Association between an Anti-Inflammatory Dietary Score and Periodontitis—Evidence from the Population-Based Hamburg City Health Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects, Study Design, and Setting
2.2. Definition of an Anti-Inflammatory Dietary Score
2.3. Periodontal Examination
2.4. Assessment of Additional Variables
2.5. Statistical Analysis
3. Results
3.1. Descriptive Analyses
3.2. Regression Analysis
4. Discussion
4.1. Main Findings
4.2. Previous Research and Possible Explanations
4.3. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jordan, A.R.; Micheelis, W. Fünfte Deutsche Mundgesundheitsstudie (DMS V); Deutscher Zahnärzte Verlag: Köln, Germany, 2016. [Google Scholar]
- Kassebaum, N.J.; Smith, A.G.C.; Bernabé, E.; Fleming, T.D.; Reynolds, A.E.; Vos, T.; Murray, C.J.L.; Marcenes, W. Global, Regional, and National Prevalence, Incidence, and Disability-Adjusted Life Years for Oral Conditions for 195 Countries, 1990-2015: A Systematic Analysis for the Global Burden of Diseases, Injuries, and Risk Factors. J. Dent. Res. 2017, 96, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Botelho, J.; Mascarenhas, P.; Viana, J.; Proença, L.; Orlandi, M.; Leira, Y.; Chambrone, L.; Mendes, J.J.; Machado, V. An umbrella review of the evidence linking oral health and systemic noncommunicable diseases. Nat. Commun. 2022, 13, 7614. [Google Scholar] [CrossRef] [PubMed]
- Buset, S.L.; Walter, C.; Friedmann, A.; Weiger, R.; Borgnakke, W.S.; Zitzmann, N.U. Are periodontal diseases really silent? A systematic review of their effect on quality of life. J. Clin. Periodontol. 2016, 43, 333–344. [Google Scholar] [CrossRef]
- Hajishengallis, G.; Liang, S.; Payne, M.A.; Hashim, A.; Jotwani, R.; Eskan, M.A.; McIntosh, M.L.; Alsam, A.; Kirkwood, K.L.; Lambris, J.D.; et al. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe 2011, 10, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Herrero, E.R.; Fernandes, S.; Verspecht, T.; Ugarte-Berzal, E.; Boon, N.; Proost, P.; Bernaerts, K.; Quirynen, M.; Teughels, W. Dysbiotic Biofilms Deregulate the Periodontal Inflammatory Response. J. Dent. Res. 2018, 97, 547–555. [Google Scholar] [CrossRef]
- Kinane, D.F.; Stathopoulou, P.G.; Papapanou, P.N. Periodontal diseases. Nat. Rev. Dis. Primers 2017, 3, 17038. [Google Scholar] [CrossRef] [PubMed]
- Offenbacher, S.; Barros, S.P.; Beck, J.D. Rethinking periodontal inflammation. J. Periodontol. 2008, 79, 1577–1584. [Google Scholar] [CrossRef]
- Fowler, M.E.; Akinyemiju, T.F. Meta-analysis of the association between dietary inflammatory index (DII) and cancer outcomes. Int. J. Cancer 2017, 141, 2215–2227. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Sun, J.Z.; Wu, Q.X.; Li, Z.Y.; Li, D.X.; Xiong, Y.F.; Zhong, G.C.; Shi, Y.; Li, Q.; Zheng, J.; et al. Long-term anti-inflammatory diet in relation to improved breast cancer prognosis: A prospective cohort study. NPJ Breast Cancer 2020, 6, 36. [Google Scholar] [CrossRef]
- Garcia-Arellano, A.; Ramallal, R.; Ruiz-Canela, M.; Salas-Salvadó, J.; Corella, D.; Shivappa, N.; Schröder, H.; Hébert, J.R.; Ros, E.; Gómez-Garcia, E.; et al. Dietary Inflammatory Index and Incidence of Cardiovascular Disease in the PREDIMED Study. Nutrients 2015, 7, 4124–4138. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Lee, D.H.; Hu, J.; Tabung, F.K.; Li, Y.; Bhupathiraju, S.N.; Rimm, E.B.; Rexrode, K.M.; Manson, J.E.; Willett, W.C.; et al. Dietary Inflammatory Potential and Risk of Cardiovascular Disease Among Men and Women in the U.S. J. Am. Coll. Cardiol. 2020, 76, 2181–2193. [Google Scholar] [CrossRef]
- Kondo, K.; Ishikado, A.; Morino, K.; Nishio, Y.; Ugi, S.; Kajiwara, S.; Kurihara, M.; Iwakawa, H.; Nakao, K.; Uesaki, S.; et al. A high-fiber, low-fat diet improves periodontal disease markers in high-risk subjects: A pilot study. Nutr. Res. 2014, 34, 491–498. [Google Scholar] [CrossRef]
- Raindi, D. Nutrition and Periodontal Disease. Dent. Update 2016, 43, 66–68, 71–72. [Google Scholar] [CrossRef] [PubMed]
- Machado, V.; Botelho, J.; Viana, J.; Pereira, P.; Lopes, L.B.; Proença, L.; Delgado, A.S.; Mendes, J.J. Association between Dietary Inflammatory Index and Periodontitis: A Cross-Sectional and Mediation Analysis. Nutrients 2021, 13, 1194. [Google Scholar] [CrossRef] [PubMed]
