Molecular Evidence of Breast Cancer Cell Proliferation Inhibition by a Combination of Selected Qatari Medicinal Plants Crude Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plants Collection
2.2. Plant Crude Extraction
2.3. Determination of Total Phenolic Contents
2.4. Determination of Total Flavonoid Contents
2.5. Cell Lines and Cell Culture
2.6. Alamar-Blue Cell Proliferation Assay
2.7. Morphological Study
2.8. Wound Healing Assay
2.9. Invasion Assay
2.10. Western Blot Analysis
2.11. Statistical Analysis
3. Results
3.1. Total Phenolic Contents
3.2. Total Flavonoid Contents (TFC)
3.3. Establishment of the Optimal Dose of the Super-Combination
3.4. Effect of the Super-Combination on the Cell Morphology
3.5. Effect of the Super-Combination on the Cell Migration and Invasion
3.6. Molecular Mechanisms Mediating Super-Combination (SC)-Induced Apoptosis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the Global Cancer Incidence and Mortality in 2018: GLOBOCAN Sources and Methods. Int. J. Cancer 2019, 144, 1941–1953. [Google Scholar] [CrossRef]
- Narayan, A.K.; Al-Naemi, H.; Aly, A.; Kharita, M.H.; Khera, R.D.; Hajaj, M.; Rehani, M.M. Breast Cancer Detection in Qatar: Evaluation of Mammography Image Quality Using A Standardized Assessment Tool. Eur. J. Breast Health 2020, 16, 124–128. [Google Scholar] [CrossRef]
- McSherry, E.A.; Donatello, S.; Hopkins, A.M.; McDonnell, S. Molecular Basis of Invasion in Breast Cancer. Cell. Mol. Life Sci. 2007, 4, 3201–3218. [Google Scholar] [CrossRef]
- Ouhtit, A.; Ismail, M.F.; Othman, A.; Fernando, A.; Abdraboh, M.E.; El-Kott, A.F.; Azab, Y.A.; Abdeen, S.H.; Gaur, R.L.; Gupta, I.; et al. Chemoprevention of Rat Mammary Carcinogenesis by Spirulina. Am. J. Pathol. 2014, 184, 296–303. [Google Scholar] [CrossRef]
- Longley, D.B.; Johnston, P.G. Molecular Mechanisms of Drug Resistance. J. Pathol. 2005, 205, 275–292. [Google Scholar] [CrossRef]
- Kawasaki, B.T.; Hurt, E.M.; Mistree, T.; Farrar, W.L. Targeting Cancer Stem Cells with Phytochemicals. Mol. Interv. 2008, 8, 174–184. [Google Scholar] [CrossRef]
- Moiseeva, E.P.; Manson, M.M. Dietary Chemopreventive Phytochemicals: Too Little or Too Much? Cancer Prev. Res. 2009, 2, 611–616. [Google Scholar] [CrossRef]
- Khlifi, D.; Sghaier, R.M.; Amouri, S.; Laouini, D.; Hamdi, M.; Bouajila, J. Composition and anti-oxidant, anti-cancer and anti-inflammatory activities of Artemisia herba-alba, Ruta chalpensis L. and Peganum harmala L. Food Chem. Toxicol. 2013, 55, 202–208. [Google Scholar] [CrossRef]
- Farshori, N.N.; Siddiqui, M.A.; Al-Oqail, M.M.; Al-Sheddi, E.S.; Al-Massarani, S.M.; Saquib, Q.; Ahmad, J.; Al-Khedhairy, A.A. Aloe vera-induced apoptotic cell death through ROS generation, cell cycle arrest, and DNA damage in human breast cancer cells. Biologia 2022, 77, 2751–2761. [Google Scholar] [CrossRef]
- Alafnan, A.; Alamri, A.; Alanazi, J.; Hussain, T. Farnesiferol C Exerts Antiproliferative Effects on Hepatocellular Carcinoma HepG2 Cells by Instigating ROS-Dependent Apoptotic Pathway. Pharmaceuticals 2022, 15, 1070. [Google Scholar] [CrossRef]
- Azzazy, H.M.E.; Abdelnaser, A.; Al Mulla, H.; Sawy, A.M.; Shamma, S.N.; Elhusseiny, M.; Alwahibi, S.; Mahdy, N.K.; Fahmy, S.A. Essential Oils Extracted from Boswellia sacra Oleo Gum Resin Loaded into PLGA-PCL Nanoparticles: Enhanced Cytotoxic and Apoptotic Effects against Breast Cancer Cells. ACS Omega 2022, 8, 1017–1025. [Google Scholar] [CrossRef]
