Gender Differences in the Risk for Incident Non-Alcoholic Fatty Liver Disease According to the Transition of Abdominal Obesity Status: A 16-Year Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. AO Status over Time
2.4. Diagnosis of NAFLD
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Study Population
3.2. Longitudinal Relationship between Longitudinal AO Pattern and NAFLD Incidence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Le, M.H.; Yeo, Y.H.; Li, X.; Li, J.; Zou, B.; Wu, Y.; Ye, Q.; Huang, D.Q.; Zhao, C.; Zhang, J.; et al. 2019 global nafld prevalence: A systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 2021, 20, 2809–2817.e28. [Google Scholar] [CrossRef] [PubMed]
- Im, H.J.; Ahn, Y.C.; Wang, J.-H.; Lee, M.M.; Son, C.G. Systematic review on the prevalence of nonalcoholic fatty liver disease in south korea. Clin. Res. Hepatol. Gastroenterol. 2021, 45, 101526. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Kern, P.A.; Ranganathan, S.; Li, C.; Wood, L.; Ranganathan, G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 2001, 280, E745–E751. [Google Scholar] [CrossRef]
- Guilherme, A.; Virbasius, J.V.; Puri, V.; Czech, M.P. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 2008, 9, 367–377. [Google Scholar] [CrossRef] [Green Version]
- Tamura, S.; Shimomura, I. Contribution of adipose tissue and de novo lipogenesis to nonalcoholic fatty liver disease. J. Clin. Investig. 2005, 115, 1139–1142. [Google Scholar] [CrossRef]
- Kim, B.Y.; Kang, S.M.; Kang, J.H.; Kang, S.Y.; Kim, K.K.; Kim, K.B.; Kim, B.; Kim, S.J.; Kim, Y.H.; Kim, J.H.; et al. 2020 korean society for the study of obesity guidelines for the management of obesity in korea. J. Obes. Metab. Syndr. 2021, 30, 81–92. [Google Scholar] [CrossRef]
- Yumuk, V.; Tsigos, C.; Fried, M.; Fried, M.; Schindler, K.; Schindler, K.; Busetto, L.; Busetto, L.; Micic, D.; Toplak, H. European guidelines for obesity management in adults. Obes. Facts 2016, 8, 402–424. [Google Scholar] [CrossRef]
- Lonardo, A.; Nascimbeni, F.; Ballestri, S.; Fairweather, D.; Win, S.; Than, T.A.; Abdelmalek, M.F.; Suzuki, A. Sex differences in nonalcoholic fatty liver disease: State of the art and identification of research gaps. Hepatology 2019, 70, 1457–1469. [Google Scholar] [CrossRef]
- Seo, M.H.; Lee, W.-Y.; Kim, S.S.; Kang, J.-H.; Kang, J.-H.; Kim, K.K.; Kim, B.-Y.; Kim, Y.-H.; Kim, W.-J.; Kim, E.M.; et al. 2018 korean society for the study of obesity guideline for the management of obesity in korea. J. Obes. Metab. Syndr. 2019, 28, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 esc/esh guidelines for the management of arterial hypertension: The task force for the management of arterial hypertension of the european society of cardiology and the european society of hypertension: The task force for the management of arterial hypertension of the european society of cardiology and the european society of hypertension. J. Hypertens. 