Dietary Intake of Protein and Essential Amino Acids for Sustainable Muscle Development in Elite Male Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Study Participants
2.2. Anthropometric Measures
2.3. Nutritional Assessment
2.4. Statistical Analysis
3. Results
3.1. Body Composition of Elite Male Athletes
3.2. Nutritional Profile of Elite Male Athletes
3.3. Association between Protein Intake and Muscle Mass
4. Discussion
4.1. Athletic Body Composition
4.2. Nutritional Status of Athletes
4.3. Nutritional Intake and Muscle Mass
4.3.1. Carbohydrates for Muscle Development
4.3.2. Protein/EAAs for Muscle Development
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jenner, S.L.; Buckley, G.L.; Belski, R.; Devlin, B.L.; Forsyth, A.K. Dietary intakes of professional and semi-professional team sport athletes do not meet sport nutrition recommendations—A systematic literature review. Nutrients 2019, 11, 1160. [Google Scholar] [CrossRef] [PubMed]
- Biolo, G.; Gastaldelli, A.; Zhang, X.J.; Wolfe, R.R. Protein synthesis and breakdown in skin and muscle: A leg model of amino acid kinetics. Am. J. Physiol. 1994, 267, E467–E474. [Google Scholar] [CrossRef] [PubMed]
- Rennie, M.J.; Wackerhage, H.; Spangenburg, E.E.; Booth, F.W. Control of the size of the human muscle mass. Annu. Rev. Physiol. 2004, 66, 799–828. [Google Scholar] [CrossRef] [PubMed]
- Atherton, P.J.; Etheridge, T.; Watt, P.W.; Wilkinson, D.; Selby, A.; Rankin, D.; Smith, K.; Rennie, M.J. Muscle full effect after oral protein: Time-dependent concordance and discordance between human muscle protein synthesis and mTORC1 signaling. Am. J. Clin. Nutr. 2010, 92, 1080–1088. [Google Scholar] [CrossRef]
- Moran, L.A.; Horton, H.R.; Scrimgeour, K.G.; Perry, M.D. Amino acids and the primary structure of proteins. In Biochemistry São Paulo: Pearson Education of Brazil; Moran, L.A., Horton, H.R., Scrimgeour, K.G., Perry, M.D., Eds.; University of Toronto: Toronto, ON, Canada, 2013; pp. 56–85. [Google Scholar]
- Nelson, D.L.; Cox, M.M. Amino acids, peptides and proteins. In Principles of Biochemistry, 6th ed.; Nelson, D.L., Cox, M.M., Eds.; Artmed Publisher: Porto Alegre, Brazil, 2014; pp. 75–114. [Google Scholar]
- Smith, K.; Barua, J.M.; Watt, P.W.; Scrimgeour, C.M.; Rennie, M.J. Flooding with L-[1-13C] leucine stimulates human muscle protein incorporation of continuously infused L-[1-13C] valine. Am. J. Physiol. 1992, 262, E372–E376. [Google Scholar] [CrossRef]
- Wolfe, R.R. Branched-chain amino acids and muscle protein synthesis in humans: Myth or reality? J. Int. Soc. Sports Nutr. 2017, 14, 30. [Google Scholar] [CrossRef]
- Reidy, P.T.; Rasmussen, B.B. Role of ingested amino acids and protein in the promotion of resistance exercise-induced muscle protein anabolism. J. Nutr. 2016, 146, 155–183. [Google Scholar] [CrossRef]
- Tang, J.E.; Phillips, S.M. Maximizing muscle protein anabolism: The role of protein quality. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 66–71. [Google Scholar] [CrossRef]
- Hulmi, J.J.; Lockwood, C.M.; Stout, J.R. Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: A case for whey protein. Nutr. Metab. 2010, 7, 51. [Google Scholar] [CrossRef]
- Stark, M.; Lukaszuk, J.; Prawitz, A.; Salacinski, A. Protein timing and its effects on muscular hypertrophy and strength in individuals engaged in weight-training. J. Int. Soc. Sports Nutr. 2012, 9, 54. [Google Scholar] [CrossRef]
- Cermak, N.M.; Res, P.T.; de Groot, L.C.; Saris, W.H.; van Loon, L.J. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: A meta-analysis. Am. J. Clin. Nutr. 2012, 96, 1454–1464. [Google Scholar] [CrossRef] [PubMed]
- Bosse, J.D.; Dixon, B.M. Dietary protein to maximize resistance training: A review and examination of protein spread and change theories. J. Int. Soc. Sports Nutr. 2012, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J.; Aragon, A.A.; Krieger, J.W. The effect of protein timing on muscle strength and hypertrophy: A meta-analysis. J. Int. Soc. Sports Nutr. 2013, 10, 53. [Google Scholar] [CrossRef] [PubMed]
- Dideriksen, K.; Reitelseder, S.; Holm, L. Influence of amino acids, dietary protein, and physical activity on muscle mass development in humans. Nutrients 2013, 5, 852–876. [Google Scholar] [CrossRef]
- Hayes, A.; Cribb, P.J. Effect of whey protein isolate on strength, body composition and muscle hypertrophy during resistance training. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 40–44. [Google Scholar] [CrossRef]
- Pasiakos, S.M.; McLellan, T.M.; Lieberman, H.R. The effects of protein supplements on muscle mass, strength, and aerobic and anaerobic power in healthy adults: A systematic review. Sports Med. 2015, 45, 111–131. [Google Scholar] [CrossRef]
- Pasiakos, S.M.; Lieberman, H.R.; McLellan, T.M. Effects of protein supplements on muscle damage, soreness and recovery of muscle function and physical performance: A systematic review. Sports Med. 2014, 44, 655–670. [Google Scholar] [CrossRef]
- Miller, P.E.; Alexander, D.D.; Perez, V. Effects of whey protein and resistance exercise on body composition: A meta-analysis of randomized controlled trials. J. Am. Coll. Nutr. 2014, 33, 163–175. [Google Scholar] [CrossRef]