- Qanash, H.; Bazaid, A.S.; Binsaleh, N.K.; Patel, M.; Althomali, O.W.; Sheeha, B.B. In Vitro Antiproliferative Apoptosis Induction and Cell Cycle Arrest Potential of Saudi Sidr Honey against Colorectal Cancer. Nutrients. 2023, 15, 3448. [Google Scholar] [CrossRef]
- Hosmani, J.V.; Al Shahrani, A.; Hosmani, J.; AlShahrani, I.; Togoo, R.A.; Ain, T.S.; Syed, S.; Mannakandath, M.L.; Addas, M.K.A. Cytotoxic and antitumor properties of Ziziphus spina-christi found in Al Bahah Region of Hejaz area: An in vitro study on oral cancer cell lines. Pharmacogn. Mag. 2021, 17, 793–801. [Google Scholar] [CrossRef]
- Habib, H.M.; El-Fakharany, E.M.; El-Gendi, H.; El-Ziney, M.G.; El-Yazbi, A.F.; Ibrahim, W.H. Palm Fruit (Phoenix dactylifera L.) Pollen Extract Inhibits Cancer Cell and Enzyme Activities and DNA and Protein Damage. Nutrients 2023, 15, 2614. [Google Scholar] [CrossRef]
- Fouzat, A.; Hussein, O.J.; Gupta, I.; Al-Farsi, H.F.; Khalil, A.; Al Moustafa, A.E. Elaeagnus, angustifolia Plant Extract Induces Apoptosis via P53 and Signal Transducer and Activator of Transcription 3 Signaling Pathways in Triple-Negative Breast Cancer Cells. Front. Nutr. 2022, 9, 871667. [Google Scholar] [CrossRef]
- Roudsari, M.T.; Bahrami, A.R.; Dehghani, H.; Iranshahi, M.; Matin, M.M.; Mahmoudi, M. Bracken-fern extracts induce cell cycle arrest and apoptosis in certain cancer cell lines. Asian Pac. J. Cancer Prev. 2012, 13, 6047–6053. [Google Scholar] [CrossRef]
- Nassan, M.A.; Soliman, M.M.; Ismail, S.A.; El-Shazly, S. Effect of Taraxacum officinale extract on PI3K/Akt pathway in DMBA-induced breast cancer in albino rats. Biosci. Rep. 2018, 38, BSR20180334. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, T.; Huang, X.; Xu, W.; Di, Z.; Ma, Y.; Xue, M.; Bi, S.; Shen, Y.; Yu, Y.; et al. Xanthatin suppresses proliferation and tumorigenicity of glioma cells through autophagy inhibition via activation of the PI3K-Akt-mTOR pathway. Pharmacol. Res. Perspect. 2023, 11, e01041. [Google Scholar] [CrossRef]
- Chen, W.; Li, Z.; Bai, L.; Lin, Y. NF-kappaB in lung cancer, a carcinogenesis mediator and a prevention and therapy target. Front. Biosci. 2011, 16, 1172–1185. [Google Scholar] [CrossRef]
- Ouhtit, A.; Gaur, R.L.; Abdraboh, M.; Ireland, S.K.; Rao, P.N.; Raj, S.G.; Al-Riyami, H.; Shanmuganathan, S.; Gupta, I.; Murthy, S.N.; et al. Simultaneous Inhibition of Cell-Cycle, Proliferation, Survival, Metastatic Pathways and Induction of Apoptosis in Breast Cancer Cells by a Phytochemical Super-Cocktail: Genes That Underpin Its Mode of Action. J. Cancer 2014, 4, 703–715. [Google Scholar] [CrossRef]
- Kuete, V.; Wiench, B.; Alsaid, M.S.; Alyahya, M.A.; Fankam, A.G.; Shahat, A.A.; Efferth, T. Cytotoxicity, Mode of Action and Antibacterial Activities of Selected Saudi Arabian Medicinal Plants. BMC Complement. Altern. Med. 2013, 13, 354. [Google Scholar] [CrossRef]
- Eissa, T.F.; González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. Biological Activity of HPLC-Characterized Ethanol Extract from the Aerial Parts of Haplophyllum tuberculatum. Pharm. Biol. 2014, 52, 151–156. [Google Scholar] [CrossRef]
