Influence of 12-Week Concurrent Training on Exosome Cargo and Its Relationship with Cardiometabolic Health Parameters in Men with Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Participants
2.2. Concurrent Training Intervention
2.3. Procedures
2.4. Exosome Isolation
2.5. Western Blot Analysis
2.6. Blood Samples for Determining Cardiometabolic Risk Biomarkers
2.7. Blood Pressure
2.8. Body Composition
2.9. Echocardiography
2.10. Energy Metabolism
2.11. Cardiorespiratory Fitness
2.12. Physical Activity Levels
2.13. Dietary Intake
2.14. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 15 May 2022).
- Bhaskaran, K.; Dos-Santos-Silva, I.; Leon, D.A.; Douglas, I.J.; Smeeth, L. Association of BMI with overall and cause-specific mortality: A population-based cohort study of 3•6 million adults in the UK. Lancet Diabetes Endocrinol. 2018, 6, 944–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flegal, K.M.; Kit, B.K.; Orpana, H.; Graubard, B.I. Association of All-Cause Mortality With Overweight and Obesity Using Standard Body Mass Index Categories: A systematic review and meta-analysis. JAMA 2013, 309, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Lavie, C.J.; Laddu, D.; Arena, R.; Ortega, F.B.; Alpert, M.A.; Kushner, R.F. Healthy Weight and Obesity Prevention: JACC Health Promotion Series. J. Am. Coll. Cardiol. 2018, 72, 1506–1531. [Google Scholar] [CrossRef] [PubMed]
- Jaacks, L.M.; Vandevijvere, S.; Pan, A.; McGowan, C.J.; Wallace, C.; Imamura, F.; Mozaffarian, D.; Swinburn, B.; Ezzati, M. The obesity transition: Stages of the global epidemic. Lancet Diabetes Endocrinol. 2019, 7, 231–240. [Google Scholar] [CrossRef]
- Jiménez-Pavón, D.; Lavie, C.J.; Blair, S.N. The role of cardiorespiratory fitness on the risk of sudden cardiac death at the population level: A systematic review and meta-analysis of the available evidence. Prog. Cardiovasc. Dis. 2019, 62, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Amaro-Gahete, F.J.; Ponce-González, J.G.; Corral-Pérez, J.; Velázquez-Díaz, D.; Lavie, C.J.; Jiménez-Pavón, D. Effect of a 12-Week Concurrent Training Intervention on Cardiometabolic Health in Obese Men: A Pilot Study. Front. Physiol. 2021, 12, 630831. [Google Scholar] [CrossRef] [PubMed]
- Kiliaan, A.J.; Arnoldussen, I.A.C.; Gustafson, D.R. Adipokines: A link between obesity and dementia? Lancet Neurol. 2014, 13, 913–923. [Google Scholar] [CrossRef] [Green Version]
- Livingston, G.; Sommerlad, A.; Orgeta, V.; Costafreda, S.G.; Huntley, J.; Ames, D.; Ballard, C.; Banerjee, S.; Burns, A.; Cohen-Mansfield, J.; et al. Dementia prevention, intervention, and care. Lancet 2017, 390, 2673–2734. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.; Chang, M.; Wang, J. Abdominal obesity, body mass index and the risk of frailty in community-dwelling older adults: A systematic review and meta-analysis. Age Ageing 2021, 50, 1118–1128. [Google Scholar] [CrossRef]
- Fasshauer, M.; Blüher, M. Adipokines in health and disease. Trends Pharmacol. Sci. 2015, 36, 461–470. [Google Scholar] [CrossRef]
- Kita, S.; Maeda, N.; Shimomura, I. Interorgan communication by exosomes, adipose tissue, and adiponectin in metabolic syndrome. J. Clin. Investig. 2019, 129, 4041–4049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estébanez, B.; Jiménez-Pavón, D.; Huang, C.; Cuevas, M.J.; González-Gallego, J. Effects of exercise on exosome release and cargo in in vivo and ex vivo models: A systematic review. J. Cell. Physiol. 2020, 236, 3336–3353. [Google Scholar] [CrossRef]