- Skernevičius, J.; Milašius, K.; Raslanas, A.; Dadelienė, R. Sporto treniruotė (Sports training). In Sportininkų Gebėjimai ir jų Ugdymas (Skills and Training of Athletes), 1st ed.; Čepulėnas, A., Saplinskas, J., Paulauskas, R., Eds.; Lithuanian University of Educational Sciences Press: Vilnius, Lithuania, 2011; pp. 165–217. [Google Scholar]
- Duren, D.L.; Sherwood, R.J.; Czerwinski, S.A.; Lee, M.; Choh, A.C.; Siervogel, R.M.; Chumlea, W.C. Body composition methods: Comparisons and interpretation. J. Diabetes Sci. Technol. 2008, 2, 1139–1146. [Google Scholar] [CrossRef]
- Yang, S.W.; Kim, T.H.; Choi, H.M. The reproducibility and validity verification for body composition measuring devices using bioelectrical impedance analysis in Korean adults. J. Exerc. Rehabil. 2018, 14, 621–627. [Google Scholar] [CrossRef]
- Carrion, B.M.; Wells, A.; Mayhew, J.L.; Koch, A.J. Concordance among bioelectrical impedance analysis measures of percent body fat in athletic young adults. Int. J. Exerc. Sci. 2019, 12, 324–331. [Google Scholar] [PubMed]
- Dimitrijevic, M.; Paunovic, V.; Zivkovic, V.; Bolevich, S.; Jakovljevic, V. Body fat evaluation in male athletes from combat sports by comparing anthropometric, bioimpedance, and dual-energy X-ray absorptiometry measurements. Biomed Res. Int. 2022, 2022, 3456958. [Google Scholar] [CrossRef] [PubMed]
- Baranauskas, M.; Jablonskienė, V.; Abaravičius, J.A.; Samsonienė, L.; Stukas, R. Dietary acid-base balance in high-performance athletes. Int. J. Environ. Res. Public Health 2020, 17, 5332. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.; Benedict, F. A Biometric Study of Basal Metabolism in Man; Lippincott: Philadelphia, PA, USA, 1919. [Google Scholar]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. American College of Sports Medicine Joint Position Statement. Nutrition and athletic performance. Med. Sci. Sports Exerc. 2016, 48, 543–568. [Google Scholar]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Basset, D.R.; Todor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. Compendium of physical activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef]
- Deakin, V.; Kerr, D.; Boushey, C. Measuring nutritional status of athletes: Clinical and research perspectives. In Clinical Sports Nutrition, 5th ed.; Burke, L.M., Deakin, V., Eds.; McGraw-Hill: North Ryde, Australia, 2015; pp. 27–53. [Google Scholar]
- Devlin, B.L.; Leveritt, M.D.; Kingsley, M.; Belski, R. Dietary intake, body composition, and nutrition knowledge of Australian football and soccer players: Implications for sports nutrition professionals in practice. Int. J. Sport Nutr. Exerc. Metab. 2017, 27, 130–138. [Google Scholar] [CrossRef]
- Bradley, W.J.; Cavanagh, B.P.; Douglas, W.; Donovan, T.F.; Morton, J.P.; Close, G.L. Quantification of training load, energy intake, and physiological adaptations during a rugby preseason: A case study from an elite european rugby union squad. J. Strength Cond. Res. 2015, 29, 534–544. [Google Scholar] [CrossRef]
- Bettonviel, A.E.O.; Brinkmans, N.Y.J.; Russcher, K.; Wardenaar, F.C.; Witard, O.C. Nutritional status and daytime pattern of protein intake on match, post-match, rest and training days in senior professional and youth elite soccer players. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 285–293. [Google Scholar] [CrossRef]
- Andrews, M.C.; Itsiopoulos, C. Room for improvement in nutrition knowledge and dietary intake of male football (soccer) players in Australia. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 55–64. [Google Scholar] [CrossRef]
- Jeoung, B.; Kim, J. Analysis and evaluation of nutritional intake and nutrition quotient of Korean athletes with disabilities in the Tokyo Paralympic games. Nutrients 2021, 13, 3631. [Google Scholar] [CrossRef]
- Elmadfa, I.; Meyer, A.; Nowak, V.; Hasenegger, V.; Putz, P.; Verstraeten, R.; Remaut-DeWinter, A.M.; Kolsteren, P.; Dostálová, J.; Dlouhý, P.; et al. European Nutrition and Health Report 2009; Forum of Nutrition; Karger Medical and Scientific Publishers: Basel, Switzerland, 2009; Volume 62, pp. 1–405. [Google Scholar]
- Pomerleau, J.; McKee, M.; Robertson, A.; Vaasc, S.; Kadziauskiene, K.; Abaravicius, A.; Bartkeviciute, R.; Pudule, I.; Grinberga, D. Physical inactivity in the Baltic countries. Prev. Med. 2000, 31, 665–672. [Google Scholar] [CrossRef]
- Capling, L.; Beck, K.L.; Gifford, J.A.; Slater, G.; Flood, V.M.; O’Connor, H. Validity of dietary assessment in athletes: A systematic review. Nutrients 2017, 9, 1313. [Google Scholar] [CrossRef] [PubMed]
- Barzda, A.; Bartkevičiūtė, R.; Viseckienė, V.; Abaravičius, A.J.; Stukas, R. Maisto produktų ir patiekalų porcijų nuotraukų atlasas (Atlas of foodstuffs and dishes), Vilnius, Republican Nutrition Center; Vilnius University Faculty of Medicine: Vilnius, Lithuania, 2007; pp. 7–42. Available online: http://www.smlpc.lt/media/file/Skyriu_info/Metodine_medziaga/Maisto%20prod%20atlasas%202007.pdf (accessed on 14 June 2020).