- Aïssaoui, H.; Mencherini, T.; Esposito, T.; De Tommasi, N.; Gazzerro, P.; Benayache, S.; Benayache, F.; Mekkiou, R. Heliotropium Bacciferum Forssk. (Boraginaceae) Extracts: Chemical Constituents, Antioxidant Activity and Cytotoxic Effect in Human Cancer Cell Lines. Nat. Prod. Res. 2019, 33, 1813–1818. [Google Scholar] [CrossRef]
- Abdallah, B.M.; Ali, E.M. Therapeutic Effect of Green Synthesized Silver Nanoparticles Using Erodium glaucophyllum Extract against Oral Candidiasis: In Vitro and In Vivo Study. Molecules 2022, 27, 4221. [Google Scholar] [CrossRef]
- Barba, F.J.; Alcántara, C.; Abdelkebir, R.; Bäuerl, C.; Pérez-Martínez, G.; Lorenzo, J.M.; Collado, M.C.; García-Pérez, J.V. Ultrasonically-Assisted and Conventional Extraction from Erodium glaucophyllum Roots Using Ethanol:Water Mixtures: Phenolic Characterization, Antioxidant, and Anti-Inflammatory Activities. Molecules 2020, 25, 1759. [Google Scholar] [CrossRef]
- Hamza, G.; Emna, B.H.; Yeddes, W.; Dhouafli, Z.; Moufida, T.S.; El Akrem, H. Chemical Composition, Antimicrobial and Antioxidant Activities Data of Three Plants from Tunisia Region: Erodium glaucophyllum, Erodium hirtum and Erodium guttatum. Data Brief 2018, 19, 2352–2355. [Google Scholar] [CrossRef]
- Abdel Bary, E.S.S. The Flora of Qatar: The Dicotyledons (Volume 1) and The Monocotyledons (Volume 2). Available online: https://www.chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.qu.edu.qa/static_file/qu/research/ESC/Books/The-Flora-of-Qatar-The-Dicotyledons.pdf (accessed on 23 December 2022).
- Stanković, M.S.; Petrović, M.; Godjevac, D.; Stevanović, Z.D. Screening Inland Halophytes from the Central Balkan for Their Antioxidant Activity in Relation to Total Phenolic Compounds and Flavonoids: Are There Any Prospective Medicinal Plants? J. Arid Environ. 2015, 120, 26–32. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A., Jr. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colometric Methods. J. Food Drug Anal. 2002, 10, 3. [Google Scholar] [CrossRef]
- Alateyah, N.; Ahmad, S.M.S.; Gupta, I.; Fouzat, A.; Thaher, M.I.; Das, P.; Al Moustafa, A.E.; Ouhtit, A. Haematococcus Pluvialis Microalgae Extract Inhibits Proliferation, Invasion, and Induces Apoptosis in Breast Cancer Cells. Front. Nutr. 2022, 9, 882956. [Google Scholar] [CrossRef]
- Shariati, S.R.P.; Shokrgozar, M.A.; Vossoughi, M.; Eslamifar, A. In vitro Co-Culture of Human Skin Keratinocytes and Fibroblasts on a Biocompatible and Biodegradable Scaffold. IBJ Iran. Biomed. J. 2009, 13, 169–177. Available online: http://ibj.pasteur.ac.ir/article-1-70-en.htmL (accessed on 23 November 2022).
- Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Ghasemzadeh, N. Flavonoids and Phenolic Acids: Role and Biochemical Activity in Plants and Human. J. Med. Plant Res. 2011, 5, 6697–6703. [Google Scholar] [CrossRef]
- John, B.; Sulaiman, C.T.; George, S.; Reddy, V.R.K. Total Phenolics and Flavonoids in Selected Medicinal Plants from Kerala. Int. J. Pharm. Pharm. Sci. 2014, 6, 406–408. Available online: https://www.researchgate.net/publication/267031901 (accessed on 1 February 2023).
- Khasawneh, M.; Hamza, A.; Fawzi, N. Antioxidant Activity and Phenolic content of Some Emirates Medicinal Plants. Adv. food Sci. 2010, 32, 62–66. Available online: https://www.researchgate.net/publication/215449624 (accessed on 1 February 2023).
