Zinc Deficiency and Therapeutic Value of Zinc Supplementation in Pediatric Gastrointestinal Diseases
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Infectious Diarrhea
3.2. IBD
3.3. Celiac Disease
3.4. PUD
3.4.1. Zinc-Containing Compounds and Their Gastroprotective Effect
Zinc Acexamate
Zinc Sulfate
Zinc Monoglycerolate
Zinc Gluconate
Polaprezinc
Zinc Carnosine
Taurine Zinc
3.5. GERD
4. Zinc Supplementation: Dosage and Safety
5. Heterogeneity of Response to Zinc Supplementation
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GI | Gastrointestinal |
ZD | Zinc deficiency |
IBD | Inflammatory bowel disease |
CD | Crohn’s disease |
UC | Ulcerative colitis |
PUD | Peptic ulcer disease |
GERD | Gastroesophageal reflux disease |
PPI | Proton pump inhibitor |
GFD | Gluten-free diet |
H-2 | histamine-2 |
NSAIDs | Non-steroidal anti-inflammatory drugs |
SDs | Zinc solid dispersions |
RDQ | Reflux Disease Questionnaire |
References
- Semrad, C.E. Zinc and intestinal function. Curr. Gastroenterol. Rep. 1999, 1, 398–403. [Google Scholar] [CrossRef] [PubMed]
- Hering, N.A.; Schulzke, J.D. Therapeutic options to modulate barrier defects in inflammatory bowel disease. Dig. Dis. 2009, 27, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Tuerk, M.J.; Fazel, N. Zinc deficiency. Curr. Opin. Gastroenterol. 2009, 25, 136–143. [Google Scholar] [CrossRef]
- Duggan, C.; Gannon, J.; Walker, W.A. Protective nutrients and functional foods for the gastrointestinal tract. Am. J. Clin. Nutr. 2002, 75, 789–808. [Google Scholar] [CrossRef]
- Goh, J.; O’Morain, C.A. Review article: Nutrition and adult inflammatory bowel disease. Aliment. Pharmacol. Ther. 2003, 17, 307–320. [Google Scholar] [CrossRef]
- Quarterman, J.; Jackson, F.A.; Morrison, J.N. The effect of zinc deficiency on sheep intestinal mucin. Life Sci. 1976, 19, 979–986. [Google Scholar] [CrossRef]
- Maares, M.; Keil, C.; Straubing, S.; Robbe-Masselot, C.; Haase, H. Zinc Deficiency Disturbs Mucin Expression, O-Glycosylation and Secretion by Intestinal Goblet Cells. Int. J. Mol. Sci. 2020, 26, 6149. [Google Scholar] [CrossRef]
- Scrimgeour, A.G.; Condlin, M.L. Zinc and micronutrient combinations to combat gastrointestinal inflammation. Curr. Opin. Clin. Nutr. Metab. Care. 2009, 12, 653–660. [Google Scholar] [CrossRef]
- Liu, P.; Pieper, R.; Rieger, J.; Vahjen, W.; Davin, R.; Plendl, J.; Meyer, W.; Zentek, J. Effect of dietary zinc oxide on morphological characteristics, mucin composition and gene expression in the colon of weaned piglets. PLoS ONE 2014, 9, e91091. [Google Scholar] [CrossRef]
- Dickinson, B.; Surawicz, C.M. Infectious diarrhea: An overview. Curr. Gastroenterol. Rep. 2014, 16, 399. [Google Scholar] [CrossRef]
- Finamore, A.; Massimi, M.; Conti Devirgiliis, L.; Mengheri, E. Zinc deficiency induces membrane barrier damage and increases neutrophil transmigration in Caco-2 cells. J. Nutr. 2008, 138, 1664–1670. [Google Scholar] [CrossRef]
- Zhong, W.; McClain, C.J.; Cave, M.; Kang, Y.J.; Zhou, Z. The role of zinc deficiency in alcohol-induced intestinal barrier dysfunction. Am. J. Physiol. Gastrointest. Liver. Physiol. 2010, 298, G625–G633. [Google Scholar] [CrossRef]
- Schulzke, J.D.; Fromm, M. Tight junctions: Molecular structure meets function. Ann. N. Y. Acad. Sci. 2009, 1165, 1–6. [Google Scholar] [CrossRef]
- Walter, J.K.; Rueckert, C.; Voss, M.; Mueller, S.L.; Piontek, J.; Gast, K.; Blasig, I.E. The oligomerization of the coiled coil-domain of occludin is redox sensitive. Ann. N. Y. Acad. Sci. 2009, 1165, 19–27. [Google Scholar] [CrossRef]
- Rodriguez, P.; Darmon, N.; Chappuis, P.; Candalh, C.; Blaton, M.A.; Bouchaud, C.; Heyman, M. Intestinal paracellular permeability during malnutrition in guinea pigs: Effect of high dietary zinc. Gut 1996, 39, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Takagi, Y.; Wasa, M.; Sando, K.; Khan, J.; Okada, A. Nitric oxide synthase inhibitor attenuates intestinal damage induced by zinc deficiency in rats. J. Nutr. 1999, 129, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, R.K.; Cousins, R.J. Upregulation of rat intestinal uroguanylin mRNA by dietary zinc restriction. Am. J. Physiol. 1997, 272 Pt 1, G972–G978. [Google Scholar] [CrossRef]
- Blanchard, R.K.; Cousins, R.J. Regulation of intestinal gene expression by dietary zinc: Induction of uroguanylin mRNA by zinc deficiency. J. Nutr. 2000, 130 (Suppl. S5), S1393–S1398. [Google Scholar] [CrossRef]