- Ji, C.; Guo, X. The clinical potential of circulating microRNAs in obesity. Nat. Rev. Endocrinol. 2019, 15, 731–743. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Sundaram, K.; Mu, J.; Dryden, G.W.; Sriwastva, M.K.; Lei, C.; Zhang, L.; Qiu, X.; Xu, F.; Yan, J.; et al. High-fat diet-induced upregulation of exosomal phosphatidylcholine contributes to insulin resistance. Nat. Commun. 2021, 12, 213–234. [Google Scholar] [CrossRef]
- Lei, L.-M.; Lin, X.; Xu, F.; Shan, S.-K.; Guo, B.; Li, F.-X.; Zheng, M.-H.; Wang, Y.; Xu, Q.-S.; Yuan, L.-Q. Exosomes and Obesity-Related Insulin Resistance. Front. Cell Dev. Biol. 2021, 9, 651996. [Google Scholar] [CrossRef] [PubMed]
- Obata, Y.; Kita, S.; Koyama, Y.; Fukuda, S.; Takeda, H.; Takahashi, M.; Fujishima, Y.; Nagao, H.; Masuda, S.; Tanaka, Y.; et al. Adiponectin/T-cadherin system enhances exosome biogenesis and decreases cellular ceramides by exosomal release. J. Clin. Investig. 2018, 3, e99680. [Google Scholar] [CrossRef] [Green Version]
- Crewe, C.; Joffin, N.; Rutkowski, J.M.; Kim, M.; Zhang, F.; Towler, D.A.; Gordillo, R.; Scherer, P.E. An Endothelial-to-Adipocyte Extracellular Vesicle Axis Governed by Metabolic State. Cell 2018, 175, 695–708.e613. [Google Scholar] [CrossRef] [Green Version]
- Chow, L.S.; Gerszten, R.E.; Taylor, J.M.; Pedersen, B.K.; van Praag, H.; Trappe, S.; Febbraio, M.A.; Galis, Z.S.; Gao, Y.; Haus, J.M.; et al. Exerkines in health, resilience and disease. Nat. Rev. Endocrinol. 2022, 18, 273–289. [Google Scholar] [CrossRef]
- Nederveen, J.P.; Warnier, G.; Di Carlo, A.; Nilsson, M.I.; Tarnopolsky, M.A. Extracellular Vesicles and Exosomes: Insights From Exercise Science. Front. Physiol. 2021, 11, 604274. [Google Scholar] [CrossRef]
- Garner, R.T.; Solfest, J.S.; Nie, Y.; Kuang, S.; Stout, J.; Gavin, T.P. Multivesicular body and exosome pathway responses to acute exercise. Exp. Physiol. 2020, 105, 511–521. [Google Scholar] [CrossRef]
- Li, Y.; Han, C.; Wang, J.; Zhou, J.; Liang, C.; Ranganna, K.; Song, Y.-H. Exosomes Mediate the Beneficial Effects of Exercise. Adv. Exp. Med. Bio. 2017, 1000, 333–353. [Google Scholar] [CrossRef]
- Vechetti, I.J.; Valentino, T.; Mobley, C.B.; McCarthy, J.J. The role of extracellular vesicles in skeletal muscle and systematic adaptation to exercise. J. Physiol. 2020, 599, 845–861. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Liu, H.; Ma, C.; Chen, Y.; Wang, J.; Yang, Y. Exosomes are the novel players involved in the beneficial effects of exercise on type 2 diabetes. J. Cell. Physiol. 2019, 234, 14896–14905. [Google Scholar] [CrossRef] [PubMed]
- Safdar, A.; Saleem, A.; Tarnopolsky, M.A. The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat. Rev. Endocrinol. 2016, 12, 504–517. [Google Scholar] [CrossRef]
- Bei, Y.; Xu, T.; Lv, D.; Yu, P.; Xu, J.; Che, L.; Das, A.; Tigges, J.; Toxavidis, V.; Ghiran, I.; et al. Exercise-induced circulating extracellular vesicles protect against cardiac ischemia–reperfusion injury. Basic Res. Cardiol. 2017, 112, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, Z.; Qin, X.; Hu, Y.; Zhang, X.; Li, G.; Wu, J.; Li, J.; Sha, J.; Chen, J.; Xia, J.; et al. Longterm Exercise-Derived Exosomal miR-342-5p. Circ. Res. 2019, 124, 1386–1400. [Google Scholar] [CrossRef]
- Ma, C.; Wang, J.; Liu, H.; Chen, Y.; Ma, X.; Chen, S.; Chen, Y.; Bihl, J.; Yang, Y. Moderate Exercise Enhances Endothelial Progenitor Cell Exosomes Release and Function. Med. Sci. Sport. Exerc. 2018, 50, 2024–2032. [Google Scholar] [CrossRef]
- Bertoldi, K.; Cechinel, L.R.; Schallenberger, B.; Corssac, G.B.; Davies, S.; Guerreiro, I.C.K.; Belló-Klein, A.; Araujo, A.S.R.; Siqueira, I.R. Circulating extracellular vesicles in the aging process: Impact of aerobic exercise. Mol. Cell. Biochem. 2017, 440, 115–125. [Google Scholar] [CrossRef]