- Al-Brashdi, A.S.; Al-Ariymi, H.; Al Hashmi, M.; Khan, S.A. Evaluation of Antioxidant Potential, Total Phenolic Content and Phytochemical Screening of Aerial Parts of a Folkloric Medicine, Haplophyllum tuberculatum (Forssk) A. Juss. J. Coast. Life Med. 2016, 4, 315–319. [Google Scholar] [CrossRef]
- Gadhoumi, H.; Martinez-Rojas, E.; Tounsi, M.S.; Hayouni, E.A. Phenolics Composition and Biological Activities Assessment of Leaves, Flowers and Roots Extracts from Erodium glaucophyllum, Erodium hirtum and Erodium guttatum. Biol. Bull. 2021, 48, 667–672. [Google Scholar] [CrossRef]
- Wang, Y.; Wan, D.; Zhou, R.; Zhong, W.; Lu, S.; Chai, Y. Geraniin Inhibits Migration and Invasion of Human Osteosarcoma Cancer Cells through Regulation of PI3K/Akt and ERK1/2 Signaling Pathways. Anticancer Drugs 2017, 28, 959–966. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.; Yin, J.; Pan, L. Geraniin Induces Apoptotic Cell Death in Human Lung Adenocarcinoma A549 Cells in Vitro and in Vivo. Can. J. Physiol. Pharmacol. 2013, 91, 1016–1024. [Google Scholar] [CrossRef]
- Gohar, A.A.; Lahloub, M.F.; Niwa, M. Antibacterial Polyphenol from Erodium glaucophyllum. Z. Naturforsch. C J. Biosci. 2003, 58, 670–674. [Google Scholar] [CrossRef]
- Bakari, S.; Hajlaoui, H.; Daoud, A.; Mighri, H.; Ross-Garcia, J.M.; Gharsallah, N.; Kadri, A. Phytochemicals, Antioxidant and Antimicrobial Potentials and LC-MS Analysis of Hydroalcoholic Extracts of Leaves and Flowers of Erodium glaucophyllum Collected from Tunisian Sahara. Food Sci. Technol. 2018, 38, 310–317. [Google Scholar] [CrossRef]
- Vizetto-Duarte, C.; Custódio, L.; Gangadhar, K.N.; Lago, J.H.G.; Dias, C.; Matos, A.M.; Neng, N.; Nogueira, J.M.F.; Barreira, L.; Albericio, F.; et al. Isololiolide, a Carotenoid Metabolite Isolated from the Brown Alga Cystoseira Tamariscifolia, Is Cytotoxic and Able to Induce Apoptosis in Hepatocarcinoma Cells through Caspase-3 Activation, Decreased BCL-2 Levels, Increased P53 Expression and PARP Cleavage. Phytomedicine 2016, 23, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Al-Rehaily, A.J.; Al-Howiriny, T.A.; Ahmad, M.S.; Al-Yahya, M.A.; El-Feraly, F.S.; Hufford, C.D.; McPhail, A.T. Alkaloids from Haplophyllum tuberculatum. Phytochemistry 2001, 57, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Hamdi, A.; Viane, J.; Mahjoub, M.A.; Majouli, K.; Gad, M.H.H.; Kharbach, M.; Demeyer, K.; Marzouk, Z.; Heyden, Y.V. Polyphenolic Contents, Antioxidant Activities and UPLC–ESI–MS Analysis of Haplophyllum tuberculatum, A. Juss Leaves Extracts. Int. J. Biol. Macromol. 2018, 106, 1071–1079. [Google Scholar] [CrossRef]
- Mahmoud, A.B.; Danton, O.; Kaiser, M.; Han, S.; Moreno, A.; Algaffar, S.A.; Khalid, S.; Oh, W.K.; Hamburger, M.; Mäser, P. Lignans, Amides, and Saponins from Haplophyllum tuberculatum and Their Antiprotozoal Activity. Molecules 2020, 25, 2825. [Google Scholar] [CrossRef] [PubMed]
- Abdelkhalek, A.; Salem, M.Z.M.; Hafez, E.; Behiry, S.I.; Qari, S.H. The Phytochemical, Antifungal, and First Report of the Antiviral Properties of Egyptian Haplophyllum tuberculatum Extract. Biology 2020, 9, 248. [Google Scholar] [CrossRef]