- Koo, S.I.; Turk, D.E. Effect of zinc deficiency on intestinal transport triglyceride in the rat. J. Nutr. 1977, 107, 909–919. [Google Scholar] [CrossRef]
- Moran, J.R.; Lyerly, A. The effects of severe zinc deficiency on intestinal amino acid losses in the rat. Life Sci. 1985, 36, 2515–2521. [Google Scholar] [CrossRef]
- Ying, A.J.; Shu, X.L.; Gu, W.Z.; Huang, X.M.; Shuai, X.H.; Yang, L.R.; Jiang, M.Z. Effect of zinc deficiency on intestinal mucosal morphology and digestive enzyme activity in growing rat. Zhonghua Er Ke Za Zhi 2011, 49, 249–254. [Google Scholar] [PubMed]
- Wapnir, R.A. Zinc deficiency, malnutrition and the gastrointestinal tract. J. Nutr. 2000, 130 (Suppl. S5), S1388–S1392. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.K.; Tomkins, A.M.; Ara, G.; Jolly, S.P.; Khatun, W.; Chowdhury, R.; Chakrabarty, B. Impact of zinc deficiency on vibrio cholerae enterotoxin-stimulated water and electrolyte transport in animal model. J. Health Popul. Nutr. 2006, 24, 42–47. [Google Scholar] [PubMed]
- Qadir, M.I.; Arshad, A.; Ahmad, B. Zinc: Role in the management of diarrhea and cholera. World J. Clin. Cases 2013, 1, 140–142. [Google Scholar] [CrossRef]
- Hambidge, K.M. Zinc and diarrhea. Acta Paediatr. Suppl. 1992, 381, 82–86. [Google Scholar] [CrossRef]
- Roy, S.K.; Behrens, R.H.; Haider, R.; Akramuzzaman, S.M.; Mahalanabis, D.; Wahed, M.A.; Tomkins, A.M. Impact of zinc supplementation on intestinal permeability in Bangladeshi children with acute diarrhoea and persistent diarrhoea syndrome. J. Pediatr. Gastroenterol. Nutr. 1992, 15, 289–296. [Google Scholar] [CrossRef]
- Surjawidjaja, J.E.; Hidayat, A.; Lesmana, M. Growth inhibition of enteric pathogens by zinc sulfate: An in vitro study. Med. Princ. Pract. 2004, 13, 286–289. [Google Scholar] [CrossRef]
- Fischer Walker, C.L.; Black, R.E. Zinc for the treatment of diarrhoea: Effect on diarrhoea morbidity, mortality and incidence of future episodes. Int. J. Epidemiol. 2010, 39 (Suppl. S1), i63–i69. [Google Scholar] [CrossRef]
- Patel, A.; Mamtani, M.; Dibley, M.J.; Badhoniya, N.; Kulkarni, H. Therapeutic value of zinc supplementation in acute and persistent diarrhea: A systematic review. PLoS ONE 2010, 5, e10386. [Google Scholar] [CrossRef]
- Zhang, Y.; Lee, B.; Thompson, M.; Glass, R.; Cama, R.I.; Figueroa, D.; Gilman, R.; Taylor, D.; Stephenson, C. Lactulose-mannitol intestinal permeability test in children with diarrhea caused by rotavirus and cryptosporidium. Diarrhea Working Group, Peru. J. Pediatr. Gastroenterol. Nutr. 2000, 31, 16–21, Erratum in J. Pediatr. Gastroenterol. Nutr. 2000, 31, 578. [Google Scholar] [CrossRef]
- Alam, A.N.; Sarker, S.A.; Wahed, M.A.; Khatun, M.; Rahaman, M.M. Enteric protein loss and intestinal permeability changes in children during acute shigellosis and after recovery: Effect of zinc supplementation. Gut 1994, 35, 1707–1711. [Google Scholar] [CrossRef] [PubMed]
- Lazzerini, M.; Wanzira, H. Oral zinc for treating diarrhoea in children. Cochrane Database Syst. Rev. 2016, 12, CD005436. [Google Scholar] [CrossRef] [PubMed]
- Larson, C.P.; Roy, S.K.; Khan, A.I.; Rahman, A.S.; Qadri, F. Zinc treatment to under-five children: Applications to improve child survival and reduce burden of disease. J. Health Popul. Nutr. 2008, 26, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Fischer Walker, C.L.; Ezzati, M.; Black, R.E. Global and regional child mortality and burden of disease attributable to zinc deficiency. Eur. J. Clin. Nutr. 2009, 63, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Gregorio, G.V.; Dans, L.F.; Cordero, C.P.; Panelo, C.A. Zinc supplementation reduced cost and duration of acute diarrhea in children. J. Clin. Epidemiol. 2007, 60, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Scrimgeour, A.G.; Lukaski, H.C. Zinc and diarrheal disease: Current status and future perspectives. Curr. Opin. Clin. Nutr. Metab. Care. 2008, 11, 711–717. [Google Scholar] [CrossRef]
- Khan, W.; Sellen, S. Zinc Supplementation in the Management of Diarrhoea; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Farthing, M.; Salam, M.A.; Lindberg, G.; Dite, P.; Khalif, I.; Salazar-Lindo, E.; Ramakrishna, B.S.; Goh, K.L.; Thomson, A.; Khan, A.G.; et al. WGO. Acute diarrhea in adults and children: A global perspective. J. Clin. Gastroenterol. 2013, 47, 12–20. [Google Scholar] [CrossRef]
