Dietary Diversity and Its Contribution to the Magnitude of Anaemia among Pregnant Women: Evidence from Rural Areas of Western China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
Sampling
2.2. Data Collection
2.2.1. Dietary Diversity
2.2.2. Sociodemographic and Maternal Characteristics
2.2.3. Haemoglobin Concentrations
2.3. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Anaemia Status: Measured Versus Self-Reported Rates
3.3. Dietary Diversity
3.4. Associations of Sociodemographic and Maternal Factors and Women’s Dietary Diversity Score with Measured Anaemia Status
3.5. Multivariate Analyses for the Associations between Women’s Dietary Diversity Score, Anaemia Status, and Hb Concentrations
4. Discussion
4.1. Prenatal Anaemia Prevalence
4.2. Measured Versus Self-Reported Anaemia Status
4.3. Dietary Intake
4.4. Associations between WDDS Tercile and Anaemia
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Consumption by Food Group (Not Consumed = No, Consumed = Yes) | Low-WDDS Group (%) (n = 298) | Medium-WDDS Group (%) (n = 250) | High-WDDS Group (%) (n = 421) | p Value |
---|---|---|---|---|
Starchy staples | ||||
No | 3 (1.0) | 3 (1.2) | 2 (0.5) | |
Yes | 295 (99.0) | 247 (98.8) | 419 (99.5) | 0.55 |
Dark green leafy vegetables | ||||
No | 127 (42.6) | 48 (19.2) | 23 (5.5) | |
Yes | 171 (57.4) | 202 (80.8) | 398 (94.5) | <0.001 |
Other vitamin A-rich fruits and vegetables | ||||
No | 106 (35.6) | 55 (22.0) | 13 (3.1) | |
Yes | 192 (64.4) | 195 (78.0) | 408 (96.9) | <0.001 |
Other fruit and vegetables | ||||
No | 115 (38.6) | 42 (16.8) | 28 (6.7) | |
Yes | 183 (61.4) | 208 (83.2) | 393 (93.3) | <0.001 |
Organ meat | ||||
No | 289 (97.0) | 232 (92.8) | 338 (80.3) | |
Yes | 9 (3.0) | 18 (7.2) | 83 (19.7) | <0.001 |
Meat and fish | ||||
No | 66 (22.1) | 17 (6.8) | 9 (2.1) | |
Yes | 232 (77.9) | 233 (93.2) | 412 (97.9) | <0.001 |
Eggs | ||||
No | 181 (60.7) | 58 (23.2) | 28 (6.7) | |
Yes | 117 (39.3) | 192 (76.8) | 393 (93.3) | <0.001 |
Legumes, nuts, and seeds | ||||
No | 231 (77.5) | 163 (65.2) | 114 (27.1) | |
Yes | 67 (22.5) | 87 (34.8) | 307 (72.9) | <0.001 |
Milk and milk products | ||||
No | 225 (75.5) | 132 (52.8) | 93 (22.1) | |
Yes | 73 (24.5) | 118 (47.2) | 328 (77.9) | <0.001 |
Variables | Haemoglobin | |||
---|---|---|---|---|
WDDS (Low) | WDDS (Medium) | WDDS (High) | p for Interaction | |
Age | ||||
<25 | 1 (reference) | 4.03 [−0.36, 8.43] | 6.67 [2.12, 11.23] | 0.126 |
[25–29] | 1 (reference) | −0.60 [−3.81, 2.61] | 0.87 [−2.60, 4.34] | |
≥30 | 1 (reference) | −0.63 [−4.77, 3.52] | 0.19 [−3.32, 3.70] | |
Parity | ||||
Primigravida | 1 (reference) | 3.75 [0.03, 7.48] | 5.24 [1.50, 8.98] | 0.029 |
Multigravida | 1 (reference) | 1.02 [−1.64, 3.66] | 0.64 [−2.07, 3.35] | |
Gestational age | ||||
Second trimester | 1 (reference) | 2.19 [−0.64, 5.03] | 2.65 [−0.31, 5.61] | 0.559 |
Third trimester | 1 (reference) | −0.29 [−3.20, 2.61] | 1.66 [−1.24, 4.57] | |
Iron supplements taken during pregnancy | ||||
No | 1 (reference) | 3.29 [0.35, 6.22] | 3.76 [0.74, 6.78] | 0.151 |
Yes | 1 (reference) | −1.01 [−3.71, 1.68] | 0.88 [−1.52, 3.28] | |
Folic acid supplements taken during pregnancy | ||||
No | 1 (reference) | 1.84 [−5.41, 9.09] | 2.15 [−3.45, 7.76] | 0.844 |
Yes | 1 (reference) | 0.65 [−3.45, 7.76] | 2.16 [−0.20, 4.51] |
References
- Balarajan, Y.; Ramakrishnan, U.; Özaltin, E.; Shankar, A.H.; Subramanian, S. Anaemia in Low-Income and Middle-Income Countries. Lancet 2011, 378, 2123–2135. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Anaemia. Available online: https://www.who.int/health-topics/anaemia (accessed on 24 July 2022).