- Woelber, J.P.; Bremer, K.; Vach, K.; König, D.; Hellwig, E.; Ratka-Krüger, P.; Al-Ahmad, A.; Tennert, C. An oral health optimized diet can reduce gingival and periodontal inflammation in humans—A randomized controlled pilot study. BMC Oral. Health 2016, 17, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woelber, J.P.; Gärtner, M.; Breuninger, L.; Anderson, A.; König, D.; Hellwig, E.; Al-Ahmad, A.; Vach, K.; Dötsch, A.; Ratka-Krüger, P.; et al. The influence of an anti-inflammatory diet on gingivitis. A randomized controlled trial. J. Clin. Periodontol. 2019, 46, 481–490. [Google Scholar] [CrossRef]
- Salehi-Abargouei, A.; Maghsoudi, Z.; Shirani, F.; Azadbakht, L. Effects of Dietary Approaches to Stop Hypertension (DASH)-style diet on fatal or nonfatal cardiovascular diseases—Incidence: A systematic review and meta-analysis on observational prospective studies. Nutrition 2013, 29, 611–618. [Google Scholar] [CrossRef]
- Willett, W.C.; Sacks, F.; Trichopoulou, A.; Drescher, G.; Ferro-Luzzi, A.; Helsing, E.; Trichopoulos, D. Mediterranean diet pyramid: A cultural model for healthy eating. Am. J. Clin. Nutr. 1995, 61, 1402s–1406s. [Google Scholar] [CrossRef]
- Morris, M.C.; Tangney, C.C.; Wang, Y.; Sacks, F.M.; Barnes, L.L.; Bennett, D.A.; Aggarwal, N.T. MIND diet slows cognitive decline with aging. Alzheimers Dement. 2015, 11, 1015–1022. [Google Scholar] [CrossRef] [Green Version]
- Chiavaroli, L.; Viguiliouk, E.; Nishi, S.K.; Blanco Mejia, S.; Rahelić, D.; Kahleová, H.; Salas-Salvadó, J.; Kendall, C.W.; Sievenpiper, J.L. DASH Dietary Pattern and Cardiometabolic Outcomes: An Umbrella Review of Systematic Reviews and Meta-Analyses. Nutrients 2019, 11, 338. [Google Scholar] [CrossRef] [Green Version]
- Hosking, D.E.; Eramudugolla, R.; Cherbuin, N.; Anstey, K.J. MIND not Mediterranean diet related to 12-year incidence of cognitive impairment in an Australian longitudinal cohort study. Alzheimers Dement. 2019, 15, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Torres, J.; Alcalá-Diaz, J.F.; Torres-Peña, J.D.; Gutierrez-Mariscal, F.M.; Leon-Acuña, A.; Gómez-Luna, P.; Fernández-Gandara, C.; Quintana-Navarro, G.M.; Fernandez-Garcia, J.C.; Perez-Martinez, P.; et al. Mediterranean Diet Reduces Atherosclerosis Progression in Coronary Heart Disease: An Analysis of the CORDIOPREV Randomized Controlled Trial. Stroke 2021, 52, 3440–3449. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.C.; Tangney, C.C.; Wang, Y.; Sacks, F.M.; Bennett, D.A.; Aggarwal, N.T. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dement. 2015, 11, 1007–1014. [Google Scholar] [CrossRef] [Green Version]
- Neuenschwander, M.; Hoffmann, G.; Schwingshackl, L.; Schlesinger, S. Impact of different dietary approaches on blood lipid control in patients with type 2 diabetes mellitus: A systematic review and network meta-analysis. Eur. J. Epidemiol. 2019, 34, 837–852. [Google Scholar] [CrossRef]
- Tangestani, H.; Salari-Moghaddam, A.; Ghalandari, H.; Emamat, H. Adherence to the Dietary Approaches to Stop Hypertension (DASH) dietary pattern reduces the risk of colorectal cancer: A systematic review and meta-analysis. Clin. Nutr. 2020, 39, 2975–2981. [Google Scholar] [CrossRef]
- Altun, E.; Walther, C.; Borof, K.; Petersen, E.; Lieske, B.; Kasapoudis, D.; Jalilvand, N.; Beikler, T.; Jagemann, B.; Zyriax, B.C.; et al. Association between Dietary Pattern and Periodontitis-A Cross-Sectional Study. Nutrients 2021, 13, 4167. [Google Scholar] [CrossRef]
- Jagodzinski, A.; Johansen, C.; Koch-Gromus, U.; Aarabi, G.; Adam, G.; Anders, S.; Augustin, M.; der Kellen, R.B.; Beikler, T.; Behrendt, C.A.; et al. Rationale and Design of the Hamburg City Health Study. Eur. J. Epidemiol. 2020, 35, 169–181. [Google Scholar] [CrossRef] [Green Version]
- Riboli, E.; Hunt, K.J.; Slimani, N.; Ferrari, P.; Norat, T.; Fahey, M.; Charrondière, U.R.; Hémon, B.; Casagrande, C.; Vignat, J.; et al. European Prospective Investigation into Cancer and Nutrition (EPIC): Study populations and data collection. Public Health Nutrition 2002, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hebestreit, K.; Yahiaoui-Doktor, M.; Engel, C.; Vetter, W.; Siniatchkin, M.; Erickson, N.; Halle, M.; Kiechle, M.; Bischoff, S.C. Validation of the German version of the Mediterranean Diet Adherence Screener (MEDAS) questionnaire. BMC Cancer 2017, 17, 341. [Google Scholar] [CrossRef]
- Folsom, A.R.; Parker, E.D.; Harnack, L.J. Degree of concordance with DASH diet guidelines and incidence of hypertension and fatal cardiovascular disease. Am. J. Hypertens. 2007, 20, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Lamprecht, R.; Rimmele, D.L.; Schnabel, R.B.; Heydecke, G.; Seedorf, U.; Walther, C.; Mayer, C.; Struppek, J.; Borof, K.; Behrendt, C.A.; et al. Cross-sectional analysis of the association of periodontitis with carotid intima media thickness and atherosclerotic plaque in the Hamburg City health study. J. Periodontal Res. 2022, 57, 824–834. [Google Scholar] [CrossRef] [PubMed]