- Goldman, R.D. Zinc supplementation for acute gastroenteritis. Can. Fam. Physician. 2013, 59, 363–364. [Google Scholar]
- Johnston, R.D.; Logan, R.F. What is the peak age for onset of IBD? Inflamm. Bowel Dis. 2008, 14 (Suppl. S2), S4–S5. [Google Scholar] [CrossRef]
- Devlen, J.; Beusterien, K.; Yen, L.; Ahmed, A.; Cheifetz, A.S.; Moss, A.C. The burden of inflammatory bowel disease: A patient reported qualitative analysis and development of a conceptual model. Inflamm. Bowel Dis. 2014, 20, 545–552. [Google Scholar] [CrossRef]
- Gîlcă-Blanariu, G.E.; Diaconescu, S.; Ciocoiu, M.; Ștefănescu, G. New Insights into the Role of Trace Elements in IBD. Biomed. Res. Int. 2018, 2018, 1813047. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.H.; Prasad, A.S.; Brewer, G.J.; Owyang, C. Zinc absorption in human small intestine. Am. J. Physiol. 1989, 256 Pt 1, G87–G91. [Google Scholar] [CrossRef] [PubMed]
- Sturniolo, G.C.; Mestriner, C.; Lecis, P.E.; D’Odorico, A.; Venturi, C.; Irato, P.; Cecchetto, A.; Tropea, A.; Longo, G.; D’Inca, R. Altered plasma and mucosal concentrations of trace elements and antioxidants in active ulcerative colitis. Scand. J. Gastroenterol. 1998, 33, 644–649. [Google Scholar] [PubMed]
- Ringstad, J.; Kildebo, S.; Thomassen, Y. Serum selenium, copper, and zinc concentrations in Crohn’s disease and ulcerative colitis. Scand. J. Gastroenterol. 1993, 28, 605–608. [Google Scholar] [CrossRef] [PubMed]
- Dalekos, G.N.; Ringstad, J.; Savaidis, I.; Seferiadis, K.I.; Tsianos, E.V. Zinc, copper and immunological markers in the circulation of well nourished patients with ulcerative colitis. Eur. J. Gastroenterol. Hepatol. 1998, 10, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Barahona-Garrido, J.; Camacho-Escobedo, J.; García-Martínez, C.I.; Tocay, H.; Cabiedes, J.; Yamamoto-Furusho, J.K. Antinuclear antibodies: A marker associated with steroid dependence in patients with ulcerative colitis. Inflamm. Bowel Dis. 2009, 15, 1039–1043. [Google Scholar] [CrossRef]
- Geerling, B.J.; Badart-Smook, A.; Stockbrügger, R.W.; Brummer, R.J. Comprehensive nutritional status in recently diagnosed patients with inflammatory bowel disease compared with population controls. Eur. J. Clin. Nutr. 2000, 54, 514–521. [Google Scholar] [CrossRef]
- Ainley, C.C.; Cason, J.; Carlsson, L.K.; Slavin, B.M.; Thompson, R.P. Zinc status in inflammatory bowel disease. Clin. Sci. 1988, 75, 277–283. [Google Scholar] [CrossRef]
- Hocke, M.; Winnefeld, K.; Bosseckert, H. Zinc concentration in serum and leucocytes in chronic inflammatory diseases. J. Trace. Elem. Med. Biol. 1995, 9, 112–116. [Google Scholar] [CrossRef]
- Di Leo, V.; D’Incà, R.; Barollo, M.; Tropea, A.; Fries, W.; Mazzon, E.; Irato, P.; Cecchetto, A.; Sturniolo, G.C. Effect of zinc supplementation on trace elements and intestinal metallothionein concentrations in experimental colitis in the rat. Dig. Liver Dis. 2001, 33, 135–139. [Google Scholar] [CrossRef]
- Mulder, T.P.; van der Sluys Veer, A.; Verspaget, H.W.; Griffioen, G.; Peña, A.S.; Janssens, A.R.; Lamers, C.B. Effect of oral zinc supplementation on metallothionein and superoxide dismutase concentrations in patients with inflammatory bowel disease. J. Gastroenterol. Hepatol. 1994, 9, 472–477. [Google Scholar] [CrossRef]
- Tran, C.D.; Ball, J.M.; Sundar, S.; Coyle, P.; Howarth, G.S. The role of zinc and metallothionein in the dextran sulfate sodium-induced colitis mouse model. Dig. Dis. Sci. 2007, 52, 2113–2121. [Google Scholar] [CrossRef]
- Higashimura, Y.; Takagi, T.; Naito, Y.; Uchiyama, K.; Mizushima, K.; Tanaka, M.; Hamaguchi, M.; Itoh, Y. Zinc Deficiency Activates the IL-23/Th17 Axis to Aggravate Experimental Colitis in Mice. J. Crohns Colitis. 2020, 9, 856–866. [Google Scholar] [CrossRef]
- Hendricks, K.M.; Walker, W.A. Zinc deficiency in inflammatory bowel disease. Nutr. Rev. 1988, 46, 401–408. [Google Scholar] [CrossRef]
- McClain, C.J.; Soutor, C.; Zieve, L. Zinc deficiency: A complication of Crohn’s disease. Gastroenterology 1980, 78, 272–279. [Google Scholar] [CrossRef]
- Vagianos, K.; Bector, S.; McConnell, J.; Bernstein, C.N. Nutrition assessment of patients with inflammatory bowel disease. JPEN J. Parenter. Enteral. Nutr. 2007, 31, 311–319. [Google Scholar] [CrossRef]
- Filippi, J.; Al-Jaouni, R.; Wiroth, J.B.; Hébuterne, X.; Schneider, S.M. Nutritional deficiencies in patients with Crohn’s disease in remission. Inflamm. Bowel Dis. 2006, 12, 185–191. [Google Scholar] [CrossRef]