- Rong, S.; Wang, L.; Peng, Z.; Liao, Y.; Li, D.; Yang, X.; Nuessler, A.K.; Liu, L.; Bao, W.; Yang, W. The mechanisms and treatments for sarcopenia: Could exosomes be a perspective research strategy in the future? J. Cachex Sarcopenia Muscle 2020, 11, 348–365. [Google Scholar] [CrossRef] [Green Version]
- Tytell, M.; Ma, F.; Gi, L. Faculty Opinions recommendation of Mechanisms of stress-induced cellular HSP72 release: Implications for exercise-induced increases in extracellular HSP72. Exerc. Immunol. Rev. 2005, 11, 46–52. [Google Scholar] [CrossRef]
- Wu, C.-X.; Liu, Z.-F. Proteomic Profiling of Sweat Exosome Suggests its Involvement in Skin Immunity. J. Investig. Dermatol. 2018, 138, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Welch, V.A.; Norheim, O.F.; Jull, J.; Cookson, R.; Sommerfelt, H.; Tugwell, P. CONSORT-Equity 2017 extension and elaboration for better reporting of health equity in randomised trials. BMJ 2017, 359, j5085. [Google Scholar] [CrossRef] [Green Version]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sport. Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Thery, C.; Clayton, A.; Amigorena, S.; Raposo, G. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. 2006, 3. [Google Scholar] [CrossRef]
- Keerthikumar, S.; Chisanga, D.; Ariyaratne, D.; Al Saffar, H.; Anand, S.; Zhao, K.; Samuel, M.; Pathan, M.; Jois, M.; Chilamkurti, N.; et al. ExoCarta: A Web-Based Compendium of Exosomal Cargo. J. Mol. Biol. 2016, 428, 688–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ascaso, J.F.; Real, J.T.; Priego, A.; Carmena, R.; Romero, P.; Valdecabres, C. Insulin resistance quantification by fasting insulin plasma values and HOMA index in a non-diabetic population. Med. Clin. 2001, 117, 530–533. [Google Scholar] [CrossRef] [PubMed]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carracher, A.M.; Marathe, P.H.; Close, K.L. International Diabetes Federation 2017. J. Diabetes 2018, 10, 353–356. [Google Scholar] [CrossRef] [Green Version]
- Carey, R.M.; Whelton, P.K. Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Synopsis of the 2017 American College of Cardiology/American Heart Association Hypertension Guideline. Ann. Intern. Med. 2018, 168, 351–358. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Appleton, C.P.; Gillebert, T.C.; Marino, P.N.; Oh, J.K.; Smiseth, O.A.; Waggoner, A.D.; Flachskampf, F.A.; Pellikka, P.A.; Evangelista, A. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography. J. Am. Soc. Echocardiogr. 2009, 22, 107–133. [Google Scholar] [CrossRef] [Green Version]
- Fullmer, S.; Benson-Davies, S.; Earthman, C.P.; Frankenfield, D.C.; Gradwell, E.; Lee, P.S.; Piemonte, T.; Trabulsi, J. Evidence Analysis Library Review of Best Practices for Performing Indirect Calorimetry in Healthy and Non–Critically Ill Individuals. J. Acad. Nutr. Diet. 2015, 115, 1417–1446.e2. [Google Scholar] [CrossRef]
- Sanchez-Delgado, G.; Alcantara, J.M.; Ortiz-Alvarez, L.; Xu, H.; Martinez-Tellez, B.; Labayen, I.; Ruiz, J.R. Reliability of resting metabolic rate measurements in young adults: Impact of methods for data analysis. Clin. Nutr. 2017, 37, 1618–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weir, J.D.V. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949, 109, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Frayn, K.N. Calculation of substrate oxidation rates in vivo from gaseous exchange. J. Appl. Physiol. 1983, 55, 628–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amaro-Gahete, F.J.; De-La-O, A.; Jurado-Fasoli, L.; Sanchez-Delgado, G.; Ruiz, J.R.; Castillo, M.J. Metabolic rate in sedentary adults, following different exercise training interventions: The FIT-AGEING randomized controlled trial. Clin. Nutr. 2020, 39, 3230–3240. [Google Scholar] [CrossRef]