- Sučilienė, S.; Abaravičius, A. Maisto Produktų Sudėtis (Food Product Composition); Ministry of Health of the Republic of Lithuania: Vilnius, Lithuania, 2002; pp. 10–315. [Google Scholar]
- Rodriguez, N.R.; Dimarco, N.M.; Langley, S. Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance. J. Am. Diet. Assoc. 2009, 109, 509–527. [Google Scholar] [PubMed]
- Potgieter, S. Sport nutrition: A review of the latest guidelines for exercise and sport nutrition from the American college of sport nutrition, the International Olympic Committee and the International Society for Sports Nutrition. S. Afr. J. Clin. Nutr. 2013, 26, 6–16. [Google Scholar] [CrossRef]
- Kerksick, C.M.; Arent, S.; Schoenfeld, B.J.; Stout, J.R.; Campbell, B.; Wilborn, C.D.; Taylor, L.; Kalman, D.; Smith-Ryan, A.E.; Kreider, R.B.; et al. International Society of Sports Nutrition position stand: Nutrient timing. J. Int. Soc. Sports Nutr. 2017, 14, 33. [Google Scholar] [CrossRef] [PubMed]
- Aragon, A.A.; Schoenfeld, B.; Wildman, R.; Kleiner, S.; Vandusseldorp, T.; Taylor, L.; Earnest, C.P.; Arciero, P.J.; Wilborn, C.; Kalman, D.S.; et al. International Society of Sports Nutrition position stand: Diets and body composition. J. Int. Soc. Sports Nutr. 2017, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Mountjoy, M.; Sundgot-Borgen, J.; Burke, L.; Ackerman, K.E.; Blauwet, C.; Constantini, N.; Lebrun, C.; Lundy, B.; Melin, A.; Meyer, N.; et al. International Olympic Committee (IOC) consensus statement on relative energy deficiency in sport (RED-S): 2018 update. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 316–331. [Google Scholar] [CrossRef]
- International Olympic Committee. IOC consensus statement on sports nutrition 2010. Int. J. Sport Nutr. Exerc. Metab. 2010, 1003, S3–S4. [Google Scholar]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jäger, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E.; et al. ISSN exercise & sports nutrition review update: Research & recommendations. J. Int. Soc. Sports Nutr. 2018, 15, 8. [Google Scholar]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC consensus statement: Dietary supplements and the high-performance athlete. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 104–125. [Google Scholar] [CrossRef]
- World Health Organization, Food and Agriculture Organization of the United Nations, United Nations University. Protein and Amino Acid Requirements in Human Nutrition; Report of a joint FAO/WHO/UNU expert consultation (WHO Technical Report Series 935). 2007; p. 150. Available online: https://apps.who.int/iris/handle/10665/43411 (accessed on 15 April 2023).
- Jäger, R.; Kerksick, C.M.; Campbell, B.I.; Cribb, P.J.; Wells, S.D.; Skwiat, T.M.; Purpura, M.; Ziegenfuss, T.N.; Ferrando, A.A.; Arent, S.M.; et al. International society of sports nutrition position stand: Protein and exercise. J. Int. Soc. Sports Nutr. 2017, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Mandolfo, S.; Zucchi, A.; Cavalieri D’Oro, L.; Corradi, B.; Imbasciati, E. Protein nitrogen appearance in CAPD patients: What is the best formula? Nephrol. Dial. Transplant. 1996, 11, 1592–1596. [Google Scholar] [CrossRef] [PubMed]
- Folin, O. Laws governing the chemical composition of urine. Am. J. Physiol. 1905, 13, 66–115. [Google Scholar] [CrossRef]
- Jeevanandam, M.; Young, D.H.; Ramias, L.; Schiller, W.R. Aminoaciduria of severe trauma. Am. J. Clin. Nutr. 1989, 49, 814–822. [Google Scholar] [CrossRef] [PubMed]
- Maroni, B.J.; Steinman, T.; Mitch, W.E. A method for estimatingnitrogen intake of patients with chronic renal failure. Kidney Int. 1985, 27, 58–65. [Google Scholar] [CrossRef]
- Mackenzie, T.A.; Clark, N.G.; Bistrian, B.R.; Flatt, J.P.; Hallowell, E.M.; Blackburn, G.L. A simple method for estimating nitrogen balance in hospitalized patients: A review and supporting data for a previously proposed technique. J. Am. Coll. Nutr. 1985, 4, 575–581. [Google Scholar] [CrossRef]
- Bergstrom, J.; Furst, P.; Alvestrand, A.; Lindholm, B. Protein and energy intake, nitrogen balance and nitrogen losses in patients treated with continuous ambulatory peritoneal dialysis. Kidney Int. 1993, 44, 1048–1057. [Google Scholar] [CrossRef]
- Strengthening the Reporting of Observational Studies in Epidemiology (STROBE). Available online: https://www.strobe-statement.org/ (accessed on 15 August 2023).