2018, 36, 1953–2041. [Google Scholar]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome. An american heart association/national heart, lung, and blood institute scientific statement. Executive summary. Cardiol. Rev. 2005, 13, 322–327. [Google Scholar] [CrossRef]
- Kotronen, A.; Peltonen, M.; Hakkarainen, A.; Sevastianova, K.; Bergholm, R.; Johansson, L.M.; Lundbom, N.; Rissanen, A.; Ridderstråle, M.; Groop, L.; et al. Prediction of non-alcoholic fatty liver disease and liver fat using metabolic and genetic factors. Gastroenterology 2009, 137, 865–872. [Google Scholar] [CrossRef]
- Lee, Y.H.; Bang, H.; Park, Y.M.; Bae, J.C.; Lee, B.W.; Kang, E.S.; Cha, B.S.; Lee, H.C.; Balkau, B.; Lee, W.Y.; et al. Non-laboratory-based self-assessment screening score for non-alcoholic fatty liver disease: Development, validation and comparison with other scores. PLoS ONE 2014, 9, e107584. [Google Scholar] [CrossRef]
- Keihani, S.; Hosseinpanah, F.; Barzin, M.; Serahati, S.; Doustmohamadian, S.; Azizi, F. Abdominal obesity phenotypes and risk of cardiovascular disease in a decade of follow-up: The tehran lipid and glucose study. Atherosclerosis 2015, 238, 256–263. [Google Scholar] [CrossRef]
- Salehinia, F.; Abdi, H.; Hadaegh, F.; Serahati, S.; Valizadeh, M.; Azizi, F.; Hosseinpanah, F. Abdominal obesity phenotypes and incident diabetes over 12 years of follow-up: The tehran lipid and glucose study. Diabetes Res. Clin. Pract. 2018, 144, 17–24. [Google Scholar] [CrossRef]
- Jacobs, E.J.; Newton, C.C.; Wang, Y.; Patel, A.V.; McCullough, M.L.; Campbell, P.T.; Thun, M.J.; Gapstur, S.M. Waist circumference and all-cause mortality in a large us cohort. Arch. Intern. Med. 2010, 170, 1293–1301. [Google Scholar] [CrossRef]
- Tison, G.H.; Blaha, M.J.; Nasir, K.; Blumenthal, R.S.; Szklo, M.; Ding, J.; Budoff, M.J. Relation of anthropometric obesity and computed tomography measured nonalcoholic fatty liver disease (from the multiethnic study of atherosclerosis). Am. J. Cardiol. 2015, 116, 541–546. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Jeon, S.; Lee, H.S.; Kwon, Y.J. Cutoff points of waist circumference for predicting incident non-alcoholic fatty liver disease in middle-aged and older korean adults. Nutrients 2022, 14, 2994. [Google Scholar] [CrossRef]
- Kuang, M.; Lu, S.; Xie, Q.; Peng, N.; He, S.; Yu, C.; Qiu, J.; Sheng, G.; Zou, Y. Abdominal obesity phenotypes are associated with the risk of developing non-alcoholic fatty liver disease: Insights from the general population. BMC Gastroenterol. 2022, 22, 311. [Google Scholar] [CrossRef]
