Vitamin D and Child Neurodevelopment—A Post Hoc Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Pregnancy Study Design
2.3. Follow-Up Study Design
2.4. Sociodemographic and Clinical Characteristic Variables
2.5. Neurodevelopmental Assessments
2.6. Total Circulating 25(OH)D Concentrations
2.7. Vitamin D Binding Protein Genotypes
2.8. Statistical Analysis
3. Results
3.1. Baseline Sociodemographic and Clinical Characteristics
3.2. Clinical Characteristics and Brigance Scores
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kesby, J.P.; Eyles, D.W.; Burne, T.H.J.; McGrath, J.J. The effects of vitamin D on brain development and adult brain function. Mol. Cell. Endocrinol. 2011, 347, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Hu, J.; Huo, X.; Miao, R.; Zhang, Y.; Ma, F. Effects of vitamin D supplementation on cognitive function and blood Abeta-related biomarkers in older adults with Alzheimer’s disease: A randomised, double-blind, placebo-controlled trial. J. Neurol. Neurosurg. Psychiatry 2019, 90, 1347–1352. [Google Scholar] [CrossRef] [PubMed]
- Dehbokri, N.; Noorazar, G.; Ghaffari, A.; Mehdizadeh, G.; Sarbakhsh, P.; Ghaffary, S. Effect of vitamin D treatment in children with attention-deficit hyperactivity disorder. World J. Pediatr. 2019, 15, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ding, R.; Wang, J. The Association between Vitamin D Status and Autism Spectrum Disorder (ASD): A Systematic Review and Meta-Analysis. Nutrients 2020, 13, 86. [Google Scholar] [CrossRef] [PubMed]
- Vinkhuyzen, A.A.E.; Eyles, D.W.; Burne, T.H.J.; Blanken, L.M.E.; Kruithof, C.J.; Verhulst, F.; Jaddoe, V.W.; Tiemeier, H.; McGrath, J.J. Gestational vitamin D deficiency and autism-related traits: The Generation R Study. Mol. Psychiatry 2018, 23, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Vinkhuyzen, A.A.E.; Eyles, D.W.; Burne, T.H.J.; Blanken, L.M.E.; Kruithof, C.J.; Verhulst, F.; White, T.; Jaddoe, V.W.; Tiemeier, H.; McGrath, J.J. Gestational vitamin D deficiency and autism spectrum disorder. BJPsych Open 2017, 3, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Stubbs, G.; Henley, K.; Green, J. Autism: Will vitamin D supplementation during pregnancy and early childhood reduce the recurrence rate of autism in newborn siblings? Med. Hypotheses 2016, 88, 74–78. [Google Scholar] [CrossRef]
- Saidi, L.; Hammou, H.; Sicard, F.; Landrier, J.-F.; Mounien, L. Maternal vitamin D deficiency and brain functions: A never-ending story. Food Funct. 2023, 14, 6290–6301. [Google Scholar] [CrossRef]
- Hawes, J.E.; Tesic, D.; Whitehouse, A.J.; Zosky, G.R.; Smith, J.T.; Wyrwoll, C.S. Maternal vitamin D deficiency alters fetal brain development in the BALB/c mouse. Behav. Brain Res. 2015, 286, 192–200. [Google Scholar] [CrossRef]
- Luan, W.; Hammond, L.A.; Vuillermot, S.; Meyer, U.; Eyles, D.W. Maternal Vitamin D Prevents Abnormal Dopaminergic Development and Function in a Mouse Model of Prenatal Immune Activation. Sci. Rep. 2018, 8, 9741. [Google Scholar] [CrossRef]