- Amaro-Gahete, F.J.; Sanchez-Delgado, G.; Alcantara, J.M.; Martinez-Tellez, B.; Acosta, F.M.; Helge, J.W.; Ruiz, J.R. Impact of data analysis methods for maximal fat oxidation estimation during exercise in sedentary adults. Eur. J. Sport Sci. 2019, 19, 1230–1239. [Google Scholar] [CrossRef]
- Amaro-Gahete, F.J.; Sanchez-Delgado, G.; Helge, J.W.; Ruiz, J.R. Optimizing Maximal Fat Oxidation Assessment by a Treadmill-Based Graded Exercise Protocol: When Should the Test End? Front. Physiol. 2019, 10, 909. [Google Scholar] [CrossRef] [Green Version]
- Midgley, A.W.; McNaughton, L.R.; Polman, R.; Marchant, D. Criteria for Determination of Maximal Oxygen Uptake: A brief critique and recommendations for future research. Sport. Med. 2007, 37, 1019–1028. [Google Scholar] [CrossRef]
- Frühbeis, C.; Helmig, S.; Tug, S.; Simon, P.; Krämer-Albers, E.-M. Physical exercise induces rapid release of small extracellular vesicles into the circulation. J. Extracell. Vesicles 2015, 4, 28239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helmig, S.; Frühbeis, C.; Krämer-Albers, E.-M.; Simon, P.; Tug, S. Release of bulk cell free DNA during physical exercise occurs independent of extracellular vesicles. Eur. J. Appl. Physiol. 2015, 115, 2271–2280. [Google Scholar] [CrossRef]
- Brahmer, A.; Neuberger, E.; Esch-Heisser, L.; Haller, N.; Jørgensen, M.M.; Baek, R.; Möbius, W.; Simon, P.; Krämer-Albers, E.-M. Platelets, endothelial cells and leukocytes contribute to the exercise-triggered release of extracellular vesicles into the circulation. J. Extracell. Vesicles 2019, 8, 1615820. [Google Scholar] [CrossRef]
- Estébanez, B.; Visavadiya, N.P.; de Paz, J.A.; Whitehurst, M.; Cuevas, M.J.; González-Gallego, J.; Huang, C.-J. Resistance Training Diminishes the Expression of Exosome CD63 Protein without Modification of Plasma miR-146a-5p and cfDNA in the Elderly. Nutrients 2021, 13, 665. [Google Scholar] [CrossRef]
- Kodama, S.; Saito, K.; Tanaka, S.; Maki, M.; Yachi, Y.; Asumi, M.; Sugawara, A.; Totsuka, K.; Shimano, H.; Ohashi, Y.; et al. Cardiorespiratory Fitness as a Quantitative Predictor of All-Cause Mortality and Cardiovascular Events in Healthy Men and Women: A meta-analysis. JAMA 2009, 301, 2024–2035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capel, T.L.; Vaisberg, M.; Araujo, M.P.; Paiva, R.F.; Santos, J.M.; Bella, Z.I. Influence of body mass index, body fat percentage and age at menarche on aerobic capacity (VO₂ max) of elementary school female students. Rev. Bras. Ginecol. Obstet. 2014, 36, 84–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacInnis, M.J.; Gibala, M.J. Physiological adaptations to interval training and the role of exercise intensity. J. Physiol. 2017, 595, 2915–2930. [Google Scholar] [CrossRef] [Green Version]
- Skrypnik, D.; Bogdański, P.; Mądry, E.; Karolkiewicz, J.; Ratajczak, M.; Kryściak, J.; Pupek-Musialik, D.; Walkowiak, J. Effects of Endurance and Endurance Strength Training on Body Composition and Physical Capacity in Women with Abdominal Obesity. Obes. Facts 2015, 8, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Domańska-Senderowska, D.; Jastrzębski, Z.; Kiszałkiewicz, J.; Brzeziański, M.; Pastuszak-Lewandoska, D.; Radzimińki, L.; Lasota, E.B.; Jegier, A. Expression analysis of selected classes of circulating exosomal miRNAs in soccer players as an indicator of adaptation to physical activity. Biol. Sport 2017, 34, 331–338. [Google Scholar] [CrossRef]
- Rigamonti, A.E.; Bollati, V.; Pergoli, L.; Iodice, S.; De Col, A.; Tamini, S.; Cicolini, S.; Tringali, G.; De Micheli, R.; Cella, S.G.; et al. Effects of an acute bout of exercise on circulating extracellular vesicles: Tissue-, sex-, and BMI-related differences. Int. J. Obes. 2020, 44, 1108–1118. [Google Scholar] [CrossRef]
