Impact of Paleo Diet on Body Composition, Carbohydrate and Fat Metabolism of Professional Handball Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Dietary Intervention
2.3. Characteristics of Participants and Measurement Methods
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Potgieter, S. Sport Nutrition: A Review of the Latest Guidelines for Exercise and Sport Nutrition from the American College of Sport Nutrition, the International Olympic Committee and the International Society for Sports Nutrition. S. Afr. J. Clin. Nutr. 2013, 26, 6–16. [Google Scholar] [CrossRef]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J. Acad. Nutr. Diet. 2016, 116, 501–528. [Google Scholar] [CrossRef] [PubMed]
- Frączek, B. Diety Alternatywne i Ich Zastosowanie w Sporcie; Krakowska Wyższa Szkoła Promocji ZDrowia: Krakow, Poland, 2016. [Google Scholar]
- Frączek, B.; Pięta, A.; Burda, A.; Mazur-Kurach, P.; Tyrała, F. Paleolithic Diet—Effect on the Health Status and Performance of Athletes? Nutrients 2021, 13, 1019. [Google Scholar] [CrossRef]
- Konner, M.; Eaton, S.B. Paleolithic Nutrition: Twenty-Five Years Later. Nutr. Clin. Pract. 2010, 25, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Ryberg, M.; Sandberg, S.; Mellberg, C.; Stegle, O.; Lindahl, B.; Larsson, C.; Hauksson, J.; Olsson, T. A Palaeolithic-Type Diet Causes Strong Tissue-Specific Effects on Ectopic Fat Deposition in Obese Postmenopausal Women. J. Intern. Med. 2013, 274, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Lindeberg, S.; Jönsson, T.; Granfeldt, Y.; Borgstrand, E.; Soffman, J.; Sjöström, K.; Ahrén, B. A Palaeolithic Diet Improves Glucose Tolerance More than a Mediterranean-like Diet in Individuals with Ischaemic Heart Disease. Diabetologia 2007, 50, 1795–1807. [Google Scholar] [CrossRef]
- Pastore, R.L.; Brooks, J.T.; Carbone, J.W. Paleolithic Nutrition Improves Plasma Lipid Concentrations of Hypercholesterolemic Adults to a Greater Extent than Traditional Heart-Healthy Dietary Recommendations. Nutr. Res. 2015, 35, 474–479. [Google Scholar] [CrossRef]
- Blomquist, C.; Chorell, E.; Ryberg, M.; Mellberg, C.; Worrsjö, E.; Makoveichuk, E.; Larsson, C.; Lindahl, B.; Olivecrona, G.; Olsson, T. Decreased Lipogenesis-Promoting Factors in Adipose Tissue in Postmenopausal Women with Overweight on a Paleolithic-Type Diet. Eur. J. Nutr. 2018, 57, 2877–2886. [Google Scholar] [CrossRef]
- Österdahl, M.; Kocturk, T.; Koochek, A.; Wändell, P.E. Effects of a Short-Term Intervention with a Paleolithic Diet in Healthy Volunteers. Eur. J. Clin. Nutr. 2008, 62, 682–685. [Google Scholar] [CrossRef]
- Genoni, A.; Lyons-Wall, P.; Lo, J.; Devine, A. Cardiovascular, Metabolic Effects and Dietary Composition of Ad-Libitum Paleolithic vs. Australian Guide to Healthy Eating Diets: A 4-Week Randomised Trial. Nutrients 2016, 8, 314. [Google Scholar] [CrossRef]