- Stevens, G.A.; Paciorek, C.J.; Flores-Urrutia, M.C.; Borghi, E.; Namaste, S.; Wirth, J.P.; Suchdev, P.S.; Ezzati, M.; Rohner, F.; Flaxman, S.R.; et al. National, Regional, and Global Estimates of Anaemia by Severity in Women and Children for 2000-19: A Pooled Analysis of Population-Representative Data. Lancet Glob. Health 2022, 10, e627–e639. [Google Scholar] [CrossRef] [PubMed]
- Haider, B.A.; Olofin, I.; Wang, M.; Spiegelman, D.; Ezzati, M.; Fawzi, W.W. Nutrition Impact Model Study Group (Anaemia). Anaemia, Prenatal Iron Use, and Risk of Adverse Pregnancy Outcomes: Systematic Review and Meta-Analysis. BMJ 2013, 346, f3443. [Google Scholar] [CrossRef]
- Iqbal, S.; Ekmekcioglu, C. Maternal and Neonatal Outcomes Related to Iron Supplementation or Iron Status: A Summary of Meta-Analyses. J. Matern. Fetal Neonatal Med. 2019, 32, 1528–1540. [Google Scholar] [CrossRef]
- Qiao, J.; Wang, Y.; Li, X.; Jiang, F.; Zhang, Y.; Ma, J.; Song, Y.; Ma, J.; Fu, W.; Pang, R.; et al. A Lancet Commission on 70 Years of Women’s Reproductive, Maternal, Newborn, Child, and Adolescent Health in China. Lancet 2021, 397, 2497–2536. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Huang, A.; Yang, Q.; Zhao, W.; Ma, Y.; Di, J. Prevalence and Risk Factors of Anemia of Pregnant Women—6 Provinces in China, 2014–2018. China CDC Wkly. 2020, 2, 225–229. [Google Scholar] [CrossRef]
- Zhao, S.Y.; Jing, W.Z.; Liu, J.; Liu, M. Prevalence of anemia during pregnancy in China, 2012–2016: A Meta-analysis. Zhonghua Yu Fang Yi Xue Za Zhi 2018, 52, 951–957. [Google Scholar] [CrossRef]
- The General Office of the State Council. National Nutrition Plan (2017–2030). Available online: http://www.gov.cn/xinwen/2017-07/13/content_5210199.htm (accessed on 7 January 2022).
- The Central People’s Government of the People’s Republic of China. Healthy China Action Plan (2019–2030). Available online: http://www.gov.cn/xinwen/2019-07/15/content_5409694.htm (accessed on 7 January 2022).
- Lopez, A.; Cacoub, P.; Macdougall, I.C.; Peyrin-Biroulet, L. Iron Deficiency Anaemia. Lancet 2016, 387, 907–916. [Google Scholar] [CrossRef]
- World Health Organization. Nutritional Anaemias: Tools for Effective Prevention and Control. Available online: https://www.who.int/publications-detail-redirect/9789241513067 (accessed on 11 July 2022).