- Kostrycki, I.M.; Wildner, G.; Donato, Y.H.; Dos Santos, A.B.; Beber, L.C.C.; Frizzo, M.; Ludwig, M.S.; Keane, K.N.; Cruzat, V.; Rhoden, C.R.; et al. Effects of High-Fat Diet on eHSP72 and Extra-to-Intracellular HSP70 Levels in Mice Submitted to Exercise under Exposure to Fine Particulate Matter. J. Diabetes Res. 2019, 2019, 4858740. [Google Scholar] [CrossRef]
- Heck, T.G.; Scomazzon, S.P.; Nunes, P.R.; Schöler, C.M.; da Silva, G.S.; Bittencourt, A.; Faccioni-Heuser, M.C.; Krause, M.; Bazotte, R.B.; Curi, R.; et al. Acute exercise boosts cell proliferation and the heat shock response in lymphocytes: Correlation with cytokine production and extracellular-to-intracellular HSP70 ratio. Cell Stress Chaperones 2017, 22, 271–291. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Chen, S.; Huang, H.; Chen, W.; Liu, L.; Wang, B.; Lai, W.; Yi, S.; Ying, M.; Tang, R.; et al. Dilated Left Ventricular End-Diastolic Diameter Is a New Risk Factor of Acute Kidney Injury Following Coronary Angiography. Front. Cardiovasc. Med. 2022, 9, 827524. [Google Scholar] [CrossRef]
- Inoue, T.; Ogawa, T.; Iwabuchi, Y.; Otsuka, K.; Nitta, K. Left Ventricular End-Diastolic Diameter Is an Independent Predictor of Mortality in Hemodialysis Patients. Ther. Apher. Dial. 2012, 16, 134–141. [Google Scholar] [CrossRef]
- Giannessi, D.; Colotti, C.; Maltinti, M.; Del Ry, S.; Prontera, C.; Turchi, S.; L’Abbate, A.; Neglia, D. Circulating heat shock proteins and inflammatory markers in patients with idiopathic left ventricular dysfunction: Their relationships with myocardial and microvascular impairment. Cell Stress Chaperones 2007, 12, 265–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Maio, A.; Santoro, M.G.; Tanguay, R.M.; Hightower, L.E. Ferruccio Ritossa’s scientific legacy 50 years after his discovery of the heat shock response: A new view of biology, a new society, and a new journal. Cell Stress Chaperones 2012, 17, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Jenei, Z.M.; Gombos, T.; Förhécz, Z.; Pozsonyi, Z.; Karádi, I.; Jánoskuti, L.; Prohászka, Z. Elevated extracellular HSP70 (HSPA1A) level as an independent prognostic marker of mortality in patients with heart failure. Cell Stress Chaperones 2013, 18, 809–813. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Xu, Z.; Zhou, L.; Chen, Y.; He, M.; Cheng, L.; Hu, F.B.; Tanguay, R.M.; Wu, T. Plasma levels of Hsp70 and anti-Hsp70 antibody predict risk of acute coronary syndrome. Cell Stress Chaperones 2010, 15, 675–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Tanguay, R.M.; He, M.; Deng, Q.; Miao, X.; Zhou, L.; Wu, T. Variants of HSPA1A in Combination with Plasma Hsp70 and Anti-Hsp70 Antibody Levels Associated with Higher Risk of Acute Coronary Syndrome. Cardiology 2011, 119, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhang, Z.; Lei, Z.; Lei, P. CD14: Biology and role in the pathogenesis of disease. Cytokine Growth Factor Rev. 2019, 48, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Zanoni, I.; Granucci, F. Role of CD14 in host protection against infections and in metabolism regulation. Front. Cell. Infect. Microbiol. 2013, 3, 32. [Google Scholar] [CrossRef] [Green Version]
- Bird, L. Exercise lowers leptin and leukocytosis. Nat. Rev. Immunol. 2020, 20, 2–3. [Google Scholar] [CrossRef]
- Fedewa, M.V.; Hathaway, E.D.; Ward-Ritacco, C.L.; Williams, T.D.; Dobbs, W.C. The Effect of Chronic Exercise Training on Leptin: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Sport. Med. 2018, 48, 1437–1450. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Yin, L.; Wang, X. Central and peripheral leptin resistance in obesity and improvements of exercise. Horm. Behav. 2021, 133, 105006. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.; Ruan, Y.; Gao, X.; Sun, J. Systematic Review and Meta-Analysis of Randomized, Controlled Trials on the Effect of Exercise on Serum Leptin and Adiponectin in Overweight and Obese Individuals. Horm. Metab. Res. 2017, 49, 164–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, M.; He, J.; Sun, Y.; Dong, X.; Yao, J.; Gu, H.; Liu, L. Leptin Induced TLR4 Expression via the JAK2-STAT3 Pathway in Obesity-Related Osteoarthritis. Oxidative Med. Cell. Longev. 2021, 2021, 7385160. [Google Scholar] [CrossRef]