- Stomby, A.; Otten, J.; Ryberg, M.; Nyberg, L.; Olsson, T.; Boraxbekk, C.-J. A Paleolithic Diet with and without Combined Aerobic and Resistance Exercise Increases Functional Brain Responses and Hippocampal Volume in Subjects with Type 2 Diabetes. Front. Aging Neurosci. 2017, 9, 391. [Google Scholar] [CrossRef] [PubMed]
- Otten, J.; Stomby, A.; Waling, M.; Isaksson, A.; Tellström, A.; Lundin-Olsson, L.; Brage, S.; Ryberg, M.; Svensson, M.; Olsson, T. Benefits of a Paleolithic Diet with and without Supervised Exercise on Fat Mass, Insulin Sensitivity, and Glycemic Control: A Randomized Controlled Trial in Individuals with Type 2 Diabetes. Diabetes Metab. Res. Rev. 2017, 33, e2828. [Google Scholar] [CrossRef] [PubMed]
- Otten, J.; Andersson, J.; Ståhl, J.; Stomby, A.; Saleh, A.; Waling, M.; Ryberg, M.; Hauksson, J.; Svensson, M.; Johansson, B.; et al. Exercise Training Adds Cardiometabolic Benefits of a Paleolithic Diet in Type 2 Diabetes Mellitus. J. Am. Heart Assoc. 2019, 8, e010634. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.L.; Matarese, G.; Shetty, G.K.; Raciti, P.; Kelesidis, I.; Aufiero, D.; De Rosa, V.; Perna, F.; Fontana, S.; Mantzoros, C.S. Differential Regulation of Metabolic, Neuroendocrine, and Immune Function by Leptin in Humans. Proc. Natl. Acad. Sci. USA 2006, 103, 8481–8486. [Google Scholar] [CrossRef] [PubMed]
- Meier, U.; Gressner, A.M. Endocrine Regulation of Energy Metabolism: Review of Pathobiochemical and Clinical Chemical Aspects of Leptin, Ghrelin, Adiponectin, and Resistin. Clin. Chem. 2004, 50, 1511–1525. [Google Scholar] [CrossRef] [PubMed]
- Hausman, G.J.; Barb, C.R.; Lents, C.A. Leptin and Reproductive Function. Biochimie 2012, 94, 2075–2081. [Google Scholar] [CrossRef] [PubMed]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in Inflammation and Metabolic Disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef]
- Palacios-González, B.; Vadillo-Ortega, F.; Polo-Oteyza, E.; Sánchez, T.; Ancira-Moreno, M.; Romero-Hidalgo, S.; Meráz, N.; Antuna-Puente, B. Irisin Levels before and after Physical Activity among School-Age Children with Different BMI: A Direct Relation with Leptin. Obesity 2015, 23, 729–732. [Google Scholar] [CrossRef]
- Nigro, E.; Scudiero, O.; Ludovica Monaco, M.; Polito, R.; Schettino, P.; Grandone, A.; Perrone, L.; Miraglia Del Giudice, E.; Daniele, A. Adiponectin Profile and Irisin Expression in Italian Obese Children: Association with Insulin-Resistance. Cytokine 2017, 94, 8–13. [Google Scholar] [CrossRef]
- Huh, J.Y.; Dincer, F.; Mesfum, E.; Mantzoros, C.S. Irisin Stimulates Muscle Growth-Related Genes and Regulates Adipocyte Differentiation and Metabolism in Humans. Int. J. Obes. 2014, 38, 1538–1544. [Google Scholar] [CrossRef]