- Myung, S.J.; Yang, S.K.; Jung, H.Y.; Jung, S.A.; Kang, G.H.; Ha, H.K.; Hong, W.S.; Min, Y.I. Zinc deficiency manifested by dermatitis and visual dysfunction in a patient with Crohn’s disease. J. Gastroenterol. 1998, 33, 876–879. [Google Scholar] [CrossRef]
- Ainley, C.; Cason, J.; Slavin, B.M.; Wolstencroft, R.A.; Thompson, R.P. The influence of zinc status and malnutrition on immunological function in Crohn’s disease. Gastroenterology 1991, 100, 1616–1625. [Google Scholar] [CrossRef]
- Haase, H.; Rink, L. Multiple impacts of zinc on immune function. Metallomics 2014, 6, 1175–1180. [Google Scholar] [CrossRef]
- Ukabam, S.O.; Clamp, J.R.; Cooper, B.T. Abnormal small intestinal permeability to sugars in patients with Crohn’s disease of the terminal ileum and colon. Digestion 1983, 27, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, J.; Vogelsang, H.; Hübl, W.; Waldhöer, T.; Lochs, H. Intestinal permeability and the prediction of relapse in Crohn’s disease. Lancet 1993, 341, 1437–1439. [Google Scholar] [CrossRef] [PubMed]
- Ranaldi, G.; Ferruzza, S.; Canali, R.; Leoni, G.; Zalewski, P.D.; Sambuy, Y.; Perozzi, G.; Murgia, C. Intracellular zinc is required for intestinal cell survival signals triggered by the inflammatory cytokine TNFα. J. Nutr. Biochem. 2013, 24, 967–976. [Google Scholar] [CrossRef] [PubMed]
- Sturniolo, G.C.; Di Leo, V.; Ferronato, A.; D’Odorico, A.; D'Incà, R. Zinc supplementation tightens “leaky gut” in Crohn’s disease. Inflamm. Bowel Dis. 2001, 7, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Brignola, C.; Belloli, C.; De Simone, G.; Evangelisti, A.; Parente, R.; Mancini, R.; Iannone, P.; Mocheggiani, E.; Fabris, N.; Morini, M.C. Zinc supplementation restores plasma concentrations of zinc and thymulin in patients with Crohn’s disease. Aliment. Pharmacol. Ther. 1993, 7, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Ananthakrishnan, A.N.; Khalili, H.; Song, M.; Higuchi, L.M.; Richter, J.M.; Chan, A.T. Zinc intake and risk of Crohn’s disease and ulcerative colitis: A prospective cohort study. Int. J. Epidemiol. 2015, 44, 1995–2005. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Ohfuji, S.; Kondo, K.; Fukushima, W.; Sasaki, S.; Kamata, N.; Yamagami, H.; Fujiwara, Y.; Suzuki, Y.; Hirota, Y. Association between dietary iron and zinc intake and development of ulcerative colitis: A case-control study in Japan. J. Gastroenterol. Hepatol. 2019, 34, 1703–1710. [Google Scholar] [CrossRef]
- Poursadegh, F.; Ahadi, M.; Vosoughinia, H.; Salehi, M.; Beheshti Namdar, A.; Farzanehfar, M.R.; Memar, B.; Ziaolhagh, R. A STROBE compliant observational study on trace elements in patients with ulcerative colitis and their relationship with disease activity. Medicine 2018, 97, e13523. [Google Scholar] [CrossRef]
- Mechie, N.C.; Mavropoulou, E.; Ellenrieder, V.; Petzold, G.; Kunsch, S.; Neesse, A.; Amanzada, A. Serum vitamin D but not zinc levels are associated with different disease activity status in patients with inflammatory bowel disease. Medicine 2019, 98, e15172. [Google Scholar] [CrossRef]
- Ehrlich, S.; Mark, A.G.; Rinawi, F.; Shamir, R.; Assa, A. Micronutrient Deficiencies in Children with Inflammatory Bowel Diseases. Nutr. Clin. Pract. 2020, 35, 315–322. [Google Scholar] [CrossRef]
- Siva, S.; Rubin, D.T.; Gulotta, G.; Wroblewski, K.; Pekow, J. Zinc Deficiency is Associated with Poor Clinical Outcomes in Patients with Inflammatory Bowel Disease. Inflamm. Bowel. Dis. 2017, 23, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, J.; Arai, K.; Kudo, T.; Nambu, R.; Tajiri, H.; Aomatsu, T.; Abe, N.; Kakiuchi, T.; Hashimoto, K.; Sogo, T.; et al. Serum Zinc and Selenium in Children with Inflammatory Bowel Disease: A Multicenter Study in Japan. Dig. Dis. Sci. 2022, 67, 2485–2491. [Google Scholar] [CrossRef] [PubMed]
- Rempel, J.; Grover, K.; El-Matary, W. Micronutrient Deficiencies and Anemia in Children with Inflammatory Bowel Disease. Nutrients 2021, 13, 236. [Google Scholar] [CrossRef] [PubMed]
- Sikora, S.K.; Spady, D.; Prosser, C.; El-Matary, W. Trace elements and vitamins at diagnosis in pediatric-onset inflammatory bowel disease. Clin. Pediatr. 2011, 50, 488–492. [Google Scholar] [CrossRef]
- Ojuawo, A.; Keith, L. The serum concentrations of zinc, copper and selenium in children with inflammatory bowel disease. Cent. Afr. J. Med. 2002, 48, 116–119. [Google Scholar] [PubMed]