- Kapustin, A.N.; Chatrou, M.L.; Drozdov, I.; Zheng, Y.; Davidson, S.M.; Soong, D.; Furmanik, M.; Sanchis, P.; de Rosales, R.T.M.; Alvarez-Hernandez, D.; et al. Vascular Smooth Muscle Cell Calcification Is Mediated by Regulated Exosome Secretion. Circ. Res. 2015, 116, 1312–1323. [Google Scholar] [CrossRef]
Control Group (n = 4) | Concurrent Training Group (n = 5) | |
---|---|---|
Age (years) | 43.7 (6.1) | 41.3 (4.4) |
Anthropometry and body composition | ||
Weight (kg) | 101.4 (12.9) | 97.5 (15.4) |
Height (cm) | 176.4 (5.2) | 173.9 (8.7) |
Body mass index (kg/m2) | 32.5 (3.0) | 32.1 (3.6) |
Waist circumference (cm) | 108.0 (6.1) | 105.4 (9.4) |
Fat mass (kg) | 28.5 (7.3) | 27.8 (6.6) |
Lean mass (kg) | 69.3 (6.9) | 66.3 (9.3) |
Blood pressure | ||
Systolic blood pressure (mm Hg) | 131.5 (16.9) | 131.4 (22.0) |
Diastolic blood pressure (mm Hg) | 83.2 (6.3) | 86.6 (13.9) |
Mean blood pressure (mm Hg) | 99.3 (9.2) | 101.5 (16.5) |
Glycaemic profile | ||
Plasma glucose (mg/dL) | 101.5 (3.9) | 94.8 (9.1) |
Plasma insulin (UI/mL) | 13.9 (4.2) | 8.6 (2.0) |
HOMA-IR | 3.47 (1.02) | 2.00 (0.52) |
Lipid profile | ||
Total cholesterol (mg/dL) | 216.0 (59.8) | 198.0 (22.6) |
HDL-C (mg/dL) | 48.8 (9.6) | 40.8 (5.0) |
LDL-C (mg/dL) | 145.0 (50.3) | 130.8 (22.0) |
Triglycerides (mg/dL) | 112.0 (53.9) | 131.4 (70.5) |
Liver function | ||
GOT (IU/L) | 29.3 (8.5) | 21.6 (8.1) |
GPT (IU/L) | 44.0 (27.5) | 22.0 (7.2) |
γ-GT (IU/L) | 68.5 (75.2) | 73.3 (62.7) |
Other biochemical parameters | ||
Protein C reactive (mg/dL) | 11.7 (18.1) | 8.2 (9.4) |
Leptin (ng/mL) | 19.8 (5.1) | 21.0 (6.4) |
Cardiorespiratory fitness | ||
VO2max (ml/min) | 2596.3 (472.2) | 2620.3 (573.3) |
VO2max (ml/kg/min) | 25.6 (2.3) | 27.4 (7.4) |
Echocardiography | ||
Cardiac mass (g) | 207.4 (32.0) | 192.6 (27.8) |
Ejection fraction (%) | 65.8 (6.2) | 66.2 (5.7) |
LV end diastolic diameter (mm) | 52.5 (5.2) | 52.6 (3.2) |
LV end systolic diameter (mm) | 26.3 (4.0) | 33.4 (3.6) |
LV end systolic volume (ml) | 21.5 (10.3) | 22.4 (2.4) |
E wave (cm/s) | 87.3 (12.5) | 70.2 (20.8) |
A wave (cm/s) | 55.8 (3.7) | 65.8 (17.4) |
E/A | 1.57 (0.26) | 1.07 (0.13) |
E wave deceleration time (ms) | 205.0 (20.4) | 261.0 (43.8) |
Control Group (n = 4) | Concurrent Training Group (n = 5) | Net Effect | ||||||
---|---|---|---|---|---|---|---|---|
Baseline Mean (SD) | After 12 Weeks Mean (SD) | Δ (SE) | Baseline Mean (SD) | After 12 Weeks Mean (SD) | Δ (SE) | Mean Difference (95% CI) | Standardized Mean Difference (95% CI) | |
LAMP-1 (RU) | 3,538,140.1 (138,437.8) | 4,662,487.6 (3,259,796.9) | 1,124,347.5 (1,678,798.8) | 6,376,794.4 (2,524,368) | 4,409,439.5 (3,869,631) | −1,967,354.9 (1,176,955.3) | 3,091,702.4 (−2,001,411.9, 8,184,816.7) | 1.04 (−0.36, 2.44) |
LAMP-2A (RU) | 2,888,610.7 (1,463,067.7) | 2,198,326.8 (1,213,501.9) | −690,283.9 (1,130,472.5) | 2,459,521.9 (1,726,292.9) | 3,763,442.9 (3,202,342.4) | 1,303,921 (1,235,228.1) | −1,994,204.9 (−5,956,063.6, 1,967,653.8) | −0.78 (−2.14, 0.58) |
HSP70 (RU) | 3,129,771.2 (611,074.9) | 4,309,378.3 (2,413,580.4) | 1,179,607.1 (1,004,876.6) | 4,565,930.3 (1,454,915.8) | 3,382,425.5 (869,688.3) | −1,183,504.7 (479,725.9) | 2,363,111.8 (−631,925.8, 5,358,149.4) | 1.53 (−0.04, 3.02) |