- Liu, T.-Y.; Shi, C.-X.; Gao, R.; Sun, H.-J.; Xiong, X.-Q.; Ding, L.; Chen, Q.; Li, Y.-H.; Wang, J.-J.; Kang, Y.-M.; et al. Irisin Inhibits Hepatic Gluconeogenesis and Increases Glycogen Synthesis via the PI3K/Akt Pathway in Type 2 Diabetic Mice and Hepatocytes. Clin. Sci. 2015, 129, 839–850. [Google Scholar] [CrossRef] [PubMed]
- Mo, L.; Shen, J.; Liu, Q.; Zhang, Y.; Kuang, J.; Pu, S.; Cheng, S.; Zou, M.; Jiang, W.; Jiang, C.; et al. Irisin Is Regulated by CAR in Liver and Is a Mediator of Hepatic Glucose and Lipid Metabolism. Mol. Endocrinol. 2016, 30, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Rouhani, M.H.; Hadi, A.; Ghaedi, E.; Salehi, M.; Mahdavi, A.; Mohammadi, H. Do Probiotics, Prebiotics and Synbiotics Affect Adiponectin and Leptin in Adults? A Systematic Review and Meta-Analysis of Clinical Trials. Clin. Nutr. 2019, 38, 2031–2037. [Google Scholar] [CrossRef] [PubMed]
- Senesi, P.; Luzi, L.; Terruzzi, I. Adipokines, Myokines, and Cardiokines: The Role of Nutritional Interventions. Int. J. Mol. Sci. 2020, 21, 8372. [Google Scholar] [CrossRef]
- Fang, H.; Judd, R.L. Adiponectin Regulation and Function. In Comprehensive Physiology; Wiley: Hoboken, NJ, USA, 2018; pp. 1031–1063. [Google Scholar]
- Kwon, H.; Pessin, J.E. Adipokines Mediate Inflammation and Insulin Resistance. Front. Endocrinol. 2013, 4, 71. [Google Scholar] [CrossRef]
- Schoppen, S.; Riestra, P.; García-Anguita, A.; López-Simón, L.; Cano, B.; de Oya, I.; de Oya, M.; Garcés, C. Leptin and Adiponectin Levels in Pubertal Children: Relationship with Anthropometric Variables and Body Composition. Clin. Chem. Lab. Med. 2010, 48, 707–711. [Google Scholar] [CrossRef]
- Bastard, J.-P.; Maachi, M.; Lagathu, C.; Kim, M.J.; Caron, M.; Vidal, H.; Capeau, J.; Feve, B. Recent Advances in the Relationship between Obesity, Inflammation, and Insulin Resistance. Eur. Cytokine Netw. 2006, 17, 4–12. [Google Scholar]
- Żak, S.; Spieszny, M. Analiza Procesu Treningowego i Walki Sportowej w Grach Zespołowych (Piłka Ręczna); Międzynarodowe Towarzystwo Naukowe Gier Sportowych: Wrocław, Poland, 2009. [Google Scholar]
- Zajac, A.; Poprzecki, S.; Maszczyk, A.; Czuba, M.; Michalczyk, M.; Zydek, G. The Effects of a Ketogenic Diet on Exercise Metabolism and Physical Performance in Off-Road Cyclists. Nutrients 2014, 6, 2493–2508. [Google Scholar] [CrossRef]
- Durkalec-Michalski, K.; Nowaczyk, P.M.; Siedzik, K. Effect of a Four-Week Ketogenic Diet on Exercise Metabolism in CrossFit-Trained Athletes. J. Int. Soc. Sports Nutr. 2019, 16, 16. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Dietary Reference Values for Nutrients Summary Report. EFSA Support. Publ. 2017, 14, e15121. [Google Scholar] [CrossRef]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jäger, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E.; et al. ISSN Exercise & Sports Nutrition Review Update: Research & Recommendations. J. Int. Soc. Sports Nutr. 2018, 15, 38. [Google Scholar] [CrossRef] [PubMed]