- Könnecke, H.; Schnabel, R.B.; Walther, C.; Lamprecht, R.; Heydecke, G.; Seedorf, U.; Jagodzinski, A.; Borof, K.; Zeller, T.; Beikler, T.; et al. Cross-sectional study on the association of periodontitis with arterial hypertension in the Hamburg City Health Study. Eur. J. Med. Res. 2022, 27, 181. [Google Scholar] [CrossRef] [PubMed]
- Struppek, J.; Schnabel, R.B.; Walther, C.; Heydecke, G.; Seedorf, U.; Lamprecht, R.; Smeets, R.; Borof, K.; Zeller, T.; Beikler, T.; et al. Periodontitis, dental plaque, and atrial fibrillation in the Hamburg City Health Study. PLoS ONE 2021, 16, e0259652. [Google Scholar] [CrossRef]
- Silness, J.; Loe, H. Periodontal disease in pregnancy. II. Correlation between oral hygiene and periodontal condtion. Acta Odontol. Scand. 1964, 22, 121–135. [Google Scholar] [CrossRef]
- Eke, P.I.; Page, R.C.; Wei, L.; Thornton-Evans, G.; Genco, R.J. Update of the Case Definitions for Population-Based Surveillance of Periodontitis. J. Periodontol. 2012, 83, 1449–1454. [Google Scholar] [CrossRef]
- International Standard Classification of Education, ISCED 1997. In Advances in Cross-National Comparison: A European Working Book. for Demographic and Socio-Economic Variables; Hoffmeyer-Zlotnik, J.H.P.; Wolf, C. (Eds.) Springer: Boston, MA, USA, 2003; pp. 195–220. [Google Scholar]
- Chen, C.C.; Chang, K.L.; Huang, J.F.; Huang, J.S.; Tsai, C.C. Correlation of interleukin-1 beta, interleukin-6, and periodontitis. Kaohsiung J. Med. Sci. 1997, 13, 609–617. [Google Scholar]
- Gomes-Filho, I.S.; Freitas Coelho, J.M.; da Cruz, S.S.; Passos, J.S.; Teixeira de Freitas, C.O.; Aragão Farias, N.S.; Amorim da Silva, R.; Silva Pereira, M.N.; Lima, T.L.; Barreto, M.L. Chronic periodontitis and C-reactive protein levels. J. Periodontol. 2011, 82, 969–978. [Google Scholar] [CrossRef]
- Hajishengallis, G. The inflammophilic character of the periodontitis-associated microbiota. Mol. Oral. Microbiol. 2014, 29, 248–257. [Google Scholar] [CrossRef]
- Naruishi, K.; Nagata, T. Biological effects of interleukin-6 on Gingival Fibroblasts: Cytokine regulation in periodontitis. J. Cell. Physiol. 2018, 233, 6393–6400. [Google Scholar] [CrossRef]
- Ruth, M.R.; Port, A.M.; Shah, M.; Bourland, A.C.; Istfan, N.W.; Nelson, K.P.; Gokce, N.; Apovian, C.M. Consuming a hypocaloric high fat low carbohydrate diet for 12 weeks lowers C-reactive protein, and raises serum adiponectin and high density lipoprotein-cholesterol in obese subjects. Metabolism 2013, 62, 1779–1787. [Google Scholar] [CrossRef] [Green Version]
- Azadbakht, L.; Surkan, P.J.; Esmaillzadeh, A.; Willett, W.C. The Dietary Approaches to Stop Hypertension eating plan affects C-reactive protein, coagulation abnormalities, and hepatic function tests among type 2 diabetic patients. J. Nutr. 2011, 141, 1083–1088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casas, R.; Sacanella, E.; Estruch, R. The immune protective effect of the Mediterranean diet against chronic low-grade inflammatory diseases. Endocr. Metab. Immune Disord. Drug Targets 2014, 14, 245–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwingshackl, L.; Hoffmann, G. Mediterranean dietary pattern, inflammation and endothelial function: A systematic review and meta-analysis of intervention trials. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 929–939. [Google Scholar] [CrossRef] [PubMed]
- Urpi-Sarda, M.; Casas, R.; Chiva-Blanch, G.; Romero-Mamani, E.S.; Valderas-Martínez, P.; Salas-Salvadó, J.; Covas, M.I.; Toledo, E.; Andres-Lacueva, C.; Llorach, R.; et al. The Mediterranean diet pattern and its main components are associated with lower plasma concentrations of tumor necrosis factor receptor 60 in patients at high risk for cardiovascular disease. J. Nutr. 2012, 142, 1019–1025. [Google Scholar] [CrossRef] [Green Version]
- Wirth, M.D.; Hébert, J.R.; Shivappa, N.; Hand, G.A.; Hurley, T.G.; Drenowatz, C.; McMahon, D.; Shook, R.P.; Blair, S.N. Anti-inflammatory Dietary Inflammatory Index scores are associated with healthier scores on other dietary indices. Nutr. Res. 2016, 36, 214–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laiola, M.; De Filippis, F.; Vitaglione, P.; Ercolini, D. A Mediterranean Diet Intervention Reduces the Levels of Salivary Periodontopathogenic Bacteria in Overweight and Obese Subjects. Appl. Environ. Microbiol. 2020, 86, e00777-20. [Google Scholar] [CrossRef] [PubMed]