- Zou, R.; El Marroun, H.; McGrath, J.J.; Muetzel, R.L.; Hillegers, M.; White, T.; Tiemeier, H. A prospective population-based study of gestational vitamin D status and brain morphology in preadolescents. Neuroimage 2020, 209, 116514. [Google Scholar] [CrossRef] [PubMed]
- Chawla, D.; Fuemmeler, B.; Benjamin-Neelon, S.E.; Hoyo, C.; Murphy, S.; Daniels, J.L. Early prenatal vitamin D concentrations and social-emotional development in infants. J. Matern.-Fetal Neonatal Med. 2019, 32, 1441–1448. [Google Scholar] [CrossRef] [PubMed]
- Voltas, N.; Canals, J.; Hernández-Martínez, C.; Serrat, N.; Basora, J.; Arija, V. Effect of Vitamin D Status during Pregnancy on Infant Neurodevelopment: The ECLIPSES Study. Nutrients 2020, 12, 3196. [Google Scholar] [CrossRef]
- Whitehouse, A.J.; Holt, B.J.; Serralha, M.; Holt, P.G.; Kusel, M.M.; Hart, P.H. Maternal serum vitamin D levels during pregnancy and offspring neurocognitive development. Pediatrics 2012, 129, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Sass, L.; Vinding, R.K.; Stokholm, J.; Bjarnadóttir, E.; Noergaard, S.; Thorsen, J.; Sunde, R.B.; McGrath, J.; Bønnelykke, K.; Chawes, B.; et al. High-Dose Vitamin D Supplementation in Pregnancy and Neurodevelopment in Childhood. JAMA Netw. Open 2020, 3, e2026018. [Google Scholar] [CrossRef] [PubMed]
- Supriadi, S.; Setiabudi, D.; Noviandhari, A.; Judistiani, R.T.D.; Setiabudiawan, B.; Dhamayanti, M. Correlation between Cord Blood Vitamin D Levels and Problem-Solving Neurodevelopment in Early Childhood: A Cohort Study in Rural Indonesia. Children 2022, 9, 1581. [Google Scholar] [CrossRef] [PubMed]
- Tuovinen, S.; Räikkönen, K.; Holmlund-Suila, E.; Hauta-Alus, H.; Helve, O.; Rosendahl, J.; Enlund-Cerullo, M.; Kajantie, E.; Valkama, S.; Viljakainen, H.; et al. Effect of High-Dose vs Standard-Dose Vitamin D Supplementation on Neurodevelopment of Healthy Term Infants. JAMA Netw. Open 2021, 4, e2124493. [Google Scholar] [CrossRef]
- Rahman, A.; Al-Taiar, A.; Shaban, L.; Al-Sabah, R.; Al-Harbi, A.; Mojiminiyi, O. Plasma 25-Hydroxy Vitamin D Is Not Associated with Either Cognitive Function or Academic Performance in Adolescents. Nutrients 2018, 10, 1197. [Google Scholar] [CrossRef]
- Chowdhury, R.; Taneja, S.; Kvestad, I.; Hysing, M.; Bhandari, N.; Strand, T.A. Vitamin D status in early childhood is not associated with cognitive development and linear growth at 6–9 years of age in North Indian children: A cohort study. Nutr. J. 2020, 19, 14. [Google Scholar] [CrossRef]
- Mutua, A.M.; Nampijja, M.; Elliott, A.M.; Pettifor, J.M.; Williams, T.N.; Abubakar, A.; Webb, E.L.; Atkinson, S.H. Vitamin D Status Is Not Associated with Cognitive or Motor Function in Pre-School Ugandan Children. Nutrients 2020, 12, 1662. [Google Scholar] [CrossRef]