- McClain, C.J. Zinc metabolism in malabsorption syndromes. J. Am. Coll. Nutr. 1985, 4, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Griffin, I.J.; Kim, S.C.; Hicks, P.D.; Liang, L.K.; Abrams, S.A. Zinc metabolism in adolescents with Crohn’s disease. Pediatr. Res. 2004, 56, 235–239. [Google Scholar] [CrossRef]
- Fritz, J.; Walia, C.; Elkadri, A.; Pipkorn, R.; Dunn, R.K.; Sieracki, R.; Goday, P.S.; Cabrera, J.M. A Systematic Review of Micronutrient Deficiencies in Pediatric Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2019, 25, 445–459. [Google Scholar] [CrossRef]
- Sturniolo, G.C.; Fries, W.; Mazzon, E.; Di Leo, V.; Barollo, M.; D’inca, R. Effect of zinc supplementation on intestinal permeability in experimental colitis. J. Lab. Clin. Med. 2002, 139, 311–315. [Google Scholar] [CrossRef]
- Li, J.; Chen, H.; Wang, B.; Cai, C.; Yang, X.; Chai, Z.; Feng, W. ZnO nanoparticles act as supportive therapy in DSS-induced ulcerative colitis in mice by maintaining gut homeostasis and activating Nrf2 signaling. Sci. Rep. 2017, 24, 43126. [Google Scholar] [CrossRef]
- Wierdsma, N.J.; van Bokhorst-de van der Schueren, M.A.; Berkenpas, M.; Mulder, C.J.; van Bodegraven, A.A. Vitamin and mineral deficiencies are highly prevalent in newly diagnosed celiac disease patients. Nutrients 2013, 30, 3975–3992. [Google Scholar] [CrossRef] [PubMed]
- Solomons, N.W.; Rosenberg, I.H.; Sandstead, H.H. Zinc nutrition in celiac sprue. Am. J. Clin. Nutr. 1976, 29, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Naveh, Y.; Lightman, A.; Zinder, O. A prospective study of serum zinc concentration in children with celiac disease. J. Pediatr. 1983, 102, 734–736. [Google Scholar] [CrossRef] [PubMed]
- Singhal, N.; Alam, S.; Sherwani, R.; Musarrat, J. Serum zinc levels in celiac disease. Indian Pediatr. 2008, 45, 319–321. [Google Scholar] [PubMed]
- Jameson, S. Zinc deficiency in malabsorption states: A cause of infertility? Acta Med. Scand. 1976, 593, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Jameson, S. Villous atrophy and nutritional status in celiac disease. Am. J. Clin. Nutr. 1999, 69, 573–575. [Google Scholar] [CrossRef] [PubMed]
- Stenberg, P.; Roth, E.B.; Sjöberg, K. Transglutaminase and the pathogenesis of coeliac disease. Eur. J. Intern. Med. 2008, 19, 83–91. [Google Scholar] [CrossRef]
- Sue, A.; Dehlsen, K.; Ooi, C.Y. Paediatric Patients with Coeliac Disease on a Gluten-Free Diet: Nutritional Adequacy and Macro- and Micronutrient Imbalances. Curr. Gastroenterol. Rep. 2018, 20, 2. [Google Scholar] [CrossRef]
- Di Nardo, G.; Villa, M.P.; Conti, L.; Ranucci, G.; Pacchiarotti, C.; Principessa, L.; Raucci, U.; Parisi, P. Nutritional Deficiencies in Children with Celiac Disease Resulting from a Gluten-Free Diet: A Systematic Review. Nutrients 2019, 11, 1588. [Google Scholar] [CrossRef]
- Rondanelli, M.; Faliva, M.A.; Gasparri, C.; Peroni, G.; Naso, M.; Picciotto, G.; Riva, A.; Nichetti, M.; Infantino, V.; Alalwan, T.A.; et al. Micronutrients Dietary Supplementation Advices for Celiac Patients on Long-Term Gluten-Free Diet with Good Compliance: A Review. Medicina 2019, 55, 337. [Google Scholar] [CrossRef]
- Högberg, L.; Danielsson, L.; Jarleman, S.; Sundqvist, T.; Stenhammar, L. Serum zinc in small children with coeliac disease. Acta Paediatr. 2009, 98, 343–345. [Google Scholar] [CrossRef] [PubMed]
- Rea, F.; Polito, C.; Marotta, A.; Di Toro, A.; Iovene, A.; Collini, R.; Rea, L.; Sessa, G. Restoration of body composition in celiac children after one year of gluten-free diet. J. Pediatr. Gastroenterol. Nutr. 1996, 23, 408–412. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.E.; Peters, T.J. Oral zinc supplements in non-responsive coeliac syndrome: Effect on jejunal morphology, enterocyte production, and brush border disaccharidase activities. Gut 1981, 22, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Crofton, R.W.; Aggett, P.J.; Gvozdanovic, S.; Gvozdanovic, D.; Mowat, N.A.; Brunt, P.W. Zinc metabolism in celiac disease. Am. J. Clin. Nutr. 1990, 52, 379–382. [Google Scholar] [CrossRef]
- Tran, C.D.; Katsikeros, R.; Manton, N.; Krebs, N.F.; Hambidge, K.M.; Butler, R.N.; Davidson, G.P. Zinc homeostasis and gut function in children with celiac disease. Am. J. Clin. Nutr. 2011, 94, 1026–1032. [Google Scholar] [CrossRef]