- Cohen, J. Statistical Power Aanalysis for the Behavioral Sciences; Routledge Academic: New York, NY, USA, 1988. [Google Scholar]
- Sesbreno, E.; Dziedzic, C.E.; Sygo, J.; Blondin, D.P.; Haman, F.; Leclerc, S.; Brazeau, A.-S.; Mountjoy, M. Elite male volleyball players are at risk of insufficient energy and carbohydrate intake. Nutrients 2021, 13, 1435. [Google Scholar] [CrossRef]
- Raymond, C.J.; Dengel, D.R.; Bosch, T.A. Total and segmental body composition examination in collegiate football players using multifrequency bioelectrical impedance analysis and dual x-ray absorptiometry. J. Strength Cond. Res. 2018, 32, 772–782. [Google Scholar] [CrossRef]
- Rector, R.S.; Rogers, R.; Ruebel, M.; Hinton, P.S. Participation in road cycling vs. running is associated with lower bone mineral density in men. Metabolism 2008, 57, 226–232. [Google Scholar] [CrossRef]
- Domingos, C.; Matias, C.N.; Cyrino, E.S.; Sardinha, L.B.; Silva, A.M. The usefulness of Tanita TBF-310 for body composition assessment in Judo athletes using a four-compartment molecular model as the reference method. Rev. Assoc. Med. Bras. 2019, 65, 1283–1289. [Google Scholar] [CrossRef]
- Reale, R.; Burke, L.M.; Cox, G.R.; Slater, G. Body composition of elite Olympic combat sport athletes. Eur. J. Sport Sci. 2020, 20, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Alvero-Cruz, J.R.; Brikis, M.; Chilibeck, P.; Frings-Meuthen, P.; Vico Guzmán, J.F.; Mittag, U.; Michely, S.; Mulder, E.; Tanaka, H.; Tank, J.; et al. Age-related decline in vertical jumping performance in masters track and field athletes: Concomitant influence of body composition. Front. Physiol. 2021, 12, 643649. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; López-Domínguez, R.; López-Samanes, Á.; Gené, P.; González-Jurado, J.A.; Sánchez-Oliver, A.J. Analysis of sport supplement consumption and body composition in Spanish elite rowers. Nutrients 2020, 12, 3871. [Google Scholar] [CrossRef] [PubMed]
- Ceylan, B.; Gurses, V.V.; Akgul, M.S.; Baydil, B.; Franchini, E. Anthropometric profile, wingate performance and special judo fitness levels of Turkish Olympic judo athletes. Ido Mov. Culture. J. Martial Arts Anthrop. 2018, 18, 15–20. [Google Scholar]
- Rybakova, E.; Shutova, T.; Vysotskaya, T. Sports training of ski jumpers from a springboard based on body composition control and physical fitness. Int. J. Phys. Educ. Sports Health 2020, 20, 752–758. [Google Scholar]
- Zagursky, N.S. Interrelation of indicators of body composition with the effectiveness of competitive activity of highly qualified biathletes. Theory Pract. Phys. Cult. 2023, 1, 13–16. [Google Scholar]
- Lai, Y.-K.; Ho, C.-Y.; Lai, C.-L.; Taun, C.-Y.; Hsieh, K.-C. Assessment of standing multi-frequency bioimpedance analyzer to measure mody composition of the whole body and limbs in elite male wrestlers. Int. J. Environ. Res. Public Health 2022, 19, 15807. [Google Scholar] [CrossRef]
- Hasan, M.F.; Bahri, S.; Adnyana, I.K. Identification of nutritional status and body composition in weightlifting athlete. Int. J. Phys. Educ. Sports Health 2021, 21, 2308–2312. [Google Scholar]
- Kim, T.H.; Han, J.K.; Lee, J.Y.; Choi, Y.C. The effect of polarized training on the athletic performance of male and female cross-country skiers during the general preparation period. Healthcare 2021, 9, 851. [Google Scholar] [CrossRef]
- Smarkusz-Zarzecka, J.; Ostrowska, L.; Leszczyńska, J.; Orywal, K.; Cwalina, U.; Pogodziński, D. Analysis of the impact of a multi-strain probiotic on body composition and cardiorespiratory fitness in long-distance runners. Nutrients 2020, 12, 3758. [Google Scholar] [CrossRef] [PubMed]
- Cech, P.; Maly, T.; Mala, L.; Zahalka, F. Body composition of elite youth pentathletes and its gender differences. Sport Sci. 2013, 2, 29–35. [Google Scholar]
- Noh, N.M.; Shuhaimi, F.A.; Nor, N.M. Carbohydrate intakes and preferences among endurance athletes in universiti teknologi MARA Selangor. J. Phys. Conf. Ser. 2020, 1496, 012010. [Google Scholar]
- Beermann, B.L.; Lee, D.G.; Almstedt, H.C.; McCormack, W.P. Nutritional intake and energy availability of collegiate distance runners. J. Am. Coll. Nutr. 2020, 39, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Goldenstein, S.; Zaplatosch, M. Energy intake over multiple days of high intensity bike racing: A pilot study. J. Phys. Conf. Ser. 2023, 16, 167. [Google Scholar]