- Fontes-Villalba, M.; Lindeberg, S.; Granfeldt, Y.; Knop, F.K.; Memon, A.A.; Carrera-Bastos, P.; Picazo, Ó.; Chanrai, M.; Sunquist, J.; Sundquist, K.; et al. Palaeolithic Diet Decreases Fasting Plasma Leptin Concentrations More than a Diabetes Diet in Patients with Type 2 Diabetes: A Randomised Cross-over Trial. Cardiovasc. Diabetol. 2016, 15, 80. [Google Scholar] [CrossRef] [PubMed]
- Jönsson, T.; Granfeldt, Y.; Erlanson-Albertsson, C.; Ahrén, B.; Lindeberg, S. A Paleolithic Diet Is More Satiating per Calorie than a Mediterranean-like Diet in Individuals with Ischemic Heart Disease. Nutr. Metab. 2010, 7, 85. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Wang, Z.; Heymsfield, S.B.; Baumgartner, R.N.; Gallagher, D. Total-Body Skeletal Muscle Mass: Estimation by a New Dual-Energy X-ray Absorptiometry Method. Am. J. Clin. Nutr. 2002, 76, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Solnica, B.; Dembińska-Kieć, A.; Naskalski, J. Diagnostyka Laboratoryjna z Elementami Biochemii Klinicznej; Edra Urban & Partner: Wrocław, Poland, 2022. [Google Scholar]
- Jönsson, T.; Granfeldt, Y.; Lindeberg, S.; Hallberg, A.-C. Subjective Satiety and Other Experiences of a Paleolithic Diet Compared to a Diabetes Diet in Patients with Type 2 Diabetes. Nutr. J. 2013, 12, 105. [Google Scholar] [CrossRef] [PubMed]
- Dundar, A.; Kocahan, S.; Sahin, L. Associations of Apelin, Leptin, Irisin, Ghrelin, Insulin, Glucose Levels, and Lipid Parameters with Physical Activity during Eight Weeks of Regular Exercise Training. Arch. Physiol. Biochem. 2021, 127, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Golbidi, S.; Laher, I. Exercise Induced Adipokine Changes and the Metabolic Syndrome. J. Diabetes Res. 2014, 2014, 726861. [Google Scholar] [CrossRef]
- De Luis, D.A.; Aller, R.; Izaola, O.; Romero, E. Effects of a High-Protein/Low-Carbohydrate versus a Standard Hypocaloric Diet on Adipocytokine Levels and Cardiovascular Risk Factors during 9 Months, Role of Rs6923761 Gene Variant of Glucagon-like Peptide 1 Receptor. J. Endocrinol. Investig. 2015, 38, 1183–1189. [Google Scholar] [CrossRef]
- Wiecek, M.; Szymura, J.; Maciejczyk, M.; Kantorowicz, M.; Szygula, Z. Acute Anaerobic Exercise Affects the Secretion of Asprosin, Irisin, and Other Cytokines—A Comparison Between Sexes. Front. Physiol. 2018, 9, 1782. [Google Scholar] [CrossRef]
- Mendoza-Herrera, K.; Florio, A.A.; Moore, M.; Marrero, A.; Tamez, M.; Bhupathiraju, S.N.; Mattei, J. The Leptin System and Diet: A Mini Review of the Current Evidence. Front. Endocrinol. 2021, 12, 749050. [Google Scholar] [CrossRef]