- Cubas-Basterrechea, G.; Elío, I.; Alonso, G.; Otero, L.; Gutiérrez-Bardeci, L.; Puente, J.; Muñoz-Cacho, P. Adherence to the Mediterranean Diet Is Inversely Associated with the Prevalence of Metabolic Syndrome in Older People from the North of Spain. Nutrients 2022, 14, 4536. [Google Scholar] [CrossRef]
- Mohammadpour, S.; Ghorbaninejad, P.; Janbozorgi, N.; Shab-Bidar, S. Associations between adherence to MIND diet and metabolic syndrome and general and abdominal obesity: A cross-sectional study. Diabetol. Metab. Syndr. 2020, 12, 101. [Google Scholar] [CrossRef]
- Morze, J.; Danielewicz, A.; Hoffmann, G.; Schwingshackl, L. Diet Quality as Assessed by the Healthy Eating Index, Alternate Healthy Eating Index, Dietary Approaches to Stop Hypertension Score, and Health Outcomes: A Second Update of a Systematic Review and Meta-Analysis of Cohort Studies. J. Acad. Nutr. Diet. 2020, 120, 1998–2031.e1915. [Google Scholar] [CrossRef]
- Siervo, M.; Lara, J.; Chowdhury, S.; Ashor, A.; Oggioni, C.; Mathers, J.C. Effects of the Dietary Approach to Stop Hypertension (DASH) diet on cardiovascular risk factors: A systematic review and meta-analysis. Br. J. Nutr. 2015, 113, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, B.; Berthon, B.S.; Saedisomeolia, A.; Starkey, M.R.; Collison, A.; Wark, P.A.B.; Wood, L.G. Effects of fruit and vegetable consumption on inflammatory biomarkers and immune cell populations: A systematic literature review and meta-analysis. Am. J. Clin. Nutr. 2018, 108, 136–155. [Google Scholar] [CrossRef] [Green Version]
- Eichelmann, F.; Schwingshackl, L.; Fedirko, V.; Aleksandrova, K. Effect of plant-based diets on obesity-related inflammatory profiles: A systematic review and meta-analysis of intervention trials. Obes. Rev. 2016, 17, 1067–1079. [Google Scholar] [CrossRef]
- Gibson, R.; Eriksen, R.; Chambers, E.; Gao, H.; Aresu, M.; Heard, A.; Chan, Q.; Elliott, P.; Frost, G. Intakes and Food Sources of Dietary Fibre and Their Associations with Measures of Body Composition and Inflammation in UK Adults: Cross-Sectional Analysis of the Airwave Health Monitoring Study. Nutrients 2019, 11, 1839. [Google Scholar] [CrossRef] [Green Version]
- Fridell, S.; Ström, E.; Agebratt, C.; Leanderson, P.; Guldbrand, H.; Nystrom, F.H. A randomised study in young subjects of the effects of eating extra fruit or nuts on periodontal inflammation. BDJ Open. 2018, 4, 17022. [Google Scholar] [CrossRef] [Green Version]
- Santonocito, S.; Polizzi, A.; Palazzo, G.; Indelicato, F.; Isola, G. Dietary Factors Affecting the Prevalence and Impact of Periodontal Disease. Clin. Cosmet. Investig. Dent. 2021, 13, 283–292. [Google Scholar] [CrossRef]
- Skoczek-Rubińska, A.; Bajerska, J.; Menclewicz, K. Effects of fruit and vegetables intake in periodontal diseases: A systematic review. Dent. Med. Probl. 2018, 55, 431–439. [Google Scholar] [CrossRef] [Green Version]
- Tada, A.; Miura, H. The Relationship between Vitamin C and Periodontal Diseases: A Systematic Review. Int. J. Environ. Res. Public Health 2019, 16, 2472. [Google Scholar] [CrossRef] [Green Version]
- Martinon, P.; Fraticelli, L.; Giboreau, A.; Dussart, C.; Bourgeois, D.; Carrouel, F. Nutrition as a Key Modifiable Factor for Periodontitis and Main Chronic Diseases. J. Clin. Med. 2021, 10, 197. [Google Scholar] [CrossRef]
- Chapple, I.L. Potential mechanisms underpinning the nutritional modulation of periodontal inflammation. J. Am. Dent. Assoc. 2009, 140, 178–184. [Google Scholar] [CrossRef] [Green Version]
- Jenzsch, A.; Eick, S.; Rassoul, F.; Purschwitz, R.; Jentsch, H. Nutritional intervention in patients with periodontal disease: Clinical, immunological and microbiological variables during 12 months. Br. J. Nutr. 2009, 101, 879–885. [Google Scholar] [CrossRef] [Green Version]
- Najeeb, S.; Zafar, M.S.; Khurshid, Z.; Zohaib, S.; Almas, K. The Role of Nutrition in Periodontal Health: An Update. Nutrients 2016, 8, 530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tóthová, L.u.; Celec, P. Oxidative Stress and Antioxidants in the Diagnosis and Therapy of Periodontitis. Front. Physiol. 2017, 8, 1055. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Guo, X.; Wei, W.; Li, R.; Hu, K.; Liu, X.; Jiang, W.; Liu, S.; Wang, W.; Sun, H.; et al. The Association of Fried Meat Consumption With the Gut Microbiota and Fecal Metabolites and Its Impact on Glucose Homoeostasis, Intestinal Endotoxin Levels, and Systemic Inflammation: A Randomized Controlled-Feeding Trial. Diabetes Care 2021, 44, 1970–1979. [Google Scholar] [CrossRef]