- Furber, M.; Pyle, S.; Roberts, M.; Roberts, J. Comparing Acute, high dietary protein and carbohydrate intake on transcriptional biomarkers, fuel utilisation and exercise performance in trained male runners. Nutrients 2021, 13, 4391. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M. Fuelling strategies to optimize performance: Training high or training low? Scand. J. Med. Sci. Sports 2010, 20, 48–58. [Google Scholar] [CrossRef]
- Morton, J.P.; Croft, L.; Bartlett, J.D.; Maclaren, D.P.M.; Reilly, T.; Evans, L.; McArdle, A.; Drust, B. Reduced carbohydrate availability does not modulate training-induced heat shock protein adaptations but does upregulate oxidative enzyme activity in human skeletal muscle. J. Appl. Physiol. 2009, 106, 1513–1521. [Google Scholar] [CrossRef]
- Van Proeyen, K.; Szlufcik, K.; Nielens, H.; Ramaekers, M.; Hespel, P. Beneficial metabolic adaptations due to endurance exercise training in the fasted state. J. Appl. Physiol. 2011, 110, 236–245. [Google Scholar] [CrossRef]
- Yeo, W.K.; Paton, C.D.; Garnham, A.P.; Burke, L.M.; Carey, A.L.; Hawley, J.A. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J. Appl. Physiol. 2008, 105, 1462–1470. [Google Scholar] [CrossRef]
- Burke, L.M.; Ross, M.L.; Garvican-Lewis, L.A.; Welvaert, M.; Heikura, I.A.; Forbes, S.G.; Mirtschin, J.G.; Cato, L.E.; Strobel, N.; Sharma, A.P.; et al. Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. J. Physiol. 2017, 595, 2785–2807. [Google Scholar] [CrossRef] [PubMed]
- Gejl, K.D.; Thams, L.B.; Hansen, M.; Rokkedal-Lausch, T.; Plomgaard, P.; Nybo, L.; Larsen, F.J.; Cardinale, D.A.; Jensen, K.; Holmberg, H.C.; et al. No superior adaptations to carbohydrate periodization in elite endurance athletes. Med. Sci. Sports Exerc. 2017, 49, 2486–2497. [Google Scholar] [CrossRef] [PubMed]
- Bilsborough, J.C.; Greenway, K.; Opar, D.; Livingstone, S.; Cordy, J.; Coutts, A.J. The accuracy and precision of DXA for assessing body composition in team sport athletes. J. Sports Sci. 2014, 32, 1821–1828. [Google Scholar] [CrossRef] [PubMed]
- Tooley, E.; Bitcon, M.; Briggs, M.A.; West, D.J.; Russell, M. Estimates of energy intake and expenditure in professional rugby league players. Int. J. Sports Sci. Coach. 2015, 10, 551–560. [Google Scholar] [CrossRef]
- Jenner, S.L.; Trakman, G.; Coutts, A.; Kempton, T.; Ryan, S.; Forsyth, A.; Belski, R. Dietary intake of professional Australian football athletes surrounding body composition assessment. J. Int. Soc. Sports Nutr. 2018, 15, 43. [Google Scholar] [CrossRef]
- Gibson-Smith, E.; Storey, R.; Ranchordas, M. Dietary intake, body composition and iron status in experienced and elite climbers. Front. Nutr. 2020, 7, 122. [Google Scholar] [CrossRef]
- Nunes, C.L.; Matias, C.N.; Santos, D.A.; Morgado, J.P.; Monteiro, C.P.; Sousa, M.; Minderico, C.S.; Rocha, P.M.; St-Onge, M.-P.; Sardinha, L.B.; et al. Characterization and comparison of nutritional intake between preparatory and competitive phase of highly trained athletes. Medicina 2018, 54, 41. [Google Scholar] [CrossRef]
- Conejos, C.; Giner, A.; Mañes, J.; Soriano, J.M. Energy and nutritional intakes in training days of soccer players according to their playing positions. Arch. Med. Deporte 2011, 28, 29–35. [Google Scholar]
- Potgieter, S.; Visser, J.; Croukamp, I.; Markides, M.; Nascimento, J.; Scott, K. Body composition and habitual and match-day dietary intake of the FNB Maties Varsity Cup rugby players. S. Afr. J. Sports Med. 2014, 26, 35–43. [Google Scholar] [CrossRef]
- Molina-López, J.; Molina, J.M.; Chirosa, L.J.; Florea, D.; Sáez, L.; Jiménez, J.; Planells, P.; Pérez de la Cruz, A.; Planells, E. Implementation of a nutrition education program in a handball team; consequences on nutritional status. Nutr. Hosp. 2013, 28, 1065–1076. [Google Scholar]
- Valliant, M.W.; Pittman Emplaincourt, H.; Wenzel, R.K.; Garner, B.H. Nutrition education by a registered dietitian improves dietary intake and nutrition knowledge of a NCAA female volleyball team. Nutrients 2012, 4, 506–516. [Google Scholar] [CrossRef]
- Baranauskas, M.; Tubelis, L.; Stukas, R.; Švedas, E.; Samsonienė, L.; Karanauskienė, D. Nutrition status of high performance rowers, canoeists and kayakers. Balt. J. Sport Health Sci. 2014, 1, 16–26. [Google Scholar] [CrossRef]