- Anastasilakis, A.D.; Polyzos, S.A.; Saridakis, Z.G.; Kynigopoulos, G.; Skouvaklidou, E.C.; Molyvas, D.; Vasiloglou, M.F.; Apostolou, A.; Karagiozoglou-Lampoudi, T.; Siopi, A.; et al. Circulating Irisin in Healthy, Young Individuals: Day-Night Rhythm, Effects of Food Intake and Exercise, and Associations with Gender, Physical Activity, Diet, and Body Composition. J. Clin. Endocrinol. Metab. 2014, 99, 3247–3255. [Google Scholar] [CrossRef] [PubMed]
- Shirvani, H.; Delpasand, A.; Bazgir, B. The Data on the Aerobic Training with or without Calorie Restriction and Muscular Levels of Irisin and Muscular FNDC5 Concentration in Obese Male Wistar Rats. Data Brief. 2018, 21, 888–892. [Google Scholar] [CrossRef] [PubMed]
- Ansari, S.; Djalali, M.; Mohammadzadeh Honarvar, N.; Mazaherioun, M.; Zarei, M.; Agh, F.; Gholampour, Z.; Javanbakht, M.H. The Effect of N-3 Polyunsaturated Fatty Acids Supplementation on Serum Irisin in Patients with Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled Trial. Int. J. Endocrinol. Metab. 2017, 15, e13261. [Google Scholar] [CrossRef] [PubMed]
- Reis, C.E.G.; Bressan, J.; Alfenas, R.C.G. Effect of the Diet Components on Adiponectin Levels. Nutr. Hosp. 2010, 25, 881–888. [Google Scholar] [PubMed]
- Frączek, B.; Pięta, A. Does the Paleo Diet Affect an Athlete’s Health and Sport Performance? Biol. Sport. 2023, 40, 1124–1139. [Google Scholar] [CrossRef]
- Paoli, A.; Bianco, A.; Grimaldi, K.A. The Ketogenic Diet and Sport. Exerc. Sport. Sci. Rev. 2015, 43, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Creighton, B.C.; Hyde, P.N.; Maresh, C.M.; Kraemer, W.J.; Phinney, S.D.; Volek, J.S. Paradox of Hypercholesterolaemia in Highly Trained, Keto-Adapted Athletes. BMJ Open Sport Exerc. Med. 2018, 4, e000429. [Google Scholar] [CrossRef]
- Macedo, R.C.O.; Santos, H.O.; Tinsley, G.M.; Reischak-Oliveira, A. Low-Carbohydrate Diets: Effects on Metabolism and Exercise—A Comprehensive Literature Review. Clin. Nutr. ESPEN 2020, 40, 17–26. [Google Scholar] [CrossRef]
- Jeukendrup, A.E. Periodized Nutrition for Athletes. Sports Med. 2017, 47, 51–63. [Google Scholar] [CrossRef]
- Volek, J.S.; Freidenreich, D.J.; Saenz, C.; Kunces, L.J.; Creighton, B.C.; Bartley, J.M.; Davitt, P.M.; Munoz, C.X.; Anderson, J.M.; Maresh, C.M.; et al. Metabolic Characteristics of Keto-Adapted Ultra-Endurance Runners. Metabolism 2016, 65, 100–110. [Google Scholar] [CrossRef]
- Poffé, C.; Ramaekers, M.; Bogaerts, S.; Hespel, P. Exogenous Ketosis Impacts Neither Performance nor Muscle Glycogen Breakdown in Prolonged Endurance Exercise. J. Appl. Physiol. 2020, 128, 1643–1653. [Google Scholar] [CrossRef] [PubMed]