- Papier, K.; Hartman, L.; Tong, T.Y.N.; Key, T.J.; Knuppel, A. Higher Meat Intake Is Associated with Higher Inflammatory Markers, Mostly Due to Adiposity: Results from UK Biobank. J. Nutr. 2022, 152, 183–189. [Google Scholar] [CrossRef]
- Shiraseb, F.; Hosseininasab, D.; Mirzababaei, A.; Bagheri, R.; Wong, A.; Suzuki, K.; Mirzaei, K. Red, white, and processed meat consumption related to inflammatory and metabolic biomarkers among overweight and obese women. Front. Nutr. 2022, 9, 1015566. [Google Scholar] [CrossRef]
- Van Woudenbergh, G.J.; Kuijsten, A.; Tigcheler, B.; Sijbrands, E.J.; van Rooij, F.J.; Hofman, A.; Witteman, J.C.; Feskens, E.J. Meat consumption and its association with C-reactive protein and incident type 2 diabetes: The Rotterdam Study. Diabetes Care 2012, 35, 1499–1505. [Google Scholar] [CrossRef] [Green Version]
- Ahsan, M.; Koutroumpakis, F.; Rivers, C.R.; Wilson, A.S.; Johnston, E.; Hashash, J.G.; Barrie, A.; Alchoufete, T.; Babichenko, D.; Tang, G.; et al. High Sugar-Sweetened Beverage Consumption Is Associated with Increased Health Care Utilization in Patients with Inflammatory Bowel Disease: A Multiyear, Prospective Analysis. J. Acad. Nutr. Diet. 2022, 122, 1488–1498.e1481. [Google Scholar] [CrossRef]
- Aeberli, I.; Gerber, P.A.; Hochuli, M.; Kohler, S.; Haile, S.R.; Gouni-Berthold, I.; Berthold, H.K.; Spinas, G.A.; Berneis, K. Low to moderate sugar-sweetened beverage consumption impairs glucose and lipid metabolism and promotes inflammation in healthy young men: A randomized controlled trial. Am. J. Clin. Nutr. 2011, 94, 479–485. [Google Scholar] [CrossRef] [Green Version]
- Hert, K.A.; Fisk, P.S., 2nd; Rhee, Y.S.; Brunt, A.R. Decreased consumption of sugar-sweetened beverages improved selected biomarkers of chronic disease risk among US adults: 1999 to 2010. Nutr. Res. 2014, 34, 58–65. [Google Scholar] [CrossRef]
- Kosova, E.C.; Auinger, P.; Bremer, A.A. The relationships between sugar-sweetened beverage intake and cardiometabolic markers in young children. J. Acad. Nutr. Diet. 2013, 113, 219–227. [Google Scholar] [CrossRef] [Green Version]
- De Koning, L.; Malik, V.S.; Kellogg, M.D.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Sweetened beverage consumption, incident coronary heart disease, and biomarkers of risk in men. Circulation 2012, 125, 1735–1741.s1731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chazelas, E.; Srour, B.; Desmetz, E.; Kesse-Guyot, E.; Julia, C.; Deschamps, V.; Druesne-Pecollo, N.; Galan, P.; Hercberg, S.; Latino-Martel, P.; et al. Sugary drink consumption and risk of cancer: Results from NutriNet-Santé prospective cohort. BMJ 2019, 366, l2408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Costenbader, K.H.; Gao, X.; Al-Daabil, M.; Sparks, J.A.; Solomon, D.H.; Hu, F.B.; Karlson, E.W.; Lu, B. Sugar-sweetened soda consumption and risk of developing rheumatoid arthritis in women. Am. J. Clin. Nutr. 2014, 100, 959–967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, L.P.; Gigante, D.P.; Delpino, F.M.; Maciel, A.P.; Bielemann, R.M. Sugar sweetened beverages intake and risk of obesity and cardiometabolic diseases in longitudinal studies: A systematic review and meta-analysis with 1.5 million individuals. Clin. Nutr. ESPEN 2022, 51, 128–142. [Google Scholar] [CrossRef] [PubMed]
- Sayon-Orea, C.; Martinez-Gonzalez, M.A.; Gea, A.; Alonso, A.; Pimenta, A.M.; Bes-Rastrollo, M. Baseline consumption and changes in sugar-sweetened beverage consumption and the incidence of hypertension: The SUN project. Clin. Nutr. 2015, 34, 1133–1140. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Popkin, B.M.; Bray, G.A.; Després, J.P.; Willett, W.C.; Hu, F.B. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: A meta-analysis. Diabetes Care 2010, 33, 2477–2483. [Google Scholar] [CrossRef] [Green Version]
- Fann, J.C.; Lai, H.; Chiu, S.Y.; Yen, A.M.; Chen, S.L.; Chen, H.H. A population-based study on the association between the intake of soft drinks and periodontal disease in Taiwanese adults aged 35-44 years (KCIS no. 33). Public Health Nutr. 2016, 19, 1471–1478. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.; Dawar, A.; Bhadauria, U.S.; Purohit, B.M.; Nilima, N. Sugar-sweetened beverages and periodontal disease: A systematic review. Oral. Dis. 2022. ahead of print. [Google Scholar] [CrossRef]