- Yun, K.E.; Nam, G.E.; Lim, J.; Park, H.S.; Chang, Y.; Jung, H.S.; Kim, C.W.; Ko, B.J.; Chung, E.C.; Shin, H.; et al. Waist gain is associated with a higher incidence of nonalcoholic fatty liver disease in korean adults: A cohort study. PLoS ONE 2016, 11, e0158710. [Google Scholar] [CrossRef] [Green Version]
- VanWagner, L.B.; Khan, S.S.; Ning, H.; Siddique, J.; Lewis, C.E.; Carr, J.J.; Vos, M.B.; Speliotes, E.; Terrault, N.A.; Rinella, M.E.; et al. Body mass index trajectories in young adulthood predict non-alcoholic fatty liver disease in middle age: The cardia cohort study. Liver Int. 2018, 38, 706–714. [Google Scholar] [CrossRef]
- Nah, B.K.Y.; Ng, C.H.; Chan, K.E.; Tan, C.; Aggarwal, M.; Zeng, R.W.; Xiao, J.; Chin, Y.H.; Tan, E.X.X.; Ren, Y.P.; et al. Historical changes in weight classes and the influence of nafld prevalence: A population analysis of 34,486 individuals. Int. J. Environ. Res. Public Health 2022, 19, 9935. [Google Scholar] [CrossRef]
- Ross, R.; Neeland, I.J.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; Cuevas, A.; Hu, F.B.; et al. Waist circumference as a vital sign in clinical practice: A consensus statement from the ias and iccr working group on visceral obesity. Nat. Rev. Endocrinol. 2020, 16, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Gastaldelli, A.; Cusi, K.; Pettiti, M.; Hardies, J.; Miyazaki, Y.; Berria, R.; Buzzigoli, E.; Sironi, A.M.; Cersosimo, E.; Ferrannini, E.; et al. Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects. Gastroenterology 2007, 133, 496–506. [Google Scholar] [CrossRef] [PubMed]
- Kawano, Y.; Cohen, D.E. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J. Gastroenterol. 2013, 48, 434–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, S.; Jahid Hasan, M.; Khan, M.A.S.; Alam, M.; Hasan, N. Effect of weight reduction on histological activity and fibrosis of lean nonalcoholic steatohepatitis patient. J. Transl. Intern. Med. 2019, 7, 106–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koutoukidis, D.A.; Astbury, N.M.; Tudor, K.E.; Morris, E.; Henry, J.A.; Noreik, M.; Jebb, S.A.; Aveyard, P. Association of weight loss interventions with changes in biomarkers of nonalcoholic fatty liver disease: A systematic review and meta-analysis. JAMA Intern. Med. 2019, 179, 1262–1271. [Google Scholar] [CrossRef] [Green Version]
- Ballestri, S.; Nascimbeni, F.; Baldelli, E.; Marrazzo, A.; Romagnoli, D.; Lonardo, A. Nafld as a sexual dimorphic disease: Role of gender and reproductive status in the development and progression of nonalcoholic fatty liver disease and inherent cardiovascular risk. Adv. Ther. 2017, 34, 1291–1326. [Google Scholar] [CrossRef] [PubMed]
- Power, M.L.; Schulkin, J. Sex differences in fat storage, fat metabolism, and the health risks from obesity: Possible evolutionary origins. Br. J. Nutr. 2008, 99, 931–940. [Google Scholar] [CrossRef]