- Phinney, S.D.; Bistrian, B.R.; Evans, W.J.; Gervino, E.; Blackburn, G.L. The Human Metabolic Response to Chronic Ketosis without Caloric Restriction: Preservation of Submaximal Exercise Capability with Reduced Carbohydrate Oxidation. Metabolism 1983, 32, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Coyle, E.F.; Jeukendrup, A.E.; Oseto, M.C.; Hodgkinson, B.J.; Zderic, T.W. Low-Fat Diet Alters Intramuscular Substrates and Reduces Lipolysis and Fat Oxidation during Exercise. Am. J. Physiol. Endocrinol. Metab. 2001, 280, E391–E398. [Google Scholar] [CrossRef] [PubMed]
- Arkinstall, M.J.; Tunstall, R.J.; Cameron-Smith, D.; Hawley, J.A. Regulation of Metabolic Genes in Human Skeletal Muscle by Short-Term Exercise and Diet Manipulation. Am. J. Physiol. Endocrinol. Metab. 2004, 287, E25–E31. [Google Scholar] [CrossRef] [PubMed]
- Havemann, L.; West, S.J.; Goedecke, J.H.; Macdonald, I.A.; St Clair Gibson, A.; Noakes, T.D.; Lambert, E.V. Fat Adaptation Followed by Carbohydrate Loading Compromises High-Intensity Sprint Performance. J. Appl. Physiol. 2006, 100, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Dearlove, D.J.; Harrison, O.K.; Hodson, L.; Jefferson, A.; Clarke, K.; Cox, P.J. The Effect of Blood Ketone Concentration and Exercise Intensity on Exogenous Ketone Oxidation Rates in Athletes. Med. Sci. Sports Exerc. 2021, 53, 505–516. [Google Scholar] [CrossRef] [PubMed]
- McSwiney, F.T.; Fusco, B.; McCabe, L.; Lombard, A.; Crowley, P.; Walsh, J.; Hone, M.; Egan, B. Changes in Body Composition and Substrate Utilization after a Short-Term Ketogenic Diet in Endurance-Trained Males. Biol. Sport. 2021, 38, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Cox, P.J.; Kirk, T.; Ashmore, T.; Willerton, K.; Evans, R.; Smith, A.; Murray, A.J.; Stubbs, B.; West, J.; McLure, S.W.; et al. Nutritional Ketosis Alters Fuel Preference and Thereby Endurance Performance in Athletes. Cell Metab. 2016, 24, 256–268. [Google Scholar] [CrossRef]
- Prins, P.J.; Noakes, T.D.; Welton, G.L.; Haley, S.J.; Esbenshade, N.J.; Atwell, A.D.; Scott, K.E.; Abraham, J.; Raabe, A.S.; Buxton, J.D.; et al. High Rates of Fat Oxidation Induced by a Low-Carbohydrate, High-Fat Diet, Do Not Impair 5-Km Running Performance in Competitive Recreational Athletes. J. Sports Sci. Med. 2019, 18, 738–750. [Google Scholar]
- Volek, J.S.; Sharman, M.J.; Love, D.M.; Avery, N.G.; Gómez, A.L.; Scheett, T.P.; Kraemer, W.J. Body Composition and Hormonal Responses to a Carbohydrate-Restricted Diet. Metabolism 2002, 51, 864–870. [Google Scholar] [CrossRef]
- Noakes, M.; Foster, P.R.; Keogh, J.B.; James, A.P.; Mamo, J.C.; Clifton, P.M. Comparison of Isocaloric Very Low Carbohydrate/High Saturated Fat and High Carbohydrate/Low Saturated Fat Diets on Body Composition and Cardiovascular Risk. Nutr. Metab. 2006, 3, 7. [Google Scholar] [CrossRef]