- Tolppanen, A.-M.; Williams, D.; Lawlor, D.A. The association of circulating 25-hydroxyvitamin D and calcium with cognitive performance in adolescents: Cross-sectional study using data from the third National Health and Nutrition Examination Survey. Paediatr. Perinat. Epidemiol. 2011, 25, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Rozmus, D.; Ciesielska, A.; Płomiński, J.; Grzybowski, R.; Fiedorowicz, E.; Kordulewska, N.; Savelkoul, H.; Kostyra, E.; Cieślińska, A. Vitamin D Binding Protein (VDBP) and Its Gene Polymorphisms—The Risk of Malignant Tumors and Other Diseases. Int. J. Mol. Sci. 2020, 21, 7822. [Google Scholar] [CrossRef] [PubMed]
- Bouillon, R.; Schuit, F.; Antonio, L.; Rastinejad, F. Vitamin D Binding Protein: A Historic Overview. Front. Endocrinol. 2019, 10, 910. [Google Scholar] [CrossRef] [PubMed]
- Newton, D.A.; Baatz, J.E.; Kindy, M.S.; Gattoni-Celli, S.; Shary, J.R.; Hollis, B.W.; Wagner, C.L. Vitamin D binding protein polymorphisms significantly impact vitamin D status in children. Pediatr. Res. 2019, 86, 662–669. [Google Scholar] [CrossRef] [PubMed]
- Bolognesi, E.; Guerini, F.R.; Sotgiu, S.; Chiappedi, M.; Carta, A.; Mensi, M.M.; Agliardi, C.; Zanzottera, M.; Clerici, M. GC1f Vitamin D Binding Protein Isoform as a Marker of Severity in Autism Spectrum Disorders. Nutrients 2022, 14, 5153. [Google Scholar] [CrossRef] [PubMed]
- Hollis, B.W.; Johnson, D.; Hulsey, T.C.; Ebeling, M.; Wagner, C.L. Vitamin D supplementation during pregnancy: Double-blind, randomized clinical trial of safety and effectiveness. J. Bone Miner. Res. 2011, 26, 2341–2357. [Google Scholar] [CrossRef] [PubMed]
- Hollis, B.W.; Wagner, C.L. Vitamin d and pregnancy: Skeletal effects, nonskeletal effects, and birth outcomes. Calcif. Tissue Int. 2013, 92, 128–139. [Google Scholar] [CrossRef]
- Fenton, T.R.; Kim, J.H. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013, 13, 59. [Google Scholar] [CrossRef]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M.; Endocrine, S. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef]
- Braun, A.; Bichlmaier, R.; Cleve, H. Molecular analysis of the gene for the human vitamin-D-binding protein (group-specific component): Allelic differences of the common genetic GC types. Hum. Genet. 1992, 89, 401–406. [Google Scholar] [CrossRef]
- Wang, R.; Wang, W.; Hu, P.; Zhang, R.; Dong, X.; Zhang, D. Association of Dietary Vitamin D Intake, Serum 25(OH)D3, 25(OH)D2 with Cognitive Performance in the Elderly. Nutrients 2021, 13, 3089. [Google Scholar] [CrossRef] [PubMed]
- Wagner, C.L.; McNeil, R.; Hamilton, S.A.; Winkler, J.; Rodriguez Cook, C.; Warner, G.; Bivens, B.; Davis, D.J.; Smith, P.G.; Murphy, M.; et al. A randomized trial of vitamin D supplementation in 2 community health center networks in South Carolina. Am. J. Obs. Gynecol. 2013, 208, 137.e1–137.e13. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, S.L.; Baggerly, K.A.; Baggerly, C.A.; Aliano, J.L.; French, C.B.; Baggerly, L.L.; Ebeling, M.D.; Rittenberg, C.S.; Goodier, C.G.; Mateus Nino, J.F.; et al. Maternal 25(OH)D concentrations >/=40 ng/mL associated with 60% lower preterm birth risk among general obstetrical patients at an urban medical center. PLoS ONE 2017, 12, e0180483. [Google Scholar] [CrossRef] [PubMed]