HSP60 (RU) | 3,348,621 (2,127,044.5) | 3,565,455.3 (679642.8) | 216834.3 (1,333,310) | 2,893,043.2 (2,090,405.6) | 4,219,214.8 (2,215,688.5) | 1,326,171.7 (1,070,853.8) | −1,109,337.4 (−5,263,234.9, 3,044,560.2) | −0.44 (−1.77, 0.89) |
CD14 (RU) | 2,976,028.6 (1,155,800.9) | 3,357,159.3 (1704612) | 381130.7 (485,199.3) | 3,905,096.1 (1,768,269.5) | 3,623,449.7 (1,714,922.5) | −281,646.4 (611,570.1) | 662,777.1 (−1,185,935.5, 2,511,489.6) | 0.55 (−0.79, 1.89) |
Flot-1 (RU) | 3,339,068.3 (1,856,409.4) | 5,912,644.2 (1053525) | 2,573,575.9 (619,043) | 4,667,901.4 (3,443,030.5) | 5,923,898.6 (2,682,591.2) | 1,255,997.2 (694,489.7) | 1,317,578.7 (−882,689, 3,517,846.5) | 0.92 (−0.46, 2.31) |
B-ACTIN (RU) | 2,343,284.8 (1,263,330.2) | 3,141,978 (1,417,101.6) | 798,693.2 (435,468) | 2,935,534.3 (1,949,914.3) | 2,039,544.3 (875,454.4) | −895,990 (737,123.1) | 1,694,683.2 (−379,143.8, 3,768,510.2) | 1.24 (−0.20, 2.67) |
GAPDH (RU) | 2,215,793.1 (1,214,415.7) | 4,036,692.8 (995245.3) | 1,820,899.7 (676,474) | 2,022,621.8 (1,222,361.4) | 2,805,584.7 (1,311,539.3) | 782,963 (536,431) | 1,037,936.7 (−1,063,093.6, 3,138,967) | 0.82 (−0.55, 2.19) |
VDAC1 (RU) | 2,360,209.4 (592,894.3) | 4,284,494.8 (1,180,678.8) | 1,924,285.4 (500,062.3) | 4,253,649.8 (3,249,022.7) | 3,341,431.8 (1,180,400.6) | −912,218 (1,146,500.7) | 2,836,503.4 (−307,544.7, 5,980,551.4) | 1.39 (−0.08, 2.85) |
CD63 (RU) | 5,811,173.1 (2,704,553.8) | 4,030,302.7 (2,108,586.8) | −1,780,870.4 (1,096,623.9) | 5,547,351 (2,466,183.1) | 3,235,053.4 (2,490,041) | −2,312,297.6 (716,172.1) | 531,427.2 (−2,766,527.5, 3,829,381.9) | 0.28 (−1.04, 1.60) |
CD81 (RU) | 3,779,431.7 (1,366,587.2) | 6,389,106.8 (1,339,581.9) | 2,609,675.1 (323,006.5) | 5,669,999.2 (3,019,804.5) | 5,199,976 (2,259,769.5) | −470,023.2 (520,670.7) | 3,079,698.3 (1,603,159.5, 4,556,237.1) | 1.19 (−0.53, 2.85) |
CD9 (RU) | 2,372,863.1 (336,531.5) | 3,638,204.5 (1,370,077.8) | 1,265,341.5 (815,938.4) | 3,892,886.6 (159,3471) | 2,455,290.1 (1,781,346.2) | −1,437,596.5 (1,282,990.8) | 2,702,938 (−952,067, 6,357,943) | 1.12 (−0.30, 2.53) |
LAMP-1 (RU) | LAMP-2A (RU) | HSP70 (RU) | HSP60 (RU) | CD14 (RU) | Flot-1 (RU) | Β-ACTIN (RU) | GAPDH (RU) | VDAC1 (RU) | CD63 (RU) | CD81 (RU) | CD9 (RU) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Anthropometry and body composition | ||||||||||||
Weight (kg) | 0.114 | −0.261 | 0.509 | 0.127 | −0.005 | 0.497 | 0.436 | 0.318 | 0.647 | −0.298 | 0.696 | 0.448 |
Waist circumference (cm) | −0.041 | −0.321 | 0.427 | −0.014 | 0.102 | 0.124 | 0.33 | −0.036 | 0.535 | 0.183 | 0.518 | 0.449 |
Fat mass (kg) | 0.212 | −0.313 | 0.568 | 0.083 | 0.042 | 0.425 | 0.439 | 0.418 | 0.661 | −0.337 | 0.741 | 0.497 |
Lean mass (kg) | −0.099 | −0.123 | 0.323 | 0.204 | −0.074 | 0.582 | 0.395 | 0.069 | 0.543 | −0.145 | 0.528 | 0.298 |
Blood pressure | ||||||||||||
Systolic blood pressure (mm Hg) | 0.503 | 0.098 | 0.403 | −0.104 | 0.351 | 0.222 | 0.171 | 0.134 | 0.227 | −0.345 | 0.573 | 0.133 |
Diastolic blood pressure (mm Hg) | 0.490 | −0.076 | 0.482 | −0.059 | 0.331 | 0.297 | 0.309 | 0.296 | 0.38 | −0.341 | 0.677 | 0.284 |
Mean blood pressure (mm Hg) | 0.497 | −0.023 | 0.46 | −0.073 | 0.339 | 0.275 | 0.268 | 0.247 | 0.334 | −0.344 | 0.649 | 0.239 |
Glycaemic profile | ||||||||||||
Plasma glucose (mg/dL) | 0.324 | 0.224 | 0.379 | −0.187 | 0.04 | −0.078 | −0.218 | −0.037 | 0.133 | −0.537 | 0.423 | 0.031 |
Plasma insulin (UI/mL) | 0.322 | 0.244 | 0.003 | −0.001 | −0.182 | −0.016 | −0.388 | 0.326 | −0.25 | −0.760 | −0.024 | −0.259 |
HOMA-IR | 0.304 | 0.223 | 0.019 | 0.015 | −0.182 | −0.047 | −0.38 | 0.359 | −0.216 | −0.765 | −0.006 | −0.226 |
Lipid profile | ||||||||||||
Total cholesterol (mg/dL) | 0.105 | 0.569 | 0.062 | −0.067 | −0.247 | −0.006 | −0.602 | −0.425 | −0.247 | −0.691 | −0.013 | −0.395 |