- Urbain, P.; Strom, L.; Morawski, L.; Wehrle, A.; Deibert, P.; Bertz, H. Impact of a 6-Week Non-Energy-Restricted Ketogenic Diet on Physical Fitness, Body Composition and Biochemical Parameters in Healthy Adults. Nutr. Metab. 2017, 14, 17. [Google Scholar] [CrossRef]
- Evans, M.; Cogan, K.E.; Egan, B. Metabolism of Ketone Bodies during Exercise and Training: Physiological Basis for Exogenous Supplementation. J. Physiol. 2017, 595, 2857–2871. [Google Scholar] [CrossRef]
Indicator | Measurement Point | PD | CD |
---|---|---|---|
Me (Q1;Q3) | Me (Q1;Q3) | ||
BM (kg) | baseline | 90.18 (86.40; 100.00) | 87.10 (83.90; 95.50) |
4 | 90.12 (78.80; 99.10) | 86.30 (82.20; 92.20) | |
8 | 88.45 (78.00; 95.80) ** | 85.00 (82,30; 93.40) | |
BMI (kg/m2) | baseline | 25.92 (25.43; 27.15) | 25.90 (25.68; 27.43) |
4 | 24.76 (23.76; 26.41) | 25.17 (24.34; 27.25) | |
8 | 24.97 (24.37; 26.44) | 25.37 (24.54; 27.53) | |
FM (kg) | baseline | 18.70 (13.90; 25.70) | 16.30 (12.70; 19.30) |
4 | 16.50 (12.20; 20.90) | 14.30 (10.80; 17.30) | |
8 | 14.70 (11.90; 19.00) | 13.60 (9.90; 15.80) | |
FM (%) | baseline | 22.35 (16.60; 28.90) | 18.60 (15.80; 23.20) |
4 | 19.45 (15.00; 27.30) | 17.00 (13.40; 21.30) | |
8 | 17.30 (13.70; 21.90) | 17.20 (12.60; 20.00) | |
LBM (kg) | baseline | 69.30 (64.02; 72.20) | 67.50 (63.80; 73.90) |
4 | 68.70 (63.50; 70.90) | 67.70 (62.30; 74.00) | |
8 | 68.30 (64.10; 71.60) | 68.70 (63.80; 73.90) | |
LBM (%) | baseline | 75.25 (73.40; 81.30) | 76.90 (70.90; 80.40) |
4 | 77.10 (73.90; 81.80) | 79.50 (73.30; 82,.80) | |
8 | 78.50 (74.80; 82.50) | 79.20 (73.80; 83.40) | |
FFM (kg) | baseline | 71.90 (67.50; 75.10) | 71.20 (63.80; 78.50) |
4 | 70.60 (67.10; 73.40) | 71.50 (63.70; 78.00) | |
8 | 71.30 (67.80; 72.00) | 72.40 (64.70; 80.40) | |
FFM (%) | baseline | 78.75 (72.20; 81.90) | 82.20 (75.30; 84.90) |
4 | 81.15 (73.80; 84.90) | 83.80 (78.10; 87.30) | |
8 | 82.00 (78.60; 84.50) | 83.60 (78.20; 88.00) | |
MM (kg) | baseline | 38.75 (35.10; 41.10) | 37.80 (36.50; 43.50) |
4 | 37.00 (33.80; 40.30) | 38.10 (34.10; 42.70) | |
8 | 37.50 (35.40; 41.00) | 38.30 (34.20; 42.40) | |
MM (%) | baseline | 42.25 (39.00; 45.20) | 43.50 (42.80; 45.90) |
4 | 41.45 (38.70; 45.10) | 44.20 (41.50; 46.30) | |
8 | 43.00 (41.40; 45.80) | 44.70 (41.50; 45.60) | |
BMC (g) | baseline | 3.77 (3.54; 4.18) | 3.78 (3.65; 4.35) |
4 | 3.76 (3.51; 4.19) | 3.81 (3.41; 4.27) | |
8 | 3.71 (3.51; 4.14) | 3.83 (3.42; 4.24) | |
BMD (g/cm2) | baseline | 1.41 (1.35; 1.58) | 1.47 (1.39; 1.62) |
4 | 1.44 (1.34; 1.51) | 1.45 (1.40; 1.52) | |
8 | 1.43 (1.36; 1.50) | 1.47 (1.36; 1.55) |
Indicator | Measurement Point | PD | CD |
---|---|---|---|
Me (Q1; Q3) | Me (Q1; Q3) | ||
Glucose (mmol/L) | baseline | 5.05 (4.83; 5.40) | 5.06 (4.94; 5.21) |