- Khatiwada, A.; Wolf, B.J.; Mulligan, J.K.; Shary, J.R.; Hewison, M.; Baatz, J.E.; Newton, D.A.; Hawrylowicz, C.; Hollis, B.W.; Wagner, C.L. Effects of vitamin D supplementation on circulating concentrations of growth factors and immune-mediators in healthy women during pregnancy. Pediatr. Res. 2021, 89, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Schulz, E.V.; Cruze, L.; Wei, W.; Gehris, J.; Wagner, C.L. Maternal vitamin D sufficiency and reduced placental gene expression in angiogenic biomarkers related to comorbidities of pregnancy. J. Steroid Biochem. Mol. Biol. 2017, 173, 273–279. [Google Scholar] [CrossRef]
- Dawodu, A.; Saadi, H.F.; Bekdache, G.; Javed, Y.; Altaye, M.; Hollis, B.W. Randomized Controlled Trial (RCT) of Vitamin D Supplementation in Pregnancy in a Population With Endemic Vitamin D Deficiency. J. Clin. Endocrinol. Metab. 2013, 98, 2337–2346. [Google Scholar] [CrossRef]
- Sablok, A.; Batra, A.; Thariani, K.; Batra, A.; Bharti, R.; Aggarwal, A.R.; Kabi, B.C.; Chellani, H. Supplementation of vitamin D in pregnancy and its correlation with feto-maternal outcome. Clin. Endocrinol. 2015, 83, 536–541. [Google Scholar] [CrossRef]
- Rostami, M.; Ramezani Tehrani, F.; Simbar, M.; Bidhendi Yarandi, R.; Minooee, S.; Hollis, B.W.; Hosseinpanah, F. Effectiveness of prenatal vitamin D deficiency screening and treatment program: A stratified randomized field trial. J. Clin. Endocrinol. Metab. 2018, 103, 2936–2948. [Google Scholar] [CrossRef]
- Litonjua, A.A.; Carey, V.J.; Laranjo, N.; Harshfield, B.J.; McElrath, T.F.; O’Connor, G.T.; Sandel, M.; Iverson, R.E., Jr.; Lee-Paritz, A.; Strunk, R.C.; et al. Effect of Prenatal Supplementation With Vitamin D on Asthma or Recurrent Wheezing in Offspring by Age 3 Years: The VDAART Randomized Clinical Trial. JAMA 2016, 315, 362–370. [Google Scholar] [CrossRef]
- Mirzakhani, H.; Litonjua, A.A.; McElrath, T.F.; O’Connor, G.; Lee-Parritz, A.; Iverson, R.; Macones, G.; Strunk, R.C.; Bacharier, L.B.; Zeiger, R.; et al. Early pregnancy vitamin D status and risk of preeclampsia. J. Clin. Investig. 2016, 126, 4702–4715. [Google Scholar] [CrossRef]
- Wolsk, H.M.; Harshfield, B.J.; Laranjo, N.; Carey, V.J.; O’Connor, G.; Sandel, M.; Strunk, R.C.; Bacharier, L.B.; Zeiger, R.S.; Schatz, M.; et al. Vitamin D supplementation in pregnancy, prenatal 25(OH)D levels, race, and subsequent asthma or recurrent wheeze in offspring: Secondary analyses from the Vitamin D Antenatal Asthma Reduction Trial. J. Allergy Clin. Immunol. 2017, 140, 1423–1429 e1425. [Google Scholar] [CrossRef] [PubMed]
