VLU—III N = 20 | One-Way ANOVA F/p-Value | Post-hoc (Tukey’s) p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | I-II | I-III | II-III | |||
Height (cm) | 168.55 | 9.69 | 173.40 | 6.89 | 164.45 | 8.41 | 5.67 | 0.006 | 0.171 | 0.279 | 0.004 |
Age (years) | 71.90 | 15.56 | 62.40 | 10.35 | 72.55 | 12.75 | 3.79 | 0.029 | 0.063 | 0.986 | 0.044 |
Weight (kg) | 72.55 | 20.06 | 91.15 | 12.58 | 94.40 | 27.92 | 6.22 | 0.004 | 0.020 | 0.005 | 0.878 |
Rz (ohm) | 575.31 | 142.85 | 441.33 | 64.22 | 444.07 | 94.46 | 10.52 | <0.001 | 0.001 | <0.001 | 0.996 |
Xc (ohm) | 37.52 | 15.34 | 42.42 | 7.10 | 38.81 | 5.80 | 1.21 | 0.305 | - | - | - |
FFM (kg) | 48.65 | 12.03 | 64.52 | 9.64 | 58.12 | 14.75 | 8.40 | 0.001 | 0.001 | 0.047 | 0.237 |
TBW (L) | 38.31 | 10.37 | 48.62 | 7.02 | 44.68 | 12.58 | 5.15 | 0.008 | 0.007 | 0.131 | 0.449 |
BCM (kg) | 19.37 | 7.91 | 33.17 | 7.57 | 28.67 | 9.57 | 14.04 | <0.001 | <0.001 | 0.003 | 0.216 |
FM (kg) | 23.90 | 11.74 | 26.64 | 10.34 | 36.28 | 16.79 | 4.82 | 0.012 | 0.792 | 0.013 | 0.064 |
PA (°) | 3.78 | 1.14 | 5.55 | 0.95 | 5.09 | 0.73 | 18.41 | <0.001 | <0.001 | <0.001 | 0.295 |
FM (%) | 31.48 | 10.98 | 28.80 | 8.86 | 37.19 | 7.95 | 4.19 | 0.020 | 0.638 | 0.140 | 0.017 |
FFM (%) | 68.52 | 10.98 | 71.20 | 8.86 | 62.82 | 7.95 | 4.19 | 0.020 | 0.638 | 0.139 | 0.017 |
TBW (%) | 53.48 | 7.72 | 53.56 | 5.85 | 48.05 | 6.15 | 4.54 | 0.015 | 0.999 | 0.032 | 0.029 |
ECW (%) | 59.75 | 7.77 | 48.36 | 4.84 | 50.57 | 3.99 | 21.97 | <0.001 | <0.001 | <0.001 | 0.451 |
ICW (%) | 40.25 | 7.77 | 51.65 | 4.84 | 49.44 | 3.99 | 21.97 | <0.001 | <0.001 | <0.001 | 0.451 |
MM (kg) | 23.42 | 8.64 | 31.46 | 5.42 | 31.11 | 11.54 | 5.22 | 0.008 | 0.016 | 0.022 | 0.992 |
MM (%) | 32.50 | 9.41 | 34.72 | 5.60 | 33.18 | 8.24 | 0.42 | 0.662 | - | - | - |
Mbas.(kcal) | 1311.79 | 229.43 | 1712.21 | 219.65 | 1581.21 | 277.50 | 14.06 | <0.001 | <0.001 | 0.003 | 0.214 |
BMI (kg/m2) | 25.41 | 6.10 | 30.43 | 4.73 | 34.49 | 7.98 | 10.08 | <0.001 | 0.042 | <0.001 | 0.121 |
BCMI (kg/m2) | 6.78 | 2.50 | 10.97 | 2.13 | 10.42 | 2.53 | 18.08 | <0.001 | <0.001 | <0.001 | 0.749 |
SMI (kg/m2) | 8.09 | 2.58 | 10.42 | 1.35 | 11.35 | 3.49 | 8.19 | 0.001 | 0.019 | 0.001 | 0.505 |
SM (kg) | 23.42 | 8.64 | 31.46 | 5.42 | 31.11 | 11.54 | 5.22 | 0.008 | 0.016 | 0.022 | 0.992 |
ASMM (kg) | 18.41 | 5.72 | 24.82 | 3.77 | 22.92 | 7.89 | 5.96 | 0.004 | 0.004 | 0.055 | 0.580 |
FMI (kg/m2) | 8.41 | 4.17 | 9.06 | 4.07 | 13.27 | 5.59 | 6.39 | 0.003 | 0.898 | 0.005 | 0.016 |
FFMI (kg/m2) | 17.01 | 3.27 | 21.40 | 2.42 | 21.24 | 3.52 | 12.84 | <0.001 | <0.001 | <0.001 | 0.984 |
SPA (°) | −1.35 | 2.38 | −0.21 | 0.85 | 0.19 | 0.70 | 5.53 | 0.006 | 0.055 | 0.006 | 0.675 |