4 | 4.96 (4.70; 5.18) | 4.83 (4.58; 5.15) | |
8 | 4.99 (4.60; 5.33) | 4.96 (4.77; 5.05) | |
Insulin (µIU/mL) | baseline | 7.13 (6.13; 8.75) | 7.25 (5.37; 10.60) |
4 | 6.60 (4.80; 9.72) | 6.76 (5.95; 7.90) | |
8 | 6.32 (5.50; 8.48) | 5.54 (4.72; 7.39) | |
FFA (mmol/L) | baseline | 0.52 (0.25; 0.68) | 0.24 (0.15; 0.41) |
4 | 0.35 (0.28; 0.57) | 0.52 (0.22; 0.76) | |
8 | 0.29 (0.21; 0.54) | 0.39 (0.19; 0.64) | |
β-HB (mmol/L) | baseline | 0.05 (0.04; 0.07) | 0.05 (0.04; 0.15) |
4 | 0.10 (0.05; 0.17) | 0.08 (0.05; 0.21) | |
8 | 0.11 (0.04; 0.18) | 0.08 (0.05; 0.12) | |
TC (mmol/L) | baseline | 3.83 (3.58; 4,31) | 3.86 (3.52; 4.75) |
4 | 4.35 (3.42; 4.65) | 3.81 (3.49; 4.83) | |
8 | 4.26 (3.91; 4.72) | 3.93 (3.66; 4.50) | |
HDL-C (mmol/L) | baseline | 1.39 (1.22; 1.91) | 1.44 (1.22; 1.78) |
4 | 1.39 (1.18; 1.69) | 1.40 (1.09; 1.62) | |
8 | 1.53 (1.36; 1.86) | 1.37 (1.11; 1.78) | |
non-HDL-C (mmol/L) | baseline | 2.53 (2.08; 2.99) | 2.44 (1.95; 3.10) |
4 | 2.75 (2.08; 3.21) | 2.25 (1.99; 3.28) | |
8 | 2.78 (2.65; 3.10) | 2.60 (1.85; 3.13) | |
LDL-C (mmol/L) | baseline | 2.06 (1.71; 2.52) | 1.84 (1.56; 2.42) |
4 | 2.47 (1.80; 2.86) | 1.89 (1.67; 2.92) | |
8 | 2.26 (1.76; 2.67) | 2.08 (1.53; 2.71) | |
TG (mmol/dL) | baseline | 1.07 (0.89; 1.67) | 0.80 (0.70; 1.30) |
4 | 0.76 (0.61; 1.05) | 0.81 (0.69; 1.09) | |
8 | 0.97 (0.79; 1.15) | 1.00 (0.68; 1.54) | |
Mean ± SD | Mean ± SD | ||
Adiponectin (µg/mL) | baseline | 4.54 ± 2.97 | 6.99 ± 5,61 |
4 | 4.62 ± 3.39 | 6.01 ± 4.30 | |
8 | 5.14 ± 3.42 * | 6.35 ± 4.74 | |
Leptin (ng/mL) | baseline | 3.10 ±1.75 | 5.09 ± 5.27 |
4 | 1.86 ± 1.63 | 3.23 ± 3.78 | |
8 | 2.41 ± 2.25 | 2.78 ± 3.16 | |
Irisin (µg/mL) | baseline | 8.85 ± 3.36 | 9.16 ± 2.74 |
4 | 8.11 ± 3.24 | 8.04 ± 3.47 | |
8 | 6.88 ± 2.64 | 6.59 ± 3.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pięta, A.; Frączek, B.; Wiecek, M.; Mazur-Kurach, P. Impact of Paleo Diet on Body Composition, Carbohydrate and Fat Metabolism of Professional Handball Players. Nutrients 2023, 15, 4155. https://doi.org/10.3390/nu15194155
Pięta A, Frączek B, Wiecek M, Mazur-Kurach P. Impact of Paleo Diet on Body Composition, Carbohydrate and Fat Metabolism of Professional Handball Players. Nutrients. 2023; 15(19):4155. https://doi.org/10.3390/nu15194155
Chicago/Turabian StylePięta, Aleksandra, Barbara Frączek, Magdalena Wiecek, and Paulina Mazur-Kurach. 2023. "Impact of Paleo Diet on Body Composition, Carbohydrate and Fat Metabolism of Professional Handball Players" Nutrients 15, no. 19: 4155. https://doi.org/10.3390/nu15194155
APA StylePięta, A., Frączek, B., Wiecek, M., & Mazur-Kurach, P. (2023). Impact of Paleo Diet on Body Composition, Carbohydrate and Fat Metabolism of Professional Handball Players. Nutrients, 15(19), 4155. https://doi.org/10.3390/nu15194155