- Bukhari, S.S.; Phillips, B.E.; Wilkinson, D.J.; Limb, M.C.; Rankin, D.; Mitchell, W.K.; Kobayashi, H.; Greenhaff, P.L.; Smith, K.; Atherton, P.J. Intake of low-dose leucine-rich essential amino acids stimulates muscle anabolism equivalently to bolus whey protein in older women at rest and after exercise. Am. J. Physiol. Endocrinol. Metab. 2015, 308, E1056–E1065. [Google Scholar] [CrossRef] [PubMed]
- Greenhaff, P.L.; Karagounis, L.G.; Peirce, N.; Simpson, E.J.; Hazell, M.; Layfield, R.; Wackerhage, H.; Smith, K.; Atherton, P.; Selby, A.; et al. Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E595–E604. [Google Scholar] [CrossRef]
- Moore, D.R. One size doesn’t fit all: Postexercise protein requirements for the endurance athlete. Am. J. Clin. Nutr. 2020, 112, 249–250. [Google Scholar] [CrossRef] [PubMed]
- Blomstrand, E.; Eliasson, J.; Karlsson, H.K.R.; Kohnke, R. Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J. Nutr. 2006, 136, 269S–273S. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.S.; Nascimento, F.E.L. Isolated branched-chain amino acid intake and muscle protein synthesis in humans: A biochemical review. Einstein 2019, 17, eRB4898. [Google Scholar] [CrossRef]
- Hyde, R.; Taylor, P.M.; Hundal, H.S. Amino acid transporters: Roles in amino acid sensing and signalling in animal cells. Biochem. J. 2003, 373, 1–18. [Google Scholar] [CrossRef]
- Szmelcman, S.; Guggenheim, K. Interference between leucine, isoleucine and valine during intestinal absorption. Biochem. J. 1996, 100, 7–11. [Google Scholar] [CrossRef]
- Goron, A.; Moinard, C. Amino acids and sport: A true love story? Amino Acids 2018, 50, 969–980. [Google Scholar] [CrossRef]
- De Souza, M.J.; Williams, N.I.; Nattiv, A.; Joy, E.; Misra, M.; Loucks, A.B.; Matheson, G.; Olmsted, M.P.; Barrack, M.; Mallinson, R.J.; et al. Misunderstanding the female athlete triad: Refuting the IOC consensus statement on relative energy deficiency in sport (RED-S). Br. J. Sports Med. 2014, 48, 1461–1465. [Google Scholar] [CrossRef] [PubMed]
- Holtzman, B.; Ackerman, K.E. Recommendations and nutritional considerations for female athletes: Health and performance. Sports Med. 2021, 51, 43–57. [Google Scholar] [CrossRef]
- Nattiv, A.; Loucks, A.B.; Manore, M.M.; Sanborn, C.F.; Sundgot-Borgen, J.; Warren, M.P. American College of Sports Medicine position stand. The female athlete triad. Med. Sci. Sports Exerc. 2007, 39, 1867–1882. [Google Scholar] [PubMed]
- Ackerman, K.E.; Holtzman, B.; Cooper, K.M.; Flynn, E.F.; Bruinvels, G.; Tenforde, A.S.; Popp, K.L.; Simpkin, A.J.; Parziale, A.L. Low energy availability surrogates correlate with health and performance consequences of relative energy deficiency in sport. Br. J. Sports Med. 2019, 53, 628–633. [Google Scholar] [CrossRef] [PubMed]
- De Souza, M.J.; Nattiv, A.; Joy, E.; Misra, M.; Williams, N.I.; Mallinson, R.J.; Gibbs, J.C.; Olmsted, M.; Goolsby, M.; Matheson, G.; et al. 2014 female athlete triad coalition consensus statement on treatment and return to play of the female athlete triad: 1st international conference held in San Francisco, California, May 2012 and 2nd international conference held in Indianapolis, Indiana, May 2013. Br. J. Sports Med. 2014, 48, 289. [Google Scholar] [PubMed]
- Al-Khelaifi, F.; Diboun, I.; Donati, F.; Botrè, F.; Alsayrafi, M.; Georgakopoulos, C.; Suhre, K.; Yousri, N.A.; Elrayess, M.A. A pilot study comparing the metabolic profiles of elite-level athletes from different sporting disciplines. Sports Med. Open. 2018, 4, 2. [Google Scholar] [CrossRef]
- Livingstone, M.B.; Prentice, A.M.; Coward, W.A.; Strain, J.J.; Black, A.E.; Davies, P.S.; Stewart, C.M.; McKenna, P.G.; Whitehead, R.G. Validation of estimates of energy intake by weighed dietary records and diet history in children and adolescents. Am. J. Clin. Nutr. 1992, 56, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Prentice, A.M.; Black, A.E.; Coward, W.A.; Davies, H.L.; Goldberg, G.R.; Murgatroyd, P.R.; Ashford, J.; Sawyer, M.; Whitehead, R.G. High levels of energy expenditure in obese women. Br. Med. J. 1986, 292, 983–987. [Google Scholar] [CrossRef]
- Hill, R.J.; Davies, P. The validity of self-reported energy intake as determined using the doubly labelled water technique. Br. J. Nutr. 2001, 85, 415–430. [Google Scholar] [CrossRef]
- Westerterp, K.R.; Saris, W.H.M.; van Es, M.; ten Hoor, F. Use of the doubly labeled water technique in humans during heavy sustained exercise. J. App. Physiol. 1986, 61, 2162–2167. [Google Scholar] [CrossRef]
- Haggarty, P.; McGaw, B.A.; Maughan, R.J.; Fenn, C. Energy expenditure of elite female athletes measured by the doubly labeled water method. Proc. Nutr. Soc. 1988, 47, 35. [Google Scholar]