- Krebs, N.F.; Hambidge, K.M.; Westcott, J.E.; Miller, L.V.; Sian, L.; Bell, M.; Grunwald, G. Exchangeable zinc pool size in infants is related to key variables of zinc homeostasis. J. Nutr. 2003, 133 (Suppl. S1), 1498S–1501S. [Google Scholar] [CrossRef]
- Henker, J.; Gabsch, H.C. Serumzinkspiegel bei Kindern mit Zöliakie [Serum zinc levels in children with celiac disease]. Helv Paediatr Acta 1985, 40, 47–53. [Google Scholar]
- Theethira, T.G.; Dennis, M.; Leffler, D.A. Nutritional Consequences of Celiac Disease and the Gluten-Free Diet. Expert Rev. Gastroenterol. Hepatol. 2014, 8, 123–129. [Google Scholar] [CrossRef]
- Guerrieri, A.; Catassi, C.; Pasquini, E.; Coppa, G.V.; Benetti, E.; Giorgi, P.L. Plasma zinc levels in children with chronic diarrhea. Eur. J. Pediatr. 1986, 145, 563–564. [Google Scholar] [CrossRef]
- Altuntal, B.; Filik, B.; Ensari, A.; Zorlu, P.; Teziç, T. Can zinc deficiency be used as a marker for the diagnosis of celiac disease in Turkish children with short stature? Pediatr. Int. 2000, 42, 682–684. [Google Scholar] [CrossRef]
- Halsted, J.; Ronaghy, H.; Abadi, P.; Haghshenass, M.; Amirhakemi, G.H.; Barakat, R.M.; Reinhold, J.G. Zinc deficiency in man: The Shiraz experiment. Am. J. Med. 1972, 53, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Rawal, P.; Thapa, B.R.; Prasad, R.; Prasad, K.K.; Nain, C.K.; Singh, K. Zinc supplementation to patients with celiac disease--is it required? J. Trop. Pediatr. 2010, 56, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Negi, K.; Kumar, R.; Sharma, L.; Datta, S.P.; Choudhury, M.; Kumar, P. Serum zinc, copper and iron status of children with coeliac disease on three months of gluten-free diet with or without four weeks of zinc supplements: A randomised controlled trial. Trop. Doct. 2018, 48, 112–116. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, R.S.; Dhume, V.G. Gastric cytoprotection. Indian J. Physiol. Pharmacol. 1991, 35, 88–98. [Google Scholar] [PubMed]
- Bandyopadhyay, B.; Bandyopadhyay, S.K. Protective effect of zinc gluconate on chemically induced gastric ulcer. Indian J. Med. Res. 1997, 106, 27–32. [Google Scholar] [PubMed]
- Watanabe, T.; Arakawa, T.; Fukuda, T.; Higuchi, K.; Kobayashi, K. Zinc deficiency delays gastric ulcer healing in rats. Dig. Dis. Sci. 1995, 40, 1340–1344. [Google Scholar] [CrossRef]
- Rodrigues, L.E.; Galle, P.; Siry, P.; Vinhaes, A. The protective effect of zinc on gastric ulceration caused by ethanol treatment. Braz. J. Med. Biol. Res. 1989, 22, 41–50. [Google Scholar]
- Shah, D.; Sachdev, H.P. Zinc deficiency in pregnancy and fetal outcome. Nutr. Rev. 2006, 64, 15–30. [Google Scholar] [CrossRef]
- Bandyopadhyay, B.; Banerjee, P.; Bhattacharya, B.; Bandyopadhyay, S.K. Serum zinc level: A possible index in the pathogenesis of peptic ulcer syndrome. Biochem. Mol. Biol. Int. 1995, 36, 965–972. [Google Scholar]
- Ozutemiz, A.O.; Aydin, H.H.; Isler, M.; Celik, H.A.; Batur, Y. Effect of omeprazole on plasma zinc levels after oral zinc administration. Indian J. Gastroenterol. 2002, 21, 216–218. [Google Scholar]
- Joshaghani, H.; Amiriani, T.; Vaghari, G.; Besharat, S.; Molana, A.; Badeleh, M.; Roshandel, G. Effects of omeprazole consumption on serum levels of trace elements. J Trace. Elem. Med. Biol. 2012, 26, 234–237. [Google Scholar] [CrossRef] [PubMed]
- Sturniolo, G.C.; Montino, M.C.; Rossetto, L.; Martin, A.; D’Inca, R.; D’Odorico, A.; Naccarato, R. Inhibition of gastric acid secretion reduces zinc absorption in man. J. Am. Coll. Nutr. 1991, 10, 372–375. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.H.; Wu, X.J.; Niu, J.X.; Yan, H.; Wang, X.Z.; Yin, X.D.; Pang, Y. Serum zinc status and Helicobacter pylori infection in gastric disease patients. Asian Pac. J. Cancer Prev. 2012, 13, 5043–5046. [Google Scholar] [CrossRef] [PubMed]
- Frommer, D.J. The healing of gastric ulcers by zinc sulfate. Med. J. Aust. 1975, 22, 793–796. [Google Scholar] [CrossRef]
- Yazdanpanah, K.; Parhizkar, B.; Sheikhesmaeilim, F.; Roshanim, M.; Nayebi, M.; Gharibi, F. Efficacy of Zinc Sulfate in Peptic Ulcer Disease: A Randomized Double-Blind Clinical Trial Study. J. Clin. Diagn. Res. 2016, 10, OC11–OC15. [Google Scholar] [CrossRef]
- Kirchhoff, P.; Socrates, T.; Sidani, S.; Duffy, A.; Breidthardt, T.; Grob, C.; Viehl, C.T.; Beglinger, C.; Oertli, D.; Geibel, J.P. Zinc salts provide a novel, prolonged and rapid inhibition of gastric acid secretion. Am. J. Gastroenterol. 2011, 106, 62–70. [Google Scholar] [CrossRef]