- Kusama, T.; Nakazawa, N.; Takeuchi, K.; Kiuchi, S.; Osaka, K. Free Sugar Intake and Periodontal Diseases: A Systematic Review. Nutrients 2022, 14, 4444. [Google Scholar] [CrossRef]
- Song, I.S.; Han, K.; Ko, Y.; Park, Y.G.; Ryu, J.J.; Park, J.B. Associations between the consumption of carbonated beverages and periodontal disease: The 2008-2010 Korea national health and nutrition examination survey. Medicine 2016, 95, e4253. [Google Scholar] [CrossRef]
- Valenzuela, M.J.; Waterhouse, B.; Aggarwal, V.R.; Bloor, K.; Doran, T. Effect of sugar-sweetened beverages on oral health: A systematic review and meta-analysis. Eur. J. Public Health 2020, 31, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Bleich, S.N.; Vercammen, K.A. The negative impact of sugar-sweetened beverages on children’s health: An update of the literature. BMC Obes. 2018, 5, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Zou, Y.; Ding, G. Dietary factors associated with dental erosion: A meta-analysis. PLoS ONE 2012, 7, e42626. [Google Scholar] [CrossRef] [Green Version]
- Lustig, R.H.; Schmidt, L.A.; Brindis, C.D. Public health: The toxic truth about sugar. Nature 2012, 482, 27–29. [Google Scholar] [CrossRef] [PubMed]
- Meier, T.; Christen, O.; Semler, E.; Jahreis, G.; Voget-Kleschin, L.; Schrode, A.; Artmann, M. Balancing virtual land imports by a shift in the diet. Using a land balance approach to assess the sustainability of food consumption. Germany as an example. Appetite 2014, 74, 20–34. [Google Scholar] [CrossRef] [PubMed]
- Paris, J.M.G.; Falkenberg, T.; Nöthlings, U.; Heinzel, C.; Borgemeister, C.; Escobar, N. Changing dietary patterns is necessary to improve the sustainability of Western diets from a One Health perspective. Sci. Total Environ. 2022, 811, 151437. [Google Scholar] [CrossRef]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hébert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef] [Green Version]
- Hébert, J.R.; Shivappa, N.; Wirth, M.D.; Hussey, J.R.; Hurley, T.G. Perspective: The Dietary Inflammatory Index (DII)-Lessons Learned, Improvements Made, and Future Directions. Adv. Nutr. 2019, 10, 185–195. [Google Scholar] [CrossRef]
- Ruiz-Canela, M.; Bes-Rastrollo, M.; Martínez-González, M.A. The Role of Dietary Inflammatory Index in Cardiovascular Disease, Metabolic Syndrome and Mortality. Int. J. Mol. Sci. 2016, 17, 1265. [Google Scholar] [CrossRef] [Green Version]
- Kotsakis, G.A.; Chrepa, V.; Shivappa, N.; Wirth, M.; Hébert, J.; Koyanagi, A.; Tyrovolas, S. Diet-borne systemic inflammation is associated with prevalent tooth loss. Clin. Nutr. 2018, 37, 1306–1312. [Google Scholar] [CrossRef]
- Li, A.; Chen, Y.; Schuller, A.A.; van der Sluis, L.W.M.; Tjakkes, G.E. Dietary inflammatory potential is associated with poor periodontal health: A population-based study. J. Clin. Periodontol. 2021, 48, 907–918. [Google Scholar] [CrossRef]
- Tabung, F.K.; Smith-Warner, S.A.; Chavarro, J.E.; Wu, K.; Fuchs, C.S.; Hu, F.B.; Chan, A.T.; Willett, W.C.; Giovannucci, E.L. Development and Validation of an Empirical Dietary Inflammatory Index. J. Nutr. 2016, 146, 1560–1570. [Google Scholar] [CrossRef] [Green Version]
- Tabung, F.K.; Smith-Warner, S.A.; Chavarro, J.E.; Fung, T.T.; Hu, F.B.; Willett, W.C.; Giovannucci, E.L. An Empirical Dietary Inflammatory Pattern Score Enhances Prediction of Circulating Inflammatory Biomarkers in Adults. J. Nutr. 2017, 147, 1567–1577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colditz, G.A.; Hankinson, S.E. The Nurses’ Health Study: Lifestyle and health among women. Nat. Rev. Cancer 2005, 5, 388–396. [Google Scholar] [CrossRef]
- Alhassani, A.A.; Hu, F.B.; Rosner, B.A.; Tabung, F.K.; Willett, W.C.; Joshipura, K.J. The relationship between inflammatory dietary pattern and incidence of periodontitis. Br. J. Nutr. 2021, 126, 1698–1708. [Google Scholar] [CrossRef]
- Wang, V.H.; Foster, V.; Yi, S.S. Are recommended dietary patterns equitable? Public Health Nutr. 2022, 25, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, M.Á.; Hershey, M.S.; Zazpe, I.; Trichopoulou, A. Transferability of the Mediterranean Diet to Non-Mediterranean Countries. What Is and What Is Not the Mediterranean Diet. Nutrients 2017, 9, 1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bragazzi, N.L.; Pechkova, E.; Nicolini, C. Chapter Four—Proteomics and Proteogenomics Approaches for Oral Diseases. In Advances in Protein Chemistry and Structural Biology; Donev, R., Ed.; Academic Press: Cambridge, MA, USA, 2014; Volume 95, pp. 125–162. [Google Scholar]
