Artificial Intelligence Applications to Public Health Nutrition
Conflicts of Interest
References
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- Rochefort, G.; Lapointe, A.; Mercier, A.P.; Parent, G.; Provencher, V.; Lamarche, B. A Rapid Review of Territorialized Food Systems and Their Impacts on Human Health, Food Security, and the Environment. Nutrients 2021, 13, 3345. [Google Scholar] [CrossRef] [PubMed]
- Enes, C.C.; Rinaldi, A.E.M.; Nucci, L.B.; Itria, A. The Potential Impact of Different Taxation Scenarios towards Sugar-Sweetened Beverages on Overweight and Obesity in Brazil: A Modeling Study. Nutrients 2022, 14, 5163. [Google Scholar] [CrossRef] [PubMed]
- Do, W.L.; Bullard, K.M.; Stein, A.D.; Ali, M.K.; Narayan, K.M.V.; Siegel, K.R. Consumption of Foods Derived from Subsidized Crops Remains Associated with Cardiometabolic Risk: An Update on the Evidence Using the National Health and Nutrition Examination Survey 2009–2014. Nutrients 2020, 12, 3244. [Google Scholar] [CrossRef] [PubMed]
- Gatto, A.; Kuiper, M.; van Meijl, H. Economic, Social and Environmental Spillovers Decrease the Benefits of a Global Dietary Shift. Nat. Food 2023, 4, 496–507. [Google Scholar] [CrossRef] [PubMed]
- Agostoni, C.; Baglioni, M.; La Vecchia, A.; Molari, G.; Berti, C. Interlinkages between Climate Change and Food Systems: The Impact on Child Malnutrition—Narrative Review. Nutrients 2023, 15, 416. [Google Scholar] [CrossRef] [PubMed]
- Davies, T.; Louie, J.C.Y.; Scapin, T.; Pettigrew, S.; Wu, J.H.; Marklund, M.; Coyle, D.H. An Innovative Machine Learning Approach to Predict the Dietary Fiber Content of Packaged Foods. Nutrients 2021, 13, 3195. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.M.; Kleinberg, S.; Brown, A.W.; Crow, M.; Bastian, N.D.; Reisweber, N.; Lasater, R.; Kendall, T.; Shafto, P.; Blaine, R.; et al. Machine Learning Modeling Practices to Support the Principles of AI and Ethics in Nutrition Research. Nutr. Diabetes 2022, 12, 48. [Google Scholar] [CrossRef] [PubMed]
- Russell, S.J.; Norvig, P. Artificial Intelligence. In Artificial Intelligence: A Modern Approach, 3rd ed.; Hirsch, M., Dunkelberger, T., Eds.; Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2010; pp. 1–29. [Google Scholar]
- Sigalo, N.; St Jean, B.; Frias-Martinez, V. Using Social Media to Predict Food Deserts in the United States: Infodemiology Study of Tweets. JMIR Public Health Surveill. 2022, 8, e34285. [Google Scholar] [CrossRef]
- An, R.; Yang, Y.; Batcheller, Q.; Zhou, Q. Sentiment Analysis of Tweets on Soda Taxes. J. Public Health Manag. Pract. 2023, 29, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Dora, M.; Kumar, A.; Mangla, S.K.; Pant, A.; Kamal, M.M. Critical Success Factors Influencing Artificial Intelligence Adoption in Food Supply Chains. Int. J. Prod. Res. 2022, 60, 4621–4640. [Google Scholar] [CrossRef]
- Mehrabi, Z.; Delzeit, R.; Ignaciuk, A.; Levers, C.; Braich, G.; Bajaj, K.; Amo-Aidoo, A.; Anderson, W.; Balgah, R.A.; Benton, T.G.; et al. Research Priorities for Global Food Security under Extreme Events. One Earth 2022, 5, 756–766. [Google Scholar] [CrossRef]
- Ramyaa, R.; Hosseini, O.; Krishnan, G.P.; Krishnan, S. Phenotyping Women Based on Dietary Macronutrients, Physical Activity, and Body Weight Using Machine Learning Tools. Nutrients 2019, 11, 1681. [Google Scholar] [CrossRef]
- Colmenarejo, G. Machine Learning Models to Predict Childhood and Adolescent Obesity: A Review. Nutrients 2020, 12, 2466. [Google Scholar] [CrossRef] [PubMed]
- Kirk, D.; Kok, E.; Tufano, M.; Tekinerdogan, B.; Feskens, E.J.M.; Camps, G. Machine Learning in Nutrition Research. Adv. Nutr. 2022, 13, 2573–2589. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, R.; Wang, X. Artificial Intelligence Applications to Public Health Nutrition. Nutrients 2023, 15, 4285. https://doi.org/10.3390/nu15194285
An R, Wang X. Artificial Intelligence Applications to Public Health Nutrition. Nutrients. 2023; 15(19):4285. https://doi.org/10.3390/nu15194285
Chicago/Turabian StyleAn, Ruopeng, and Xiaoxin Wang. 2023. "Artificial Intelligence Applications to Public Health Nutrition" Nutrients 15, no. 19: 4285. https://doi.org/10.3390/nu15194285
APA StyleAn, R., & Wang, X. (2023). Artificial Intelligence Applications to Public Health Nutrition. Nutrients, 15(19), 4285. https://doi.org/10.3390/nu15194285