- Lemieux, S.; Prud’homme, D.; Bouchard, C.; Tremblay, A.; Després, J.P. Sex differences in the relation of visceral adipose tissue accumulation to total body fatness. Am. J. Clin. Nutr. 1993, 58, 463–467. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Dai, M.; Bi, Y.; Xu, M.; Xu, Y.; Li, M.; Wang, T.; Huang, F.; Xu, B.; Zhang, J.; et al. Active smoking, passive smoking, and risk of nonalcoholic fatty liver disease (NAFLD): A population-based study in China. J. Epidemiol. 2013, 23, 115–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.X.; Guo, L.K.; Qin, Y.M.; Li, G.Y. Association of polymorphisms of adiponectin gene promoter-11377C/G, glutathione peroxidase-1 gene C594T, and cigarette smoking in nonalcoholic fatty liver disease. J. Chin. Med. Assoc. 2016, 79, 195–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Total (n = 4467) | Men (n = 1867) | Women (n = 2600) | p-Value |
---|---|---|---|---|
Age, years | 51.6 ± 8.8 | 52.1 ± 8.8 | 51.1 ± 8.7 | <0.0001 |
WC, cm | 79.6 ± 7.9 | 80.8 ± 6.7 | 78.7 ± 8.5 | <0.0001 |
Body fat, % | 26.0 ± 7.1 | 20.1 ± 4.9 | 30.3 ± 5.3 | <0.0001 |
BMI, kg/m2 | 23.7 ± 2.8 | 23.3 ± 2.6 | 24.0 ± 2.9 | <0.0001 |
Body weight, kg | 60.1 ± 8.9 | 64.6 ± 8.6 | 56.9 ± 7.7 | <0.0001 |
Smoking status, n (%) | <0.0001 | |||
Non-smoker | 2978 (67.5) | 501 (27.0) | 2477 (96.9) | |
Ex-smoker | 562 (12.7) | 545 (29.3) | 17 (0.7) | |
Intermittent smoker | 81 (1.8) | 67 (3.6) | 14 (0.6) | |
Daily smoker | 793 (18.0) | 745 (40.1) | 48 (1.9) | |
Physical activity, n (%) | <0.0001 | |||
Low | 306 (7.1) | 98 (5.5) | 208 (8.3) | |
Moderate | 2601 (60.5) | 1017 (56.8) | 1584 (63.2) | |
High | 1389 (32.3) | 675 (37.7) | 714 (28.5) | |
Currently drinking, n (%) | 1907 (43.0) | 1198 (64.6) | 709 (27.5) | <0.0001 |
Total energy intake, kcal/day | 1934.1 ± 705.5 | 1991.6 ± 671.3 | 1893.0 ± 726.3 | <0.0001 |
Mean blood pressure, mmHg | 93.6 ± 12.4 | 95.1 ± 11.7 | 92.6 ± 12.8 | <0.0001 |
Fasting glucose, mg/dL | 82.5 ± 12.2 | 84.3 ± 13.3 | 81.2 ± 11.2 | <0.0001 |
Total cholesterol, mg/dL | 187.5 ± 33.3 | 189.2 ± 33.3 | 186.3 ± 33.2 | 0.004 |
hsCRP, mg/dL | 0.23 ± 0.63 | 0.24 ± 0.52 | 0.22 ± 0.70 | 0.437 |
ALT, IU/L | 21.9 ± 8.70 | 25.6 ± 9.8 | 19.2 ± 6.6 | <0.0001 |
AST, IU/L | 26.3 ± 6.8 | 28.0 ± 7.2 | 25.2 ± 6.2 | <0.0001 |
HOMA-IR | 1.320 ± 0.595 | 1.237 ± 0.567 | 1.379 ± 0.607 | <0.0001 |
HOMA-beta | 151.392 ± 136.726 | 127.824 ± 125.483 | 168.303 ± 141.886 | <0.0001 |
Insulin | 6.479 ± 2.772 | 5.944 ± 2.588 | 6.864 ± 2.836 | <0.0001 |
Total | Men | Women | |||||||
---|---|---|---|---|---|---|---|---|---|
No Incident NAFLD (n = 2642) | Incident NAFLD (n = 1825) | p-Value | No Incident NAFLD (n = 1110) | Incident NAFLD (n = 757) | p-Value | No Incident NAFLD (n = 1532) | Incident NAFLD (n = 1068) | p-Value | |