- Brazier, A.K.M.; Lowe, N.M.; Zaman, M.; Shahzad, B.; Ohly, H.; McArdle, H.J.; Ullah, U.; Broadley, M.R.; Bailey, E.H.; Young, S.D.; et al. Micronutrient Status and Dietary Diversity of Women of Reproductive Age in Rural Pakistan. Nutrients 2020, 12, 3407. [Google Scholar] [CrossRef]
- Lee, S.E.; Talegawkar, S.A.; Merialdi, M.; Caulfield, L.E. Dietary Intakes of Women during Pregnancy in Low- and Middle-Income Countries. Public Health Nutr. 2013, 16, 1340–1353. [Google Scholar] [CrossRef]
- Zerfu, T.A.; Umeta, M.; Baye, K. Dietary Diversity during Pregnancy Is Associated with Reduced Risk of Maternal Anemia, Preterm Delivery, and Low Birth Weight in a Prospective Cohort Study in Rural Ethiopia. Am. J. Clin. Nutr. 2016, 103, 1482–1488. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Dibley, M.J.; Zhang, X.; Zeng, L.; Yan, H. Assessment of Dietary Intake among Pregnant Women in a Rural Area of Western China. BMC Public Health 2009, 9, 222. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Gao, Y.; Li, J.; Sun, A.; Wang, B.; Zhang, J.; Dill, S.-E.; Medina, A.; Rozelle, S. Maternal Health Behaviors during Pregnancy in Rural Northwestern China. BMC Pregnancy Childbirth 2020, 20, 745. [Google Scholar] [CrossRef] [PubMed]
- Kangalgil, M.; Sahinler, A.; Kırkbir, I.B.; Ozcelik, A.O. Associations of Maternal Characteristics and Dietary Factors with Anemia and Iron-Deficiency in Pregnancy. J. Gynecol. Obstet. Hum. Reprod. 2021, 50, 102137. [Google Scholar] [CrossRef]
- Rezk, M.; Marawan, H.; Dawood, R.; Masood, A.; Abo-Elnasr, M. Prevalence and Risk Factors of Iron-Deficiency Anaemia among Pregnant Women in Rural Districts of Menoufia Governorate, Egypt. J. Obstet. Gynaecol. 2015, 35, 663–666. [Google Scholar] [CrossRef] [PubMed]
- Nasir, B.B.; Fentie, A.M.; Adisu, M.K. Adherence to Iron and Folic Acid Supplementation and Prevalence of Anemia among Pregnant Women Attending Antenatal Care Clinic at Tikur Anbessa Specialized Hospital, Ethiopia. PLoS ONE 2020, 15, e0232625. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Guidelines for Measuring Household and Individual Dietary Diversity. Available online: https://www.fao.org/agrifood-economics/publications/detail/en/c/122321/ (accessed on 15 August 2023).
- Hoddinott, J.; Yohannes, Y. Dietary Diversity as a Food Security Indicator; FCND Discussion Papers; International Food Policy Research Institute (IFPRI), 2002; Available online: https://ideas.repec.org/p/fpr/fcnddp/136.html (accessed on 15 August 2023).
- Arimond, M.; Wiesmann, D.; Becquey, E.; Carriquiry, A.; Daniels, M.C.; Deitchler, M.; Fanou-Fogny, N.; Joseph, M.L.; Kennedy, G.; Martin-Prevel, Y.; et al. Simple Food Group Diversity Indicators Predict Micronutrient Adequacy of Women’s Diets in 5 Diverse, Resource-Poor Settings. J. Nutr. 2010, 140, 2059S–2069S. [Google Scholar] [CrossRef]
- Wang, S.; Liu, A.; Guo, W. Public and Commercial Medical Insurance Enrollment Rates of Rural-to-Urban Migrants in China. Front. Public Health 2021, 9, 749330. [Google Scholar] [CrossRef]
- Savy, M.; Martin-Prével, Y.; Sawadogo, P.; Kameli, Y.; Delpeuch, F. Use of Variety/Diversity Scores for Diet Quality Measurement: Relation with Nutritional Status of Women in a Rural Area in Burkina Faso. Eur. J. Clin. Nutr. 2005, 59, 703–716. [Google Scholar] [CrossRef]
- Alamirew, S.K.; Lemke, S.; Stadlmayr, B.; Freyer, B. Dietary Behaviour and Sociocultural Determinants of Dietary Diversity among Rural Women of Reproductive Age: A Case of Amhara Region, Ethiopia. Nutrients 2023, 15, 3369. [Google Scholar] [CrossRef]
- Xu, H.; Du, S.; Liu, A.; Zhang, Q.; Ma, G. Low Dietary Diversity for Recommended Food Groups Increases the Risk of Obesity among Children: Evidence from a Chinese Longitudinal Study. Nutrients 2022, 14, 4068. [Google Scholar] [CrossRef] [PubMed]
- Vyas, S.; Kumaranayake, L. Constructing Socio-Economic Status Indices: How to Use Principal Components Analysis. Health Policy Plan. 2006, 21, 459–468. [Google Scholar] [CrossRef] [PubMed]
- von Schenck, H.; Falkensson, M.; Lundberg, B. Evaluation of “HemoCue”, a New Device for Determining Hemoglobin. Clin. Chem. 1986, 32, 526–529. [Google Scholar] [CrossRef] [PubMed]
- Kheirouri, S.; Alizadeh, M. Maternal Dietary Diversity during Pregnancy and Risk of Low Birth Weight in Newborns: A Systematic Review. Public Health Nutr. 2021, 24, 4671–4681. [Google Scholar] [CrossRef]
- World Health Organization. World Health Organization Worldwide Prevalence of Anaemia 1993–2005: WHO Global Database on Anaemia; World Health Organization: Geneva, Switzerland, 2008.