- Magkos, F.; Yannakoulia, M. Methodology of dietary assessment in athletes: Concepts and pitfalls. Curr. Opin. Clin. Nutr. Metab. Care 2003, 6, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Braakhuis, A.J.; Meredith, K.; Cox, G.R.; Hopkins, W.G.; Burke, L.M. Variability in estimation of self-reported dietary intake data from elite athletes resulting from coding by different sports dietitians. Int. J. Sport Nutr. Exerc. Metab. 2003, 13, 152–165. [Google Scholar] [CrossRef]
- Ward, K.D.; Hunt, K.M.; Burstyne Berg, M.; Slawson, D.A.; Vukadinovich, C.M.; McClanahan, B.S.; Clemens, L.H. Reliability and validity of a brief questionnaire to assess calcium intake in female collegiate athletes. Int. J. Sport Nutr. Exerc. Metab. 2004, 14, 209–221. [Google Scholar] [CrossRef]
- Paton, N.I.J.; Macallan, D.C.; Jebb, S.A.; Pazianas, M.; Griffin, G.E. Dual-energy X-ray absorptiometry results differ between machines. Lancet 1995, 346, 899–900. [Google Scholar] [CrossRef]
- Nana, A.; Slater, G.J.; Stewart, A.D.; Burke, L.M. Methodology review: Using dual-energy X-ray absorptiometry (DXA) for the assessment of body composition in athletes and active people. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 198–215. [Google Scholar] [CrossRef]
- Nana, A.; Slater, G.J.; Hopkins, W.G.; Halson, S.L.; Martin, D.T.; West, N.P.; Burke, L.M. Importance of standardized DXA protocol for assessing physique changes in athletes. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 259–267. [Google Scholar] [CrossRef]
- Deutz, R.C.; Benardot, D.; Martin, D.E.; Cody, M.M. Relationship between energy deficits and body composition in elite female gymnasts and runners. Med. Sci. Sports Exerc. 2000, 32, 659–668. [Google Scholar] [CrossRef]
- Bilsborough, J.C.; Kempton, T.; Greenway, K.; Cordy, J.; Coutts, A.J. Longitudinal changes and seasonal variation in body composition in professional Australian football players. Int. J. Sports Physiol. Perform. 2017, 12, 10–17. [Google Scholar] [CrossRef]
- Bartlett, J.D.; Hatfield, M.; Parker, B.B.; Roberts, L.A.; Minahan, C.; Morton, J.P.; Thornton, H.R. DXA-derived estimates of energy balance and its relationship with changes in body composition across a season in team sport athletes. Eur. J. Sport Sci. 2020, 20, 859–867. [Google Scholar] [CrossRef]
- Milsom, J.; Naughton, R.; O’Boyle, A.; Iqbal, Z.; Morgans, R.; Drust, B.; Morton, J.P. Body composition assessment of English Premier League soccer players: A comparative DXA analysis of first Team, U21 and U18 Squads. J. Sports Sci. 2015, 33, 1799–1806. [Google Scholar] [CrossRef] [PubMed]
- Alburquerque-Sendín, F.; Martín-Vallejo, F.J.; García-Talavera, P.; Martín Gómez, M.E.; Santos del Rey, M. Comparison of fat mass and fat-free mass between Anthropometry, BIA and DEXA in young females: Are methods really interchangeable? Eur. J. Anat. 2020, 14, 133141. [Google Scholar]
- Syed-Abdul, M.M.; Dhwani, S.; Jason, D.W. Effects of self-implemented carbohydrate cycling and moderate to high intensity resistance exercise on body fat in body builders. Gazz. Med. Ital. Archivio Sci. Med. 2019, 178, 221–224. [Google Scholar] [CrossRef]
Anaerobic Sports | Eligible | Analyzed | Aerobic Sports | Eligible | Analyzed | ||||
---|---|---|---|---|---|---|---|---|---|
n = 138 | n = 104 | n = 198 | n = 130 | ||||||
n | % | n | % | n | % | n | % | ||
Boxing | 15 | 10.9 | 14 | 13.5 | Rowing | 37 | 18.7 | 28 | 21.5 |
Judo | 13 | 9.4 | 6 | 5.8 | Road cycling | 51 | 25.8 | 31 | 23.8 |
Greco-Roman wrestling | 30 | 21.7 | 29 | 27.9 | Swimming | 44 | 22.2 | 29 | 22.3 |
Taekwondo | 4 | 2.9 | 3 | 2.9 | Skiing | 19 | 9.6 | 12 | 9.2 |
Weightlifting | 8 | 5.8 | 6 | 5.8 | Biathlon | 22 | 11.1 | 17 | 13.1 |
Basketball | 53 | 38.4 | 39 | 37.5 | Long-distance running | 13 | 6.6 | 8 | 6.2 |
Gymnastics | 4 | 2.9 | 2 | 1.9 | Modern pentathlon | 12 | 6.1 | 5 | 3.8 |
Disc throw, javelin throw | 7 | 5.1 | 3 | 2.9 | - | - | - | ||
High jump | 4 | 2.9 | 2 | 1.9 | - | - | - |
Variables | Anaerobic Sports (n = 104) | Aerobic Sports (n = 130) |
---|---|---|
Training period | Special training | Special training |
Training experience, years | 8.2 ± 3.7 | 7.8 ± 3.9 |
Exercise per month, days | 23.3 ± 3.1 | 23.1 ± 3.6 |
Duration of training, hours per month | 41.9 ± 12.1 | 48.6 ± 17.4 |
Duration of training, hours per day | 2.8 ± 1.1 | 3.1 ± 1.1 |