Age, years | 51.4 ± 9.0 | 51.8 ± 8.4 | 0.124 | 52.6 ± 9.1 | 51.5 ± 8.3 | 0.010 | 50.5 ± 8.8 | 52.0 ± 8.5 | <0.0001 |
WC, cm | 77.6 ± 7.7 | 82.5 ± 7.3 | <0.001 | 79.0 ± 6.6 | 83.4 ± 6.0 | <0.001 | 76.6 ± 8.2 | 81.8 ± 8.0 | <0.0001 |
Body fat, % | 24.9 ± 7.1 | 27.7 ± 6.9 | <0.001 | 19.1 ± 4.8 | 21.6 ± 5.0 | <0.001 | 29.1 ± 5.2 | 32.0 ± 4.8 | <0.0001 |
BMI, kg/m2 | 23.0 ± 2.6 | 24.7 ± 2.7 | <0.001 | 22.7 ± 2.5 | 24.2 ± 2.4 | <0.001 | 23.2 ± 2.7 | 25.1 ± 2.8 | <0.0001 |
Weight, kg | 58.4 ± 8.5 | 62.6 ± 8.9 | <0.001 | 62.8 ± 8.2 | 67.3 ± 8.3 | <0.001 | 55.3 ± 7.3 | 59.2 ± 7.8 | <0.0001 |
Smoking status, n (%) | 0.817 | 0.180 | 0.231 | ||||||
Non-smoker | 1777 (68.0) | 1201 (66.8) | 317 (28.7) | 184 (24.4) | 1460 (96.6) | 1017 (97.4) | |||
Ex-smoker | 332 (12.7) | 230 (12.8) | 322 (29.2) | 223 (29.5) | 10 (0.7) | 7 (0.7) | |||
Intermittent smoker | 46 (1.8) | 35 (2.0) | 39 (3.5) | 28 (3.7) | 7 (0.5) | 7 (0.7) | |||
Daily smoker | 460 (17.6) | 333 (18.5) | 425 (38.5) | 320 (42.4) | 35 (2.3) | 13 (1.3) | |||
Physical activity, n (%) | 0.778 | 0.889 | 0.401 | ||||||
Low | 186 (7.3) | 120 (6.9) | 58 (5.4) | 40 (5.6) | 128 (8.7) | 80 (7.8) | |||
Moderate | 1544 (60.7) | 1057 (60.4) | 603 (56.4) | 414 (57.4) | 941 (63.8) | 643 (62.4) | |||
High | 815 (32.0) | 574 (32.8) | 408 (38.2) | 267 (37.0) | 407 (27.6) | 307 (29.8) | |||
Currently drinking, n (%) | 1103 (42.1) | 804 (44.4) | 0.129 | 698 (63.4) | 500 (66.3) | 0.197 | 405 (26.7) | 304 (28.8) | 0.241 |
Total energy intake, kcal/day | 1927.8 ± 681.0 | 1943.3 ± 739.6 | 0.486 | 1978.9 ± 654.8 | 2010.1 ± 694.7 | 0.331 | 1891.1 ± 697.1 | 1895.6 ± 766.9 | 0.880 |
Mean blood pressure, mmHg | 92.1 ± 12.4 | 95.7 ± 12.2 | <0.001 | 94.1 ± 11.8 | 96.6 ± 11.4 | <0.001 | 90.6 ± 12.6 | 95.1 ± 12.7 | <0.001 |
Fasting glucose, mg/dL | 80.9 ± 8.4 | 84.7 ± 15.9 | <0.001 | 82.4 ± 9.4 | 87.0 ± 17.1 | <0.001 | 79.9 ± 7.4 | 83.0 ± 14.8 | <0.001 |
Total cholesterol, mg/dL | 185.0 ± 32.7 | 191.2 ± 33.8 | <0.001 | 186.7 ± 33.1 | 192.8 ± 33.5 | 0.001 | 183.7 ± 32.3 | 190.0 ± 34.1 | <0.001 |
hsCRP, mg/dL | 0.21 ± 0.50 | 0.25 ± 0.78 | 0.024 | 0.23 ± 0.54 | 0.24 ± 0.49 | 0.536 | 0.19 ± 0.46 | 0.26 ± 0.93 | 0.025 |
ALT, IU/L | 20.9 ± 8.1 | 23.3 ± 9.3 | <0.001 | 24.1 ± 9.2 | 27.7 ± 10.4 | <0.001 | 18.6 ± 6.4 | 20.2 ± 6.9 | <0.001 |
AST, IU/L | 26.1 ± 6.6 | 26.6 ± 7.1 | 0.016 | 27.7 ± 7.0 | 28.5 ± 7.5 | 0.018 | 25.0 ± 6.0 | 25.3 ± 6.4 | 0.214 |
HOMA-IR | 1.261 ± 0.561 | 1.405 ± 0.631 | <0.001 | 1.177 ± 0.533 | 1.326 ± 0.603 | <0.001 | 1.321 ± 0.572 | 1.462 ± 0.645 | <0.0001 |
HOMA-beta | 155.186 ± 137.717 | 145.890 ± 135.126 | 0.026 | 133.450 ± 144.596 | 119.553 ± 89.774 | 0.011 | 170.934 ± 130.311 | 164.525 ± 157.008 | 0.273 |