- World Health Organization. Prevalence of Anaemia in Pregnant Women (Aged 15–49) (%). Available online: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/prevalence-of-anaemia-in-pregnant-women-(-) (accessed on 12 December 2021).
- Gao, Y.; Zhou, H.; Singh, N.S.; Powell-Jackson, T.; Nash, S.; Yang, M.; Guo, S.; Fang, H.; Alvarez, M.M.; Liu, X.; et al. Progress and Challenges in Maternal Health in Western China: A Countdown to 2015 National Case Study. Lancet Glob. Health 2017, 5, e523–e536. [Google Scholar] [CrossRef]
- Chang, J.L.; Wang, Y. Reports of China Nutrition and Health Survey (2010–2013); People’s Health Publishing House: Beijing, China, 2016. [Google Scholar]
- Liu, Y.; Feng, X.; Luo, B. Investigation on the dietary behaviors of pregnant women in rural areas of poverty-stricken counties in Sichuan Province. Matern. Child Health Care China 2016, 31, 3823–3827. [Google Scholar]
- Yang, C.; Zhao, A.; Lan, H.; Ren, Z.; Zhang, J.; Szeto, I.M.-Y.; Wang, P.; Zhang, Y. Association between Dietary Quality and Postpartum Depression in Lactating Women: A Cross-Sectional Survey in Urban China. Front. Nutr. 2021, 8, 705353. [Google Scholar] [CrossRef]
- Yamashita, T.; Roces, R.E.D.; Ladines-Llave, C.; Tuliao, M.T.R.; Kamau, M.W.; Yamada, C.; Tanaka, Y.; Shimazawa, K.; Iwamoto, S.; Matsuo, H. Dietary Intake Quality Is Affected by Knowledge and Dietary Intake Frequency among Pregnant Women in Muntinlupa, Philippines: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2021, 18, 12306. [Google Scholar] [CrossRef]
- Jugha, V.T.; Anchang-Kimbi, J.K.; Anchang, J.A.; Mbeng, K.A.; Kimbi, H.K. Dietary Diversity and Its Contribution in the Etiology of Maternal Anemia in Conflict Hit Mount Cameroon Area: A Cross-Sectional Study. Front. Nutr. 2021, 7, 625178. [Google Scholar] [CrossRef]
- Saaka, M.; Oladele, J.; Larbi, A.; Hoeschle-Zeledon, I. Dietary Diversity Is Not Associated with Haematological Status of Pregnant Women Resident in Rural Areas of Northern Ghana. J. Nutr. Metab. 2017, 2017, 8497892. [Google Scholar] [CrossRef]
- Ali, F.; Thaver, I.; Khan, S.A. Assessment of Dietary Diversity and Nutritional Status of Pregnant Women in Islamabad, Pakistan. J. Ayub Med. Coll. Abbottabad 2014, 26, 506–509. [Google Scholar] [PubMed]
- Péneau, S.; Dauchet, L.; Vergnaud, A.-C.; Estaquio, C.; Kesse-Guyot, E.; Bertrais, S.; Latino-Martel, P.; Hercberg, S.; Galan, P. Relationship between Iron Status and Dietary Fruit and Vegetables Based on Their Vitamin C and Fiber Content. Am. J. Clin. Nutr. 2008, 87, 1298–1305. [Google Scholar] [CrossRef]
- Delpisheh, A.; Attia, E.; Drammond, S.; Brabin, B.J. Adolescent Smoking in Pregnancy and Birth Outcomes. Eur. J. Public Health 2006, 16, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Ye, H.; Liu, J.; Ma, Q.; Yuan, Y.; Pang, Q.; Liu, J.; Kong, C.; Liu, M. Prevalence of Anemia and Sociodemographic Characteristics among Pregnant and Non-Pregnant Women in Southwest China: A Longitudinal Observational Study. BMC Pregnancy Childbirth 2020, 20, 535. [Google Scholar] [CrossRef] [PubMed]