- Lapenna, D.; Cuccurullo, F. Gastroprotective effect of zinc. Dig. Dis. Sci. 1994, 39, 1882–1884. [Google Scholar] [CrossRef]
- Trapkov, V.A.; Gobedzhashvili, S.D.; Erzinkian, K.L. Gastrozashitnoe deĭstvie sul’fata tsinka pri étanolovom ul’tserogeneze u krys [Gastroprotective effect of zinc sulfate in ethanol ulcer formation in rats]. Biull. Eksp. Biol. Med. 1995, 119, 49–50. [Google Scholar]
- Jiménez, E.; Bosch, F.; Galmés, J.L.; Baños, J.E. Meta-analysis of efficacy of zinc acexamate in peptic ulcer. Digestion 1992, 51, 18–26. [Google Scholar] [CrossRef]
- Rodríguez de la Serna, A.; Díaz-Rubio, M. Multicenter clinical trial of zinc acexamate in the prevention of nonsteroidal antiinflammatory drug induced gastroenteropathy. Spanish Study Group on NSAID Induced Gastroenteropathy Prevention. J. Rheumatol. 1994, 21, 927–933. [Google Scholar]
- Abou-Mohamed, G.; el-Kashef, H.A.; Salem, H.A.; Elmazar, M.M. Effect of zinc on the anti-inflammatory and ulcerogenic activities of indometacin and diclofenac. Pharmacology 1995, 50, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Ferstl, F.S.; Kitay, A.M.; Trattnig, R.M.; Alsaihati, A.; Geibel, J.P. Secretagogue-dependent and -independent transport of zinc hydration forms in rat parietal cells. Pflug. Arch. 2016, 468, 1877–1883. [Google Scholar] [CrossRef] [PubMed]
- Rainsford, K.D.; Whitehouse, M.W. Anti-ulcer activity of a slow-release zinc complex, zinc monoglycerolate (Glyzinc). J. Pharm. Pharmacol. 1992, 44, 476–482. [Google Scholar] [CrossRef]
- Conchillo, A.; Mola, C.; Navarro, C.; Bravo, L.; Bulbena, O. Cytoprotective and antisecretory activity of a ranitidine-zinc complex. Prostaglandins Leukot. Essent. Fatty Acids 1995, 52, 393–397. [Google Scholar] [CrossRef]
- Kato, S.; Nishiwaki, H.; Konaka, A.; Takeuchi, K. Mucosal ulcerogenic action of monochloramine in rat stomachs: Effects of polaprezinc and sucralfate. Dig. Dis. Sci. 1997, 42, 2156–2163. [Google Scholar] [CrossRef] [PubMed]
- Nishiwaki, H.; Kato, S.; Takeuchi, K. Irritant action of monochloramine in rat stomachs: Effects of zinc L-carnosine (polaprezinc). Gen. Pharmacol. 1997, 29, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Opoka, W.; Adamek, D.; Plonka, M.; Reczynski, W.; Bas, B.; Drozdowicz, D.; Jagielski, P.; Sliwowski, Z.; Adamski, P.; Brzozowski, T. Importance of luminal and mucosal zinc in the mechanism of experimental gastric ulcer healing. J. Physiol. Pharmacol. 2010, 61, 581–591. [Google Scholar]
- Jung, D.H.; Park, J.C.; Lee, Y.C.; Lee, S.K.; Shin, S.K.; Chung, H.; Park, J.J.; Kim, J.H.; Youn, Y.H.; Park, H. Comparison of the Efficacy of Polaprezinc Plus Proton Pump Inhibitor and Rebamipide Plus Proton Pump Inhibitor Treatments for Endoscopic Submucosal Dissection-induced Ulcers. J. Clin. Gastroenterol. 2021, 55, 233–238. [Google Scholar] [CrossRef]
- Hill, T.L.; Blikslager, A.T. Effect of a zinc L-carnosine compound on acid-induced injury in canine gastric mucosa ex vivo. Am. J. Vet. Res. 2012, 73, 659–663. [Google Scholar] [CrossRef]
- Ibrahim, N.; El Said, H.; Choukair, A. Zinc carnosine-based modified bismuth quadruple therapy vs standard triple therapy for Helicobacter pylori eradication: A randomized controlled study. World J. Clin. Cases 2022, 10, 227–235. [Google Scholar] [CrossRef]
- Yu, C.; Mei, X.T.; Zheng, Y.P.; Xu, D.H. Gastroprotective effect of taurine zinc solid dispersions against absolute ethanol-induced gastric lesions is mediated by enhancement of antioxidant activity and endogenous PGE2 production and attenuation of NO production. Eur. J. Pharmacol. 2014, 740, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Farrell, C.P.; Morgan, M.; Rudolph, D.S.; Hwang, A.; Albert, N.E.; Valenzano, M.C.; Wang, X.; Mercogliano, G.; Mullin, J.M. Proton Pump Inhibitors Interfere With Zinc Absorption and Zinc Body Stores. Gastroenterol. Res. 2011, 4, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Shafaghi, A.; Hasanzadeh, J.; Mansour-Ghanaei, F.; Joukar, F.; Yaseri, M. The Effect of Zinc Supplementationon the Symptoms of Gastroesophageal Reflux Disease; a Randomized Clinical Trial. Middle East J. Dig. Dis. 2016, 8, 289–296. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Scientific Opinion on Dietary Reference Values for zinc. EFSA J. 2014, 12, 3844. [Google Scholar] [CrossRef]