- Zhu, Y.; Hollis, J.H. Tooth loss and its association with dietary intake and diet quality in American adults. J. Dent. 2014, 42, 1428–1435. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, M.; Yoshihara, A.; Ogawa, H.; Sato, M.; Muramatsu, K.; Watanabe, R.; Ansai, T.; Miyazaki, H. Longitudinal association of dentition status with dietary intake in Japanese adults aged 75 to 80 years. J. Oral. Rehabil. 2016, 43, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.; Suzuki, T.; Kumagai, S.; Shinkai, S.; Yukawa, H. Risk factors for dietary variety decline among Japanese elderly in a rural community: A 8-year follow-up study from TMIG-LISA. Eur. J. Clin. Nutr. 2006, 60, 305–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendonça, D.D.; Furtado, M.V.; Sarmento, R.A.; Nicoletto, B.B.; Souza, G.C.; Wagner, T.P.; Christofoli, B.R.; Polanczyk, C.A.; Haas, A.N. Periodontitis and tooth loss have negative impact on dietary intake: A cross-sectional study with stable coronary artery disease patients. J. Periodontol. 2019, 90, 1096–1105. [Google Scholar] [CrossRef] [PubMed]
- Haftenberger, M.; Heuer, T.; Heidemann, C.; Kube, F.; Krems, C.; Mensink, G.B.M. Relative validation of a food frequency questionnaire for national health and nutrition monitoring. Nutr. J. 2010, 9, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroke, A.; Klipstein-Grobusch, K.; Voss, S.; Möseneder, J.; Thielecke, F.; Noack, R.; Boeing, H. Validation of a self-administered food-frequency questionnaire administered in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study: Comparison of energy, protein, and macronutrient intakes estimated with the doubly labeled water, urinary nitrogen, and repeated 24-h dietary recall methods. Am. J. Clin. Nutr. 1999, 70, 439–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clovis, J.B.; Horowitz, A.M.; Kleinman, D.V.; Wang, M.Q.; Massey, M. Maryland dental hygienists’ knowledge, opinions and practices regarding dental caries prevention and early detection. J. Dent. Hyg. 2012, 86, 292–305. [Google Scholar]
- Touger-Decker, R.; Mobley, C. Approaches to Curriculum Development in Nutrition and Dental Education. In Nutrition and Oral Medicine; Nutrition and Health; Touger-Decker, R., Mobley, C., Epstein, J., Eds.; Humana Press: Totowa, NJ, USA, 2014. [Google Scholar] [CrossRef]
Characteristics | Overall, N = 6209 1 | Periodontitis | p-Value 2 | ||
---|---|---|---|---|---|
None/Mild N = 1453 (23%) 1 | Moderate N = 3580 (58%) 1 | Severe N = 1176 (19%) 1 | |||
Sociodemographics | |||||
Sex | <0.001 | ||||
Male | 3057 (49%) | 575 (40%) | 1766 (49%) | 716 (61%) | |
Female | 3152 (51%) | 878 (60%) | 1814 (51%) | 460 (39%) | |
Age (in years) | 62.0 (55.0,69.0) | 59.0 (52.0,66.0) | 63.0 (55.0, 69.0) | 66.0 (59.0, 71.0) | <0.001 |
Education | <0.001 | ||||
Low | 269 (4.5%) | 45 (3.2%) | 164 (4.8%) | 60 (5.4%) | |
Medium | 2921 (49%) | 660 (47%) | 1673 (49%) | 588 (53%) | |
High | 2726 (46%) | 686 (49%) | 1579 (46%) | 461 (42%) | |
(Missing) | 293 | 62 | 164 | 67 | |
Risk factors | |||||
BMI (kg/m2) | 26.0 (23.5, 29.0) | 25.6 (23.0, 28.7) | 26.0 (23.5, 29.0) | 26.4 (24.1, 29.7) | <0.001 |
(Missing) | 321 | 83 | 170 | 68 | |
Smoking (current) | 1136 (18%) | 235 (16%) | 608 (17%) | 293 (25%) | <0.001 |
(Missing) | 34 | 5 | 22 | 7 | |
Diabetes (yes) | 449 (7.8%) | 85 (6.2%) | 242 (7.4%) | 122 (11%) | <0.001 |
(Missing) | 464 | 75 | 294 | 95 | |
Hypertension (yes) | 3844 (65%) | 768 (55%) | 2266 (66%) | 810 (72%) | <0.001 |
(Missing) | 274 | 52 | 164 | 58 | |
Biomarker | |||||
IL6 (mg/L) | 1.57 (1.14, 2.20) | 1.45 (1.01, 2.04) | 1.55 (1.15, 2.16) | 1.77 (1.33, 2.63) | <0.001 |
(Missing) | 3014 | 682 | 1746 | 586 | |
hsCRP (mg/dL) | 0.120 (0.060, 0.250) | 0.100 (0.060, 0.230) | 0.110 (0.060, 0.250) | 0.130 (0.070, 0.300) | <0.001 |
(Missing) | 374 | 92 | 222 | 60 | |
LDL cholesterol (mg/dL) | 121.0 (96.0, 146.0) | 118.0 (96.0, 145.5) | 122.0 (97.0, 145.0) | 121.0 (93.8, 146.0) | 0.161 |
(Missing) | 237 | 46 | 143 | 48 | |
HDL Cholesterol (mg/dL) | 85.0 (75.0, 97.0) | 87.0 (77.0, 99.0) | 85.0 (75.0, 97.0) | 84.0 (74.0, 97.0) | <0.001 |
(Missing) | 237 | 46 | 143 | 48 | |
Medication intake | |||||
Hypertension medication (yes) | 1890 (32%) | 371 (26%) | 1109 (33%) | 410 (37%) | <0.001 |
(Missing) | 264 | 34 | 169 | 61 | |
Lipid lowering Medication Lipid (yes) | 1014 (17%) | 200 (14%) | 567 (17%) | 247 (22%) | <0.001 |
(Missing) | 264 | 34 | 169 | 61 | |