- Agbozo, F.; Abubakari, A.; Der, J.; Jahn, A. Maternal Dietary Intakes, Red Blood Cell Indices and Risk for Anemia in the First, Second and Third Trimesters of Pregnancy and at Predelivery. Nutrients 2020, 12, 777. [Google Scholar] [CrossRef]
- Jin, Y.; Talegawkar, S.A.; Sedlander, E.; DiPietro, L.; Parida, M.; Ganjoo, R.; Aluc, A.; Rimal, R. Dietary Diversity and Its Associations with Anemia among Women of Reproductive Age in Rural Odisha, India. Ecol. Food Nutr. 2022, 61, 304–318. [Google Scholar] [CrossRef]
Variables | N | Percent |
---|---|---|
Sociodemographic Characteristics | ||
Age | ||
16–24 | 243 | 25.1 |
25–29 | 391 | 40.4 |
30–45 | 335 | 34.6 |
Education level | ||
Primary school or below | 142 | 14.7 |
Junior high school | 435 | 44.9 |
Senior high school | 232 | 23.9 |
College and above | 160 | 16.5 |
Has a primary occupation | ||
No | 767 | 79.2 |
Yes | 202 | 20.8 |
SES index | ||
Low | 304 | 31.4 |
Medium | 292 | 30.1 |
High | 373 | 38.5 |
Family size | ||
≤4 | 517 | 53.3 |
≥5 | 452 | 46.7 |
Maternal Characteristics | ||
Gestational stage | ||
Second trimester | 425 | 43.9 |
Third trimester | 544 | 56.1 |
Parity | ||
Primigravida | 331 | 34.2 |
Multigravida | 638 | 65.8 |
Iron supplements taken during pregnancy | ||
No | 586 | 60.5 |
Yes | 383 | 39.5 |
Folic acid supplements taken during pregnancy | ||
No | 106 | 10.9 |
Yes | 863 | 89.1 |
Variables | No Anaemia (n = 443) | Mild Anaemia (n = 277) | Moderate to Severe Anaemia (n = 249) | p Value |
---|---|---|---|---|
Sociodemographic Characteristics | ||||
Age | ||||
16–24 | 111 (25.1) | 67 (24.2) | 65 (26.1) | 0.099 |
25–29 | 176 (39.7) | 128 (46.2) | 87 (34.9) | |
30–45 | 156 (35.2) | 82 (29.6) | 97 (39.0) | |
Education level | ||||
Primary school or below | 57 (12.9) | 32 (11.6) | 53 (21.3) | 0.025 |
Junior high school | 193 (43.6) | 134 (48.4) | 108 (43.4) | |
Senior high school | 113 (25.5) | 64 (23.1) | 55 (22.1) | |
College and above | 80 (18.1) | 47 (17.0) | 33 (13.3) | |
Has a primary occupation | ||||
No | 336 (75.8) | 225 (81.2) | 206 (82.7) | 0.061 |
Yes | 107 (24.2) | 52 (18.8) | 43 (17.3) | |
SES index | ||||
Low | 136 (30.7) | 83 (30.0) | 85 (34.1) | 0.720 |
Medium | 129 (29.1) | 88 (31.8) | 75 (30.1) | |
High | 178 (40.2) | 106 (38.3) | 89 (35.7) | |
Maternal Characteristics | ||||
Gestational age | ||||
Second trimester | 210 (47.4) | 122 (44.0) | 93 (37.3) | 0.038 |
Third trimester | 233 (52.6) | 155 (56.0) | 156 (62.7) | |
Parity | ||||
Primigravida | 173 (39.1) | 87 (31.4) | 71 (28.5) | 0.010 |
Multigravida | 270 (60.9) | 190 (68.6) | 178 (71.5) | |
Iron supplements taken during pregnancy | ||||
Yes | 181 (40.9) | 108 (39.0) | 94 (37.8) | 0.71 |
No | 262 (59.1) | 169 (61.0) | 155 (62.2) | |
Folic acid supplements taken during pregnancy | ||||
Yes | 31 (7.0) | 32 (11.6) | 43 (17.3) | <0.001 |
No | 412 (93.0) | 245 (88.4) | 206 (82.7) | |
WDDS | ||||
By mean (SD) | 6.3 (1.4) | 6.2 (1.4) | 6.0 (1.4) | 0.014 |
By terciles | ||||
Low | 118 (26.6) | 89 (32.1) | 91 (36.5) | 0.029 |