Physical activity levels were allocated for five intensity zones depending on energy-producing pathway during workouts (% 1) | ||
Aerobic endurance training, recovery: heart rate equaled 130 ± 10 bpm, blood lactate levels were up to 2 mmol/L | 10–17% | 17–44% |
Aerobic strength training: heart rate equaled 150 ± 10 bpm, blood lactate levels were 2–4 mmol/L, and special muscular power increased at the anaerobic threshold | 19–41% | 37–70% |
Aerobic and anaerobic glycolytic strength training: heart rate equaled 170 ± 10 bpm, blood lactate levels were 4–12 mmol/L | 13–36% | 9–34% |
Anaerobic glycolytic strength training: heart rate ≥ 181 bpm, blood lactate levels were up to 21 mmol/L | 0–6% | 0–7% |
Anaerobic phosphocreatine strength training: blood lactate levels were 1.5–6 mmol/L | 0–2% | 0–4% |
Variables | Anaerobic Sports (n = 104) | Aerobic Sports (n = 130) | Normative Data | ∆ana (95% CI) | D | ∆aer (95% CI) | d |
---|---|---|---|---|---|---|---|
Height (m) | 1.8 ± 0.2 | 1.8 ± 0.1 | - | - | - | - | - |
Body weight (kg) | 77.5 ± 17.4 | 75.1 ± 11.6 | - | - | - | - | - |
Lean body mass (kg) | 63.8 ± 11.4 | 62.2 ± 7.7 | - | - | - | - | - |
Lean body mass (% of BW)BIA | 83.2 ± 5.3 | 83.3 ± 4.2 | 75–85 b (80 a) | 3.3 (2.2; 4.3) | 0.6 | 3.3 (2.6; 4.1) | 0.8 |
Muscle mass (kg) | 59.3 ± 10.5 | 57.9 ± 7.0 | - | - | - | - | - |
Muscle mass (% of BW)BIA | 77.4 ± 5.2 | 77.6 ± 4.1 | 74–80 c (77 a) | 0.4 (−0.6; 1.4) | 0.1 | 0.6 (−0.1; 1.3) | 0.1 |
Body fat (kg) | 13.7 ± 7.1 | 12.9 ± 4.7 | - | - | - | - | - |
Body fat (% of BW)BIA | 16.7 ± 5.2 | 16.7 ± 4.2 | 10–14 d (12 a) | 4.7 (3.7; 5.7) | 0.2 | 4.7 (3.9; 5.4) | 0.2 |
Muscle and fat mass index | 5.3 ± 2.4 | 5.2 ± 2.6 | 4.7–6.0 e (5.4 a) | –0.1 (−0.5; 0.4) | 0.02 | −0.2 (−0.6; 0.3) | 0.05 |
Nutrient Intake and Nitrogen Balance | Anaerobic Sports (n = 104) | Aerobic Sports (n = 130) | Requirements | ∆ana (95% CI) | d | ∆aer (95% CI) | d |
---|---|---|---|---|---|---|---|
Energy intake, kcal/kg/day | 50 ± 15.9 | 49.6 ± 12.8 | 55.6 ± 4.2 | −6.3 (−8; −4.6) | 0.5 | −6.2 (−8.2; −4.2) | 0.6 |
Fat, % | 39.6 ± 6.9 | 40.3 ± 8.2 | 25–35 (30 a) | 10.3 (8.8; 11.7) | 1.4 | 9.6 (8.3; 10.9) | 1.3 |
Carbohydrates, g/kg/day | 5.6 ± 1.9 | 5.7 ± 0.6 | 7–10 (8.5 a) | −2.9 (−3.5; −3.3) | 1.5 | −2.9 (−3.2; −2.5) | 4.7 |
Protein, g/kg/day | 1.8 ± 0.7 | 1.8 ± 0.6 | 1.4–2.0 (1.7 a) | 0.1 (–0.1; 0.2) | 0.1 | 0.1 (−0.1; 0.2) | 0.1 |
Leu, mg/g of protein/day | 76 ± 6.6 1 | 76 ± 5.8 2 | 59 3 | 16.8 (15.5; 18) | 2.6 | 17 (15.9; 18) | 2.9 |
Iso, mg/g of protein/day | 45 ± 3.2 1 | 45 ± 3.4 2 | 30 3 | 14.5 (13.8; 15) | 4.7 | 14.7 (14; 15.3) | 4.4 |
Val, mg/g of protein/day | 53 ± 4.3 1 | 53 ± 3.8 2 | 39 3 | 14.1 (13.2; 15) | 3.3 | 13.7 (13; 14.4) | 3.3 |
Phe + Tyr, mg/g of protein/day | 80 ± 6.8 1 | 79 ± 6.5 2 | 38 3 | 41.7 (40.4; 43) | 6.2 | 41.5 (40; 42.6) | 6.3 |
Met, mg/g of protein/day | 22 ± 2.2 1 | 22 ± 2.2 2 | 16 3 | 5.9 (5.5; 6.3) | 2.7 | 6.2 (5.8; 6.5) | 2.7 |
Lys, mg/g of protein/day | 67 ± 5.9 1 | 67 ± 6.2 2 | 45 3 | 21.8 (21; 22.9) | 3.7 | 21.7 (20.7; 23) | 3.5 |
Try, mg/g of protein/day | 13 ± 1.5 1 | 13 ± 1.4 2 | 6 3 | 7.1 (6.8; 7.4) | 4.7 | 7.4 (7.2; 7.7) | 5 |
Thr, mg/g of protein/day | 39 ± 2.8 1 | 39 ± 2.7 2 | 23 3 | 16 (15; 16.6) | 5.7 | 16.4 (16; 16.9) | 5.9 |
His, mg/g of protein/day | 28 ± 3.2 1 | 28 ± 2.9 2 | 15 3 | 13.2 (12.7; 14) | 4.1 | 13.4 (13; 13.9) | 4.5 |
24 h nitrogen balance, g | 2.0 ± 1.6 | 1.9 ± 1.1 | ≥1 | 0.9 (0.7; 1.1) | 0.6 | 9.6 (8.3; 10.9) | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baranauskas, M.; Kupčiūnaitė, I.; Stukas, R. Dietary Intake of Protein and Essential Amino Acids for Sustainable Muscle Development in Elite Male Athletes. Nutrients 2023, 15, 4003. https://doi.org/10.3390/nu15184003
Baranauskas M, Kupčiūnaitė I, Stukas R. Dietary Intake of Protein and Essential Amino Acids for Sustainable Muscle Development in Elite Male Athletes. Nutrients. 2023; 15(18):4003. https://doi.org/10.3390/nu15184003
Chicago/Turabian StyleBaranauskas, Marius, Ingrida Kupčiūnaitė, and Rimantas Stukas. 2023. "Dietary Intake of Protein and Essential Amino Acids for Sustainable Muscle Development in Elite Male Athletes" Nutrients 15, no. 18: 4003. https://doi.org/10.3390/nu15184003
APA StyleBaranauskas, M., Kupčiūnaitė, I., & Stukas, R. (2023). Dietary Intake of Protein and Essential Amino Acids for Sustainable Muscle Development in Elite Male Athletes. Nutrients, 15(18), 4003. https://doi.org/10.3390/nu15184003