- Yang, M.H.; Ha, I.J.; Ahn, J.; Kim, C.-K.; Lee, M.; Ahn, K.S. Potential Function of Loliolide as a Novel Blocker of Epithelial-Mesenchymal Transition in Colorectal and Breast Cancer Cells. Cell. Signal. 2023, 105, 110610. [Google Scholar] [CrossRef]
- Mondal, A.; Gandhi, A.; Fimognari, C.; Atanasov, A.G.; Bishayee, A. Alkaloids for Cancer Prevention and Therapy: Current Progress and Future Perspectives. Eur. J. Pharmacol. 2019, 858, 172472. [Google Scholar] [CrossRef]
- Khan, H.; Alam, W.; Alsharif, K.F.; Aschner, M.; Pervez, S.; Saso, L. Alkaloids and Colon Cancer: Molecular Mechanisms and Therapeutic Implications for Cell Cycle Arrest. Molecules 2022, 27, 920. [Google Scholar] [CrossRef]
- Cháirez-Ramírez, M.H.; de la Cruz-López, K.G.; García-Carrancá, A. Polyphenols as Antitumor Agents Targeting Key Players in Cancer-Driving Signaling Pathways. Front. Pharmacol. 2021, 12, 710304. [Google Scholar] [CrossRef]
- Hui, L.; Zheng, Y.; Yan, Y.; Bargonetti, J.; Foster, D.A. Mutant P53 in MDA-MB-231 Breast Cancer Cells Is Stabilized by Elevated Phospholipase D Activity and Contributes to Survival Signals Generated by Phospholipase D. Oncogene 2006, 25, 7305–7310. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Haldar, S. The Relationship between BCL-2, Bax and P53: Consequences for Cell Cycle Progression and Cell Death. Mol. Hum. Reprod. 1998, 4, 1099–1109. [Google Scholar] [CrossRef] [PubMed]
- Levine, A.J.; Momand, J.; Finlay, C.A. The P53 Tumour Suppressor Gene. Nature 1991, 351, 453–456. [Google Scholar] [CrossRef] [PubMed]
- Zambetti, G.P.; Levine, A.J. A Comparison of the Biological Activities of Wild-type and Mutant P53. FASEB J. 1993, 7, 855–865. [Google Scholar] [CrossRef] [PubMed]
- Blandino, G.; Levine, A.J.; Oren, M. Mutant P53 Gain of Function: Differential Effects of Different P53 Mutants on Resistance of Cultured Cells to Chemotherapy. Oncogene 1999, 18, 477–485. [Google Scholar] [CrossRef]
- Cadwell, C.; Zambetti, G.P. The Effects of Wild-Type P53 Tumor Suppressor Activity and Mutant P53 Gain-of-Function on Cell Growth. Gene 2001, 277, 15–30. [Google Scholar] [CrossRef]
SC 1 | A = 10%, B = 5%, C = 3% |
SC 2 | A = 10%, B = 10%, C = 3% |
SC 3 | A = 8%, B = 10%, C = 3% |
SC 4 | A = 5%, B = 10%, C = 4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alateyah, N.; Alsafran, M.; Usman, K.; Ouhtit, A. Molecular Evidence of Breast Cancer Cell Proliferation Inhibition by a Combination of Selected Qatari Medicinal Plants Crude Extracts. Nutrients 2023, 15, 4276. https://doi.org/10.3390/nu15194276
Alateyah N, Alsafran M, Usman K, Ouhtit A. Molecular Evidence of Breast Cancer Cell Proliferation Inhibition by a Combination of Selected Qatari Medicinal Plants Crude Extracts. Nutrients. 2023; 15(19):4276. https://doi.org/10.3390/nu15194276
Chicago/Turabian StyleAlateyah, Nouralhuda, Mohammed Alsafran, Kamal Usman, and Allal Ouhtit. 2023. "Molecular Evidence of Breast Cancer Cell Proliferation Inhibition by a Combination of Selected Qatari Medicinal Plants Crude Extracts" Nutrients 15, no. 19: 4276. https://doi.org/10.3390/nu15194276
APA StyleAlateyah, N., Alsafran, M., Usman, K., & Ouhtit, A. (2023). Molecular Evidence of Breast Cancer Cell Proliferation Inhibition by a Combination of Selected Qatari Medicinal Plants Crude Extracts. Nutrients, 15(19), 4276. https://doi.org/10.3390/nu15194276