Variables | R | p-Value |
---|---|---|
PA vs. MNA | 0.62 | <0.001 |
PA vs. NRI | 0.59 | <0.001 |
PA vs. albumins | 0.55 | <0.001 |
FFM | Multiple Regression | ||||||
---|---|---|---|---|---|---|---|
R2 | Corrected R2 | F | p Regression Model | b | Partial Correlation | p-Value | |
Barthel (pts) | 0.70 | 0.52 | 4.04 | 0.017 | 0.26 | 0.53 | 0.052 |
Pain (pts) | 2.70 | 0.63 | 0.015 | ||||
MNA (pts) | 1.40 | 0.43 | 0.123 | ||||
Albumin (g/dL) | −18.29 | −0.25 | 0.390 | ||||
Hemoglobin (g/dL) | −0.02 | −0.00 | 0.990 | ||||
CRP (mg/L) | −0.04 | −0.22 | 0.450 | ||||
NRI (pts) | 0.75 | 0.16 | 0.589 |
MM | Multiple regression | ||||||
---|---|---|---|---|---|---|---|
R2 | Corrected R2 | F | p Regression Model | b | Partial Correlation | p-Value | |
Barthel (pts) | 0.74 | 0.59 | 4.99 | 0.007 | 0.13 | 0.41 | 0.140 |
Pain (pts) | 1.69 | 0.61 | 0.020 | ||||
MNA (pts) | 1.23 | 0.53 | 0.049 | ||||
Albumin (g/dL) | 5.83 | 0.12 | 0.676 | ||||
Hemoglobin (g/dL) | −1.17 | −0.27 | 0.343 | ||||
CRP (mg/L) | 0.01 | 0.07 | 0.820 | ||||
NRI (pts) | −0.29 | −0.09 | 0.753 |
SMI | Multiple Regression | ||||||
---|---|---|---|---|---|---|---|
R2 | Corrected R2 | F | p Regression Model | b | Partial Correlation | p-Value | |
Barthel (pts) | 0.69 | 0.51 | 3.78 | 0.021 | 0.03 | 0.27 | 0.353 |
Pain (pts) | 0.51 | 0.57 | 0.032 | ||||
MNA (pts) | 0.39 | 0.52 | 0.057 | ||||
Albumin (g/dL) | 0.76 | 0.05 | 0.868 | ||||
Hemoglobin (g/dL) | −0.32 | −0.23 | 0.436 | ||||
CRP (mg/L) | −0.00 | −0.13 | 0.667 | ||||
NRI (pts) | −0.02 | −0.02 | 0.936 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skórka, M.; Więch, P.; Przybek-Mita, J.; Malisiewicz, A.; Pytlak, K.; Bazaliński, D. Nutritional Status of People with a Coexisting Chronic Wound and Extended Assessment Using Bioelectrical Impedance. Nutrients 2023, 15, 2869. https://doi.org/10.3390/nu15132869
Skórka M, Więch P, Przybek-Mita J, Malisiewicz A, Pytlak K, Bazaliński D. Nutritional Status of People with a Coexisting Chronic Wound and Extended Assessment Using Bioelectrical Impedance. Nutrients. 2023; 15(13):2869. https://doi.org/10.3390/nu15132869
Chicago/Turabian StyleSkórka, Mateusz, Paweł Więch, Joanna Przybek-Mita, Anna Malisiewicz, Kamila Pytlak, and Dariusz Bazaliński. 2023. "Nutritional Status of People with a Coexisting Chronic Wound and Extended Assessment Using Bioelectrical Impedance" Nutrients 15, no. 13: 2869. https://doi.org/10.3390/nu15132869
APA StyleSkórka, M., Więch, P., Przybek-Mita, J., Malisiewicz, A., Pytlak, K., & Bazaliński, D. (2023). Nutritional Status of People with a Coexisting Chronic Wound and Extended Assessment Using Bioelectrical Impedance. Nutrients, 15(13), 2869. https://doi.org/10.3390/nu15132869