- Hornsby, E.; Pfeffer, P.E.; Laranjo, N.; Cruikshank, W.; Tuzova, M.; Litonjua, A.A.; Weiss, S.T.; Carey, V.J.; O’Connor, G.; Hawrylowicz, C. Vitamin D supplementation during pregnancy: Effect on the neonatal immune system in a randomized controlled trial. J. Allergy Clin. Immunol. 2018, 141, 269–278.e1. [Google Scholar] [CrossRef] [PubMed]
- Mead, M.; McWhorter, C.; Rodgers, M.; Ebeling, M.; Shary, J.; Gregoski, M.; Hollis, B.; Hewison, M.; Johnson, D.; Caplan, M.; et al. Does maternal vitamin D status influence placental weight or vascular and inflammatory pathology? Secondary analysis from the Kellogg Pregnancy Study. J. Steroid Biochem. Mol. Biol. 2023, 233, 106358. [Google Scholar] [CrossRef] [PubMed]
- Heaney, R.P. Guidelines for optimizing design and analysis of clinical studies of nutrient effects. Nutr. Rev. 2014, 72, 48–54. [Google Scholar] [CrossRef]
- Weiss, S.T.; Mirzakhani, H.; Carey, V.J.; O’Connor, G.T.; Zeiger, R.S.; Bachariet, L.B.; Stokes, J.; Litonjua, A.A. Prenatal Vitamin D Supplementation to Prevent Childhood Asthma: 15-Year Results from the Vitamin D Antenatal Asthma Reduction Trial (VDAART). J. Allergy Clin. Immunol. 2023. in Press. [Google Scholar]
- Mirzakhani, H.; Carey, V.J.; McElrath, T.F.; Laranjo, N.; O’Connor, G.; Iverson, R.E.; Lee-Parritz, A.; Strunk, R.C.; Bacharier, L.B.; Macones, G.A.; et al. The Association of Maternal Asthma and Early Pregnancy Vitamin D with Risk of Preeclampsia: An Observation From Vitamin D Antenatal Asthma Reduction Trial (VDAART). J. Allergy Clin. Immunol. Pr. 2018, 6, 600–608.e2. [Google Scholar] [CrossRef]
400 IU/day | 2000 IU/day | 4000 IU/day | p | |
---|---|---|---|---|
Race n(%) | ||||
African American | 16 (29.6%) | 16 (32.7%) | 18 (34.0%) | 0.59 |
Caucasian | 17 (31.5%) | 10 (20.4%) | 17 (32.1%) | |
Hispanic | 21 (38.9%) | 23 (46.9%) | 18 (34.0%) | |
Maternal Marital Status n(%) | ||||
Single | 30 (56.6%) | 26 (53.1%) | 27 (50.9%) | 0.84 |
Married | 23 (43.4%) | 23 (46.9%) | 26 (49.1%) | |
Maternal Education n(%) | ||||
Less Than High School | 6 (12.2%) | 11 (23.9%) | 9 (17.7%) | 0.69 |
High School | 9 (18.4%) | 7 (15.2%) | 9 (17.7%) | |
College | 34 (69.4%) | 28 (60.9%) | 33 (64.7%) | |
Insurance Status n(%) | ||||
Private | 22 (41.5%) | 13 (26.5%) | 21 (39.6%) | 0.38 |
Medicaid | 11 (20.8%) | 15 (30.6%) | 16 (30.2%) | |
None | 20 (37.7%) | 21 (42.9%) | 16 (30.2%) | |
Sex of Child n(%) | ||||
Female | 27 (50.0%) | 20 (40.8%) | 28 (52.8%) | 0.45 |
Male | 27 (50.0%) | 29 (59.2%) | 25 (47.2%) | |
APGAR Scores (median, IQR) | ||||
1-min | 8.0 (IQR 8.0–9.0) | 8.0 (IQR 8.0–9.0) | 8.0 (IQR 8.0–9.0) | 0.59 |
5-min | 9.0 (IQR 9.0–9.0) | 9.0 (IQR 9.0–9.0) | 9.0 (IQR 9.0–9.0) | 0.69 |
Birth Characteristics (mean + SD, range) | ||||
Gestational Age (weeks) | 38.8 ± 2.4 (Range 28.3–41.3) | 38.7 ± 2.1 (Range 27.2–41.3) | 38.8 ± 2.0 (Range 27.0–41.0) | 0.94 |