Insulin | 6.288 ± 2.677 | 6.757 ± 2.883 | <0.001 | 5.759 ± 2.496 | 6.217 ± 2.697 | <0.001 | 6.671 ± 2.738 | 7.140 ± 2.949 | <0.0001 |
Unadjusted | Model 1 | Model 2 | Model 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | ||
Total | Persistent lean WC | ref | ref | ref | ref | ||||
Improved abdominal obesity | 1.39 (1.13–1.72) | 0.002 | 1.03 (0.83–1.27) | 0.822 | 1.02 (0.81–1.28) | 0.852 | 1.06 (0.84–1.33) | 0.637 | |
Progressed to abdominal obesity | 2.26 (1.97–2.61) | <0.001 | 1.73 (1.52–2.03) | <0.001 | 1.77 (1.52–2.06) | <0.001 | 1.73 (1.48–2.02) | <0.001 | |
Persistent abdominal obesity | 2.56 (2.26–2.89) | <0.001 | 1.32 (1.13–1.54) | <0.001 | 1.29 (1.09–1.52) | 0.003 | 1.33 (1.13–1.57) | <0.001 | |
Men | Persistent lean WC | ref | ref | ref | ref | ||||
Improved abdominal obesity | 1.91 (1.32–2.77) | 0.001 | 1.30 (0.89–1.90) | 0.180 | 1.34 (0.90–1.98) | 0.146 | 1.47 (0.99–2.18) | 0.055 | |
Progressed to abdominal obesity | 2.25 (1.77–2.86) | <0.001 | 1.60 (1.25–2.05) | <0.001 | 1.57 (1.21–2.05) | <0.001 | 1.60 (1.22–2.09) | <0.001 | |
Persistent abdominal obesity | 2.78 (2.14–3.61) | <0.001 | 1.20 (0.88–1.64) | 0.249 | 1.12 (0.81–1.54) | 0.505 | 1.21 (0.87–1.69) | 0.253 | |
Women | Persistent lean WC | ref | ref | ref | ref | ||||
Improved abdominal obesity | 1.33 (1.03–1.73) | 0.029 | 0.95 (0.73–1. 23) | 0.691 | 0.93 (0.70–1.23) | 0.586 | 0.93 (0.71–1.24) | 0.628 | |
Progressed to abdominal obesity | 2.38 (2.00–2.84) | <0.001 | 1.81 (1.51–2.17) | <0.001 | 1.83 (1.51–2.21) | <0.001 | 1.78 (1.47–2.16) | <0.001 | |
Persistent abdominal obesity | 2.70 (2.33–3.12) | <0.001 | 1.31 (1.09–1.58) | 0.004 | 1.31 (1.07–1.59) | 0.008 | 1.36 (1.12–1.65) | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-H.; Jeon, S.; Lee, H.S.; Kwon, Y.-J. Gender Differences in the Risk for Incident Non-Alcoholic Fatty Liver Disease According to the Transition of Abdominal Obesity Status: A 16-Year Cohort Study. Nutrients 2023, 15, 2880. https://doi.org/10.3390/nu15132880
Lee J-H, Jeon S, Lee HS, Kwon Y-J. Gender Differences in the Risk for Incident Non-Alcoholic Fatty Liver Disease According to the Transition of Abdominal Obesity Status: A 16-Year Cohort Study. Nutrients. 2023; 15(13):2880. https://doi.org/10.3390/nu15132880
Chicago/Turabian StyleLee, Jun-Hyuk, Soyoung Jeon, Hye Sun Lee, and Yu-Jin Kwon. 2023. "Gender Differences in the Risk for Incident Non-Alcoholic Fatty Liver Disease According to the Transition of Abdominal Obesity Status: A 16-Year Cohort Study" Nutrients 15, no. 13: 2880. https://doi.org/10.3390/nu15132880
APA StyleLee, J. -H., Jeon, S., Lee, H. S., & Kwon, Y. -J. (2023). Gender Differences in the Risk for Incident Non-Alcoholic Fatty Liver Disease According to the Transition of Abdominal Obesity Status: A 16-Year Cohort Study. Nutrients, 15(13), 2880. https://doi.org/10.3390/nu15132880