HDL-C (mg/dL) | 0.122 | −0.033 | 0.504 | −0.387 | −0.204 | −0.439 | −0.384 | −0.459 | 0.217 | −0.456 | 0.155 | 0.193 |
LDL-C (mg/dL) | −0.16 | 0.696 | −0.119 | 0.227 | −0.14 | 0.03 | −0.492 | −0.361 | −0.217 | −0.48 | 0.006 | −0.42 |
Triglycerides (mg/dL) | 0.487 | 0.228 | 0.184 | −0.415 | −0.309 | 0.077 | −0.522 | −0.264 | −0.311 | −0.746 | −0.097 | −0.323 |
Liver function | ||||||||||||
GOT (IU/L) | 0.125 | −0.186 | 0.443 | −0.142 | −0.322 | −0.282 | −0.238 | 0.308 | 0.337 | −0.666 | 0.247 | 0.295 |
GPT (IU/L) | 0.223 | 0.554 | −0.063 | 0.014 | 0.026 | −0.623 | −0.759 | −0.239 | −0.498 | −0.803 | −0.212 | −0.426 |
γ-GT (IU/L) | −0.143 | 0.548 | −0.102 | 0.279 | −0.208 | −0.445 | −0.684 | −0.074 | −0.256 | −0.778 | −0.147 | −0.328 |
Other biochemical parameters | ||||||||||||
Protein C reactive (mg/dL) | 0.693 | −0.715 | 0.800 | −0.917 | 0.362 | 0.128 | 0.588 | −0.251 | 0.541 | 0.469 | 0.616 | 0.650 |
Leptin (ng/mL) | 0.662 | 0.050 | 0.264 | −0.191 | 0.760 | −0.512 | 0.082 | 0.279 | −0.059 | −0.160 | 0.448 | 0.129 |
Cardiorespiratory fitness | ||||||||||||
VO2max (ml/min) | −0.480 | −0.392 | 0.227 | 0.257 | −0.511 | 0.740 | 0.435 | 0.204 | 0.645 | 0.083 | 0.350 | 0.410 |
VO2max (ml/kg/min) | −0.555 | −0.369 | 0.170 | 0.283 | −0.491 | 0.730 | 0.444 | 0.165 | 0.623 | 0.197 | 0.310 | 0.392 |
Echocardiography | ||||||||||||
Cardiac mass (g) | −0.128 | 0.719 | −0.296 | 0.000 | 0.097 | −0.596 | −0.633 | −0.574 | −0.537 | −0.173 | −0.373 | −0.527 |
Ejection fraction (%) | 0.082 | −0.286 | 0.359 | −0.171 | 0.121 | 0.216 | 0.377 | 0.275 | 0.398 | 0.353 | 0.393 | 0.411 |
LV end diastolic diameter (mm) | −0.673 | 0.635 | −0.804 | 0.324 | −0.438 | 0.204 | −0.458 | −0.562 | −0.634 | 0.160 | −0.728 | −0.784 |
LV end systolic diameter (mm) | 0.236 | −0.447 | 0.027 | 0.180 | 0.210 | 0.427 | 0.570 | 0.812 | 0.267 | 0.200 | 0.293 | 0.307 |
LV end systolic volume (ml) | −0.267 | 0.017 | 0.085 | −0.390 | −0.674 | −0.241 | −0.524 | −0.666 | −0.146 | −0.233 | −0.425 | −0.143 |
E wave (cm/s) | 0.126 | −0.204 | 0.525 | −0.660 | −0.173 | −0.313 | −0.178 | −0.624 | 0.174 | 0.055 | 0.044 | 0.255 |
A wave (cm/s) | −0.037 | −0.005 | 0.314 | 0.388 | 0.410 | 0.295 | 0.471 | 0.239 | 0.563 | −0.039 | 0.717 | 0.386 |
E/A | 0.035 | −0.039 | 0.039 | −0.667 | −0.414 | −0.389 | −0.484 | −0.642 | −0.346 | 0.116 | −0.533 | −0.188 |
E wave deceleration time (ms) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estébanez, B.; Amaro-Gahete, F.J.; Gil-González, C.; González-Gallego, J.; Cuevas, M.J.; Jiménez-Pavón, D. Influence of 12-Week Concurrent Training on Exosome Cargo and Its Relationship with Cardiometabolic Health Parameters in Men with Obesity. Nutrients 2023, 15, 3069. https://doi.org/10.3390/nu15133069
Estébanez B, Amaro-Gahete FJ, Gil-González C, González-Gallego J, Cuevas MJ, Jiménez-Pavón D. Influence of 12-Week Concurrent Training on Exosome Cargo and Its Relationship with Cardiometabolic Health Parameters in Men with Obesity. Nutrients. 2023; 15(13):3069. https://doi.org/10.3390/nu15133069
Chicago/Turabian StyleEstébanez, Brisamar, Francisco J. Amaro-Gahete, Cristina Gil-González, Javier González-Gallego, María J. Cuevas, and David Jiménez-Pavón. 2023. "Influence of 12-Week Concurrent Training on Exosome Cargo and Its Relationship with Cardiometabolic Health Parameters in Men with Obesity" Nutrients 15, no. 13: 3069. https://doi.org/10.3390/nu15133069
APA StyleEstébanez, B., Amaro-Gahete, F. J., Gil-González, C., González-Gallego, J., Cuevas, M. J., & Jiménez-Pavón, D. (2023). Influence of 12-Week Concurrent Training on Exosome Cargo and Its Relationship with Cardiometabolic Health Parameters in Men with Obesity. Nutrients, 15(13), 3069. https://doi.org/10.3390/nu15133069