Birth weight (g) | 3174.9 ± 693.8 (Range 935.0–4961.0) | 3411.6 ± 635.9 (Range 1113.0–4701.0) | 3195.5 ± 664.3 (Range 948.0–4621.0) | 0.14 |
# SGA (n, %) | 9 (17.0%) | 2 (4.1%) | 5 (9.62%) | 0.10 |
Infant Feeding Status n(%) | ||||
Breastfed | 35 (67.3%) | 25 (52.1%) | 32 (64.0%) | 0.42 |
Formula Fed | 9 (17.3%) | 10 (20.8%) | 6 (12.0%) | |
Mixed | 8 (15.4%) | 13 (27.1%) | 12 (24.0%) | |
25(OH) Vitamin D (mean + SD) | ||||
Maternal initial prenatal visit 25(OH)D (ng/mL) | 24.3 ± 13.0 | 22.0 ± 7.7 | 21.8 ± 8.7 | 0.57 |
Maternal 25(OH)D (ng/mL) 1 month before delivery | 32.5 ± 14.4 | 40.2 ± 15.2 | 44.7 ± 14.4 | <0.001 |
Offspring Birth 25(OH)D (ng/mL) | 17.2 ± 9.0 (Range 3.6–40.0) | 22.2 ± 9.3 (Range 5.5–45.3) | 27.7 ± 9.5 (Range 6.8–47.8) | <0.001 * |
Offspring 3–5 year 25(OH)D (ng/mL) | 30.2 ± 8.6 | 28.1 ± 10.83 | 27.7 ± 12.6 | 0.20 |
BRIGANCE QUOTIENT | |||
---|---|---|---|
Characteristic | Univariate Model B ± SE|p-Value | Multivariate Model B ± SE|p-Value | Fully Reduced Model B ± SE|p-Value |
Treatment Group | |||
400 IU/day | Reference | Reference | Reference |
2000 IU/day | 0.35 ± 2.73|0.90 | 2.17 ± 2.53|0.39 | 2.40 ± 2.47|0.33 |
4000 IU/day | −0.46 ± 2.63|0.86 | −0.25 ± 2.61|0.92 | −0.46 ± 2.55|0.86 |
25(OH)D | |||
Birth 25(OH)D | 0.16 ± 0.11|0.15 | 0.05 ± 0.12|0.71 | 0.04 ± 0.12|0.71 |
3–5 Year 25(OH)D | 0.36 ± 0.01|0.30 | 0.18 ± 0.11|0.01 | 0.21 ± 0.11|0.05 * |
Maternal Education | |||
No College Education | Reference | Reference | Reference |
College Educated | 11.01 ± 2.05|<0.001 | 7.46 ± 2.27|0.001 | 7.28 ± 2.22|0.001 * |
Marital Status | |||
Unmarried | Reference | Reference | |
Married | 6.66 ± 2.13|0.002 | 1.44 ± 2.49|0.56 | |
Sex of Child | |||
Female | Reference | ||
Male | −2.00 ± 2.18|0.36 | ||
Breastfeeding Status | |||
Formula-fed | Reference | Reference | |
Breastfed | 6.79 ± 2.18|0.002 | −0.83 ± 2.35|0.725 | |
Race | |||
White | Reference | Reference | Reference |
Hispanic | −15.77 ± 2.38|<0.001 | −17.37 ± 6.65|0.010 | −10.19 ± 3.0|<0.001 * |
African American | −7.53 ± 2.44|0.002 | −3.10 ± 3.89|0.43 | −3.42 ± 3.23|0.29 |
Small for Gestational Age | |||
AGA or LGA | Reference | ||
SGA | −1.10 ± 3.52|0.75 | ||
Season | |||
Summer, Fall, Winter | Reference | Reference | |
Spring | 5.87 ± 2.17|0.008 | 2.29 ± 2.02|0.26 | |
Insurance Status | |||
Self-Pay | Reference | Reference | |
Private Insurance | 12.83 ± 2.35|<0.001 | −8.59 ± 6.22|0.170 | |
Medicaid | 6.67 ± 2.53|0.009 | −8.19 ± 5.88|0.17 | |
Vitamin D Binding Protein Genotype | |||
1f1f | Reference | ||
1f1s or 1f2 | −0.51 ± 2.92|0.86 | ||
1s1s, 1s2, or 2,2 | −1.29 ± 2.63|0.63 |
BRIGANCE ACADEMIC | |||
---|---|---|---|
Characteristic | Univariate Model B ± SE|p-Value | Multivariate Model B ± SE|p-Value | Fully Reduced Model B ± SE|p-Value |
Treatment Group | |||
400 IU/day | Reference | Reference | Reference |
2000 IU/day | −4.37 ± 2.65|0.10 | −3.74 ± 2.37|0.117 | −2.49 ± 2.36|0.29 |