Dietary parameters | |||||
Total energy (kcal/day) | 2035.1 (1617.0, 2582.0) | 1989.2 (1568.7, 2543.3) | 2047.6 (1628.7, 2593.7) | 2068.9 (1639.3, 2602.3) | 0.057 |
(Missing) | 566 | 125 | 316 | 125 | |
Anti-inflammatory dietary score (Score 0–9 points) | 4.5 (4.0,5.5) | 5.0 (4.0,6.0) | 5.0 (4.0,5.5) | 4.5 (3.5,5.5) | <0.001 |
(Missing) | 567 | 126 | 316 | 125 | |
Physical parameters | |||||
Physical activity (yes, ≥1 hour/week) | 3926 (72%) | 983 (75%) | 2286 (72%) | 657 (65%) | <0.001 |
(Missing) | 733 | 151 | 422 | 160 | |
Sport hour per week | 2.0 (0.0, 4.0) | 2.0 (0.4, 4.0) | 2.0 (0.0, 4.0) | 2.0 (0.0, 3.5) | <0.001 |
(Missing) | 733 | 151 | 422 | 160 | |
Dental parameters | |||||
DMFT Index | 19.0 (15.0, 23.0) | 17.0 (14.0, 21.0) | 19.0 (16.0, 23.0) | 21.0 (17.0, 24.2) | <0.001 |
BOP Index (%) | 7.7 (1.9, 20.4) | 2.1 (0.0, 7.1) | 8.3 (2.2, 19.2) | 21.1 (9.3, 41.7) | <0.001 |
(Missing) | 101 | 47 | 51 | 3 | |
Plaque index (%) | 7.9 (0.0, 27.8) | 0.0 (0.0,10.7) | 8.9 (0.0, 27.8) | 22.0 (5.8, 54.8) | <0.001 |
(Missing) | 86 | 8 | 53 | 25 | |
Mean CAL (mm) | 2.4 (2.0, 2.8) | 1.8 (1.6, 2.1) | 2.4 (2.2, 2.7) | 3.3 (2.9, 3.9) | <0.001 |
(Missing) | 5 | 1 | 3 | 1 | |
Sites/mouth CAL ≥ 3 mm (%) | 36.5 (19.8, 57.4) | 12.5 (6.5,20.8) | 38.7 (25.6, 53.6) | 68.5 (53.2, 83.3) | <0.001 |
(Missing) | 5 | 1 | 3 | 1 |
Characteristics | Overall, N = 5642 1 | Anti-Inflammatory Dietary Score | p-Value 2 | |
---|---|---|---|---|
Low N = 2838 (50%) 1 | High N = 2804 (50%) 1 | |||
Dental parameters | ||||
DMFT Index | 19.0 (15.0, 23.0) | 19.0 (16.0, 23.0) | 19.0 (15.0, 22.0) | <0.001 |
BOP Index (%) | 7.7 (1.9, 20.0) | 8.9 (2.1, 21.4) | 7.1 (1.9, 18.5) | <0.001 |
(Missing) | 78 | 29 | 49 | |
Plaque index (%) | 7.7 (0.0, 27.1) | 10.4 (0.0, 32.1) | 5.4 (0.0, 22.0) | <0.001 |
(Missing) | 80 | 40 | 40 | |
Mean CAL (mm) | 2.4 (2.0, 2.8) | 2.4 (2.1, 2.9) | 2.3 (2.0, 2.7) | <0.001 |
(Missing) | 2 | 0 | 2 | |
Sites/mouth CAL ≥ 3 mm (%) | 36.3 (19.6, 57.1) | 38.6 (20.8, 60.5) | 34.3 (18.5, 53.2) | <0.001 |
(Missing) | 2 | 0 | 2 | |
Periodontitis | <0.001 | |||
None/mild | 1327 (24%) | 607 (21%) | 720 (26%) | |
Moderate | 3264 (58%) | 1619 (57%) | 1645 (59%) | |
Severe | 1051 (19%) | 612 (22%) | 439 (16%) |
Model 1 | Model 2 | Model 3 | Model 4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Predictors | Odds Ratios | CI | p | Odds Ratios | CI | p | Odds Ratios | CI | p | Odds Ratios | CI | p |
Anti-inflammatory dietary score | 0.86 | 0.82–0.89 | <0.001 | 0.90 | 0.86–0.94 | <0.001 | 0.92 | 0.88–0.97 | 0.001 | 0.93 | 0.89–0.98 | 0.003 |
Age | 1.05 | 1.04–1.06 | <0.001 | 1.05 | 1.04–1.06 | <0.001 | 1.05 | 1.04–1.06 | <0.001 | |||
Sex (female) | 0.67 | 0.60–0.75 | <0.001 | 0.68 | 0.60–0.76 | <0.001 | 0.68 | 0.60–0.76 | <0.001 | |||
Smoking (yes) | 1.67 | 1.44–1.94 | <0.001 | 1.65 | 1.42–1.92 | <0.001 | ||||||
Diabetes (yes) | 1.04 | 0.84–1.29 | 0.702 | 1.00 | 0.80–1.24 | 0.978 | ||||||
Hypertension (yes) | 1.21 | 1.07–1.37 | 0.002 | 1.25 | 1.11–1.42 | <0.001 | ||||||
Physical activity (yes) | 0.92 | 0.81–1.04 | 0.196 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lieske, B.; Moszka, N.; Borof, K.; Petersen, E.L.; Jagemann, B.; Ebinghaus, M.; Beikler, T.; Heydecke, G.; Aarabi, G.; Zyriax, B.-C. Association between an Anti-Inflammatory Dietary Score and Periodontitis—Evidence from the Population-Based Hamburg City Health Study. Nutrients 2023, 15, 3235. https://doi.org/10.3390/nu15143235
Lieske B, Moszka N, Borof K, Petersen EL, Jagemann B, Ebinghaus M, Beikler T, Heydecke G, Aarabi G, Zyriax B-C. Association between an Anti-Inflammatory Dietary Score and Periodontitis—Evidence from the Population-Based Hamburg City Health Study. Nutrients. 2023; 15(14):3235. https://doi.org/10.3390/nu15143235
Chicago/Turabian StyleLieske, Berit, Nina Moszka, Katrin Borof, Elina Larissa Petersen, Bettina Jagemann, Merle Ebinghaus, Thomas Beikler, Guido Heydecke, Ghazal Aarabi, and Birgit-Christiane Zyriax. 2023. "Association between an Anti-Inflammatory Dietary Score and Periodontitis—Evidence from the Population-Based Hamburg City Health Study" Nutrients 15, no. 14: 3235. https://doi.org/10.3390/nu15143235
APA StyleLieske, B., Moszka, N., Borof, K., Petersen, E. L., Jagemann, B., Ebinghaus, M., Beikler, T., Heydecke, G., Aarabi, G., & Zyriax, B. -C. (2023). Association between an Anti-Inflammatory Dietary Score and Periodontitis—Evidence from the Population-Based Hamburg City Health Study. Nutrients, 15(14), 3235. https://doi.org/10.3390/nu15143235