- World Health Organization; Food and Agricultural Organization. Vitamin and Mineral Requirements in Human Nutrition, 2nd ed.; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Valenzano, M.C.; Mercado, J.M.; Wang, X.; Zurbach, E.P.; Raines, J.; McDonnell, E.; Morgan, M.; Farrell, C.; Rudolph, D.; Hwang, A.; et al. Drug delivery of zinc to Barrett’s metaplasia by oral administration to Barrett’s esophagus patients. Ther. Deliv. 2014, 5, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Porter, K.G.; McMaster, D.; Elmes, M.E.; Love, A.H. Anaemia and low serum-copper during zinc therapy. Lancet 1977, 2, 774. [Google Scholar] [CrossRef]
- Prasad, A.S.; Brewer, G.J.; Schoomaker, E.B.; Rabbani, P. Hypocupremia induced by zinc therapy in adults. JAMA 1978, 240, 2166–2168. [Google Scholar] [CrossRef]
- Fosmire, G.J. Zinc toxicity. Am. J. Clin. Nutr. 1990, 51, 225–227. [Google Scholar] [CrossRef]
Zinc-Containing Compounds | Reference | Model | Advantages/Disadvantages |
---|---|---|---|
Zinc acexamate | [120,121,122] | Human/Rats | 1. A 4-week zinc acexamate treatment (300 mg/day) proved effective in reducing peptic ulcer incidence compared to placebo (human) [121]. 2. Combining zinc acexamate with anti-inflammatory drugs provided beneficial additive effects and reduced gastric hazards (rats) [122]. |
Zinc sulfate | [116,119,123] | Human/animal | 1. A 5-day pre-treatment with zinc sulfate (50 or 150 mg/kg/day) reduced the rate, number, and area of cystamine-induced duodenal lesions (rats) [116]. 2. A dose of zinc sulfate (220 mg/day) did not have significant effects on peptic ulcer treatment, while it had better ulcer treatment outcomes in patients with normal zinc levels (human) [119]. 3. Heptahydrate zinc sulfate exhibited a significantly faster entry into parietal cells compared to monohydrate zinc sulfate (rats) [123]. |
Zinc monoglycerolate | [124,125] | Animal | 1. Dose-dependent zinc monoglycerolate (zinc > 12 mg/kg) in preventing peptic ulcer formation (rats) [124] 2. A similar protective effect against gastric damage was observed between the ranitidine–zinc complex (100 and 150 mg/kg) and equal doses of ranitidine (35, 70, and 105 mg/kg) in rats [125]. |
Zinc gluconate | [106] | Animal | A 3-day pre-treatment with zinc gluconate (10 mg/kg) protected against alcohol-induced gastric damage and prevented NSAID-induced gastric ulcers (rats) [106]. |
Polaprezinc | [126,127,128,129,130] | Human/animal | 1. Treatment with polaprezinc (65 mg/kg/day) significantly raised the gastric luminal and mucosal levels of Zn2+ and significantly accelerated ulcer healing at day 7 upon ulcer induction (rats) [126]. 2. A randomized controlled study in adult patients (n = 210) with endoscopic submucosal dissection-induced ulcers were allocated to treatment with polaprezinc (150 mg/day) plus pantoprazole (40 mg/day) or treatment with rebamipide (300 mg/day) plus pantoprazole (40 mg/day). polaprezinc plus PPI treatment showed noninferiority to rebamipide plus PPI treatment in the ulcer healing rate at 4 weeks after submucosal dissection [127]. 3. Polaprezinc had the potential for treating gastric ulcers (dogs) [128]. |
Zinc carnosine | [131] | Human | Ninety-two adult patients with dyspepsia and positive 13C-urea breath test were randomly assigned into two groups. Ten days of modified bismuth quadruple therapy fortified with zinc carnosine is superior to 14 days of conventional treatment in eradicating H. pylori infection, with no additional significant adverse events. |
Taurine zinc | [132] | Animal | Taurine zinc (200 mg/kg) protected against gastric ulcers more significantly than taurine alone, suggesting a synergistic effect between taurine and zinc (rats). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chao, H.-C. Zinc Deficiency and Therapeutic Value of Zinc Supplementation in Pediatric Gastrointestinal Diseases. Nutrients 2023, 15, 4093. https://doi.org/10.3390/nu15194093
Chao H-C. Zinc Deficiency and Therapeutic Value of Zinc Supplementation in Pediatric Gastrointestinal Diseases. Nutrients. 2023; 15(19):4093. https://doi.org/10.3390/nu15194093
Chicago/Turabian StyleChao, Hsun-Chin. 2023. "Zinc Deficiency and Therapeutic Value of Zinc Supplementation in Pediatric Gastrointestinal Diseases" Nutrients 15, no. 19: 4093. https://doi.org/10.3390/nu15194093
APA StyleChao, H. -C. (2023). Zinc Deficiency and Therapeutic Value of Zinc Supplementation in Pediatric Gastrointestinal Diseases. Nutrients, 15(19), 4093. https://doi.org/10.3390/nu15194093