4000 IU/day | −3.92 ± 2.56|0.13 | −4.90 ± 2.45|0.047 | −3.85 ± 2.25|0.09 |
25(OH)D | |||
Birth 25(OH)D | 0.24 ± 0.10|0.02 | 0.16 ± 0.11|0.15 | |
3–5 Year 25(OH)D | 0.40 ± 0.09|<0.001 | 0.15 ± 0.09|0.11 | |
Maternal Education | |||
No College Education | Reference | Reference | |
College Educated | 6.96 ± 2.12|0.001 | 3.83 ± 2.14|0.08 | |
Marital Status | |||
Unmarried | Reference | Reference | |
Married | 8.46 ± 2.01|<0.001 | 2.01 ± 2.23|0.37 | |
Sex of Child | |||
Female | Reference | ||
Male | −0.80 ± 2.15|0.71 | ||
Breastfeeding Status | |||
Formula-fed | Reference | ||
Breastfed | 1.84 ± 2.20|0.40 | ||
Race | |||
White | Reference | Reference | Reference |
Hispanic | −12.60 ± 2.42|<0.001 | −13.06 ± 5.95|0.03 | −13.14 ± 2.38|<0.001 * |
African American | −11.96 ± 2.48|<0.001 | −5.06 ± 3.20|0.12 | −8.48 ± 2.97|0.005 * |
Small for Gestational Age | |||
AGA or LGA | Reference | ||
SGA | −3.58 ± 3.43|0.30 | ||
Season | |||
Summer, Fall, Winter | Reference | Reference | |
Spring | 3.60 ± 2.16|0.01 | 1.79 ± 1.93|0.35 | |
Insurance Status | |||
Self Pay | Reference | Reference | |
Private Insurance | 10.92 ± 2.20|<0.001 | 0.40 ± 6.02|0.95 | |
Medicaid | −3.06 ± 2.37|0.20 | −6.86 ± 5.67|0.23 | |
Vitamin D Binding Protein Genotype | |||
1f1f | Reference | Reference | Reference |
1f1s or 1f2 | 9.42 ± 2.73|<0.001 | 7.90 ± 2.74|0.005 | 9.99 ± 2.91|<0.001 * |
1s1s, 1s2, or 2,2 | 6.81 ± 2.48|0.007 | 4.19 ± 2.53|0.10 | 4.86 ± 2.93|0.10 |
BRIGANCE LANGUAGE | |||
---|---|---|---|
Characteristic | Univariate Model B ± SE|p-Value | Multivariate Model B ± SE|p-Value | Fully Reduced Model B ± SE|p-Value |
Treatment Group | |||
400 IU/day | Reference | Reference | Reference |
2000 IU/day | 4.29 ± 2.52|0.09 | 4.61 ± 2.32|0.05 | 4.67 ± 2.29|0.04 * |
4000 IU/day | 2.75 ± 2.43|0.26 | 2.96 ± 2.22|0.18 | 3.13 ± 2.21|0.16 |
25(OH)D | |||
Birth 25(OH)D | −0.03 ± 0.11|0.76 | ||
3–5 Year 25(OH)D | 0.07 ± 0.10|0.49 | ||
Maternal Education | |||
No College Education | Reference | Reference | Reference |
College Educated | 6.89 ± 2.02|<0.001 | 4.88 ± 2.16|0.03 | 6.35 ± 1.89|0.001 * |
Marital Status | |||
Unmarried | Reference | ||
Married | −0.93 ± 2.06|0.65 | ||
Sex of Child | |||
Female | Reference | ||
Male | 0.42 ± 2.04|0.84 | ||
Breastfeeding Status | |||
Formula-fed | Reference | ||
Breastfed | 3.09 ± 2.08|0.14 | ||
Race | |||
White | Reference | Reference | |
Hispanic | −6.89 ± 2.40|0.005 | −11.79 ± 6.12|0.06 | |
African American | 2.27 ± 2.46|0.36 | −1.81 ± 3.29|0.58 | |
Small for Gestational Age | |||
AGA or LGA | Reference | ||
SGA | 2.49 ± 3.25|0.44 | ||
Season | |||
Summer, Fall, Winter | Reference | Reference | Reference |
Spring | 5.42 ± 2.02|0.008 | 4.01 ± 1.89|0.04 | 4.163 ± 1.879|0.028 * |
Insurance Status | |||
Self Pay | Reference | Reference | |
Private Insurance | 5.73 ± 2.31|0.014 | −8.76 ± 6.17|0.16 | |
Medicaid | 9.17 ± 2.49|<0.001 | −6.05 ± 5.79|0.30 | |
Vitamin D Binding Protein Genotype | |||