Medium | 123 (27.8) | 61 (22.0) | 66 (26.5) | |
High | 202 (45.6) | 127 (45.8) | 92 (36.9) |
Variables | Mild Anaemia | Moderate–Severe Anaemia | ||||||
---|---|---|---|---|---|---|---|---|
WDDS (Low) | WDDS (Medium) | WDDS (High) | p for Interaction | WDDS (Low) | WDDS (Medium) | WDDS (High) | p for Interaction | |
Age | ||||||||
<25 | 1 (reference) | 0.84 (0.34, 2.08) | 0.75 (0.34, 1.69) | 0.854 | 1 (reference) | 0.39 (0.16, 0.91) | 0.30 (0.14, 0.70) | 0.022 |
(25–29) | 1 (reference) | 0.72 (0.36, 1.45) | 1.19 (0.63, 2.27) | 1 (reference) | 0.96 (0.49, 1.89) | 0.83 (0.37, 1.84) | ||
≥30 | 1 (reference) | 0.53 (0.25, 1.16) | 0.87 (0.45, 1.71) | 1 (reference) | 1.05 (0.50, 2.19) | 1.01 (0.51, 2.00) | ||
Parity | ||||||||
Primigravida | 1 (reference) | 0.81 (0.36, 1.83) | 0.77 (0.38, 1.54) | 0.295 | 1 (reference) | 0.46 (0.21, 1.01) | 0.37 (0.19, 0.70) | 0.012 |
Multigravida | 1 (reference) | 0.61 (0.32, 1.14) | 1.19 (0.73, 1.95) | 1 (reference) | 0.76 (0.46–1.26) | 0.89 (0.49–1.61) | ||
Gestational age | ||||||||
Second trimester | 1 (reference) | 0.55 (0.28, 1.08) | 0.93 (0.51, 1.68) | 0.956 | 1 (reference) | 0.54 (0.30, 0.99) | 0.55 (0.30, 0.98) | 0.573 |
Third trimester | 1 (reference) | 0.78 (0.43, 1.41) | 0.97 (0.50, 1.69) | 1 (reference) | 0.93 (0.56, 1.57) | 0.76 (0.44, 1.31) | ||
Iron supplements taken during pregnancy | ||||||||
No | 1 (reference) | 0.51 (0.27, 0.96) | 0.92 (0.50, 1.69) | 0.867 | 1 (reference) | 0.47 (0.26, 0.85) | 0.52 (0.27, 0.99) | 0.248 |
Yes | 1 (reference) | 0.84 (0.46, 1.54) | 0.96 (0.59, 1.56) | 1 (reference) | 1.00 (0.59, 1.70) | 0.79 (0.47, 1.34) | ||
Folic acid supplements taken during pregnancy | ||||||||
No | 1 (reference) | 1.91 (0.50, 7.29) | 1.27 (0.34, 4.71) | 0.943 | 1 (reference) | 0.91 (0.21, 3.97) | 1.33 (0.37, 4.72) | 0.744 |
Yes | 1 (reference) | 0.68 (0.42, 1.08) | 0.91 (0.61, 1.36) | 1 (reference) | 0.75 (0.48, 1.17) | 0.65 (0.41, 1.04) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Z.; Li, L.; Feng, J.; Raat, H.; Wu, Y.; Zhou, H.; Rozelle, S. Dietary Diversity and Its Contribution to the Magnitude of Anaemia among Pregnant Women: Evidence from Rural Areas of Western China. Nutrients 2023, 15, 3714. https://doi.org/10.3390/nu15173714
Cai Z, Li L, Feng J, Raat H, Wu Y, Zhou H, Rozelle S. Dietary Diversity and Its Contribution to the Magnitude of Anaemia among Pregnant Women: Evidence from Rural Areas of Western China. Nutrients. 2023; 15(17):3714. https://doi.org/10.3390/nu15173714
Chicago/Turabian StyleCai, Zhengjie, Linhua Li, Jieyuan Feng, Hein Raat, Yuju Wu, Huan Zhou, and Scott Rozelle. 2023. "Dietary Diversity and Its Contribution to the Magnitude of Anaemia among Pregnant Women: Evidence from Rural Areas of Western China" Nutrients 15, no. 17: 3714. https://doi.org/10.3390/nu15173714
APA StyleCai, Z., Li, L., Feng, J., Raat, H., Wu, Y., Zhou, H., & Rozelle, S. (2023). Dietary Diversity and Its Contribution to the Magnitude of Anaemia among Pregnant Women: Evidence from Rural Areas of Western China. Nutrients, 15(17), 3714. https://doi.org/10.3390/nu15173714