1f1f | Reference | Reference | Reference |
1f1s or 1f2 | −10.09 ± 2.57|<0.001 | −7.79 ± 2.93|0.009 | −9.31 ± 2.45|<0.001 * |
1s1s, 1s2, or 2,2 | −7.60 ± 2.32|0.001 | −5.63 ± 2.89|0.05 | −6.76 ± 2.20|0.003 * |
BRIGANCE MOTOR | |||
---|---|---|---|
Characteristic | Univariate Model B ± SE|p-Value | Multivariate Model B ± SE|p-Value | Fully Reduced Model B ± SE|p-Value |
Treatment Group | |||
400 IU/day | Reference | Reference | Reference |
2000 IU/day | −0.80 ± 1.14|0.49 | −0.29 ± 1.11|0.79 | −0.39 ± 1.08|0.72 |
4000 IU/day | −0.68 ± 1.10|0.54 | −0.70 ± 1.05|0.51 | −0.75 ± 1.04|0.47 |
25(OH)D | |||
Birth 25(OH)D | 0.05 ± 0.05|0.34 | ||
3–5 Year 25(OH)D | 0.06 ± 0.04|0.14 | ||
Maternal Education | |||
No College Education | Reference | ||
College Educated | 2.47 ± 0.91|0.008 | ||
Marital Status | |||
Unmarried | Reference | ||
Married | 2.13 ± 0.90|0.02 | ||
Sex of Child | |||
Female | Reference | Reference | Reference |
Male | −1.91 ± 0.90|0.04 | −1.95 ± 0.89|0.03 | −2.03 ± 0.87|0.02 * |
Breastfeeding Status | |||
Formula-fed | Reference | Reference | Reference |
Breastfed | 2.94 ± 0.91|0.001 | 1.82 ± 1.08|0.09 | 2.41 ± 0.93|0.01 * |
Race | |||
White | Reference | Reference | |
Hispanic | −2.82 ± 1.11|0.01 | −0.17 ± 1.50|0.91 | |
African American | −2.44 ± 1.14|0.03 | −0.44 ± 1.44|0.76 | |
Small for Gestational Age | |||
AGA or LGA | Reference | ||
SGA | −1.29 ± 1.46|0.38 | ||
Season | |||
Summer, Fall, Winter | Reference | ||
Spring | 0.31 ± 0.93|0.74 | ||
Insurance Status | |||
Self Pay | Reference | ||
Private Insurance | 1.67 ± 1.07|0.12 | ||
Medicaid | 0.53 ± 1.15|0.65 | ||
Vitamin D Binding Protein Genotype | |||
1f1f | Reference | ||
1f1s or 1f2 | 1.65 ± 1.21|0.18 | ||
1s1s, 1s2, or 2,2 | 0.63 ± 1.09|0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodgers, M.D.; Mead, M.J.; McWhorter, C.A.; Ebeling, M.D.; Shary, J.R.; Newton, D.A.; Baatz, J.E.; Gregoski, M.J.; Hollis, B.W.; Wagner, C.L. Vitamin D and Child Neurodevelopment—A Post Hoc Analysis. Nutrients 2023, 15, 4250. https://doi.org/10.3390/nu15194250
Rodgers MD, Mead MJ, McWhorter CA, Ebeling MD, Shary JR, Newton DA, Baatz JE, Gregoski MJ, Hollis BW, Wagner CL. Vitamin D and Child Neurodevelopment—A Post Hoc Analysis. Nutrients. 2023; 15(19):4250. https://doi.org/10.3390/nu15194250
Chicago/Turabian StyleRodgers, Megan D., Molly J. Mead, Caroline A. McWhorter, Myla D. Ebeling, Judy R. Shary, Danforth A. Newton, John E. Baatz, Mathew J. Gregoski, Bruce W. Hollis, and Carol L. Wagner. 2023. "Vitamin D and Child Neurodevelopment—A Post Hoc Analysis" Nutrients 15, no. 19: 4250. https://doi.org/10.3390/nu15194250
APA StyleRodgers, M. D., Mead, M. J., McWhorter, C. A., Ebeling, M. D., Shary, J. R., Newton, D. A., Baatz, J. E., Gregoski, M. J., Hollis, B. W., & Wagner, C. L. (2023). Vitamin D and Child Neurodevelopment—A Post Hoc Analysis. Nutrients, 15(19), 4250. https://doi.org/10.3390/nu15194250