Effect of Time-Restricted Eating and Resistance Training on High-Speed Strength and Body Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Body Composition
2.4. Strength Performance Assessment
2.5. Lower Body Explosive and Reactive Strength (Countermovement and Squat Jump)
2.6. Lower Body Maximal Voluntary Contraction (Mid-Thigh Pull)
2.7. Upper Body Maximal Voluntary Contraction (Isometric Bench Press)
2.8. Upper Body Explosive and Reactive Strength (Bench Press Throw)
2.9. Data Analysis of Muscle Performance
2.10. Dietary Intake
2.11. One-Repetition Maximum Testing
2.12. Training Program
2.13. Statistical Analysis
3. Results
4. Discussion
4.1. Limitations
4.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tinsley, G.M.; Forsse, J.S.; Butler, N.K.; Paoli, A.; Bane, A.A.; La Bounty, P.M.; Morgan, G.B.; Grandjean, P.W. Time-restricted feeding in young men performing resistance training: A randomized controlled trial. Eur. J. Sport Sci. 2017, 17, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Correia, J.M.; Santos, I.; Pezarat-Correia, P.; Silva, A.M.; Mendonca, G.V. Effects of ramadan and non-ramadan intermittent fasting on body composition: A systematic review and meta-analysis. Front. Nutr. 2021, 7, 625240. [Google Scholar] [CrossRef] [PubMed]
- Bhutani, S.; Klempel, M.C.; Kroeger, C.M.; Trepanowski, J.F.; Varady, K.A. Alternate day fasting and endurance exercise combine to reduce body weight and favorably alter plasma lipids in obese humans. Obesity 2013, 21, 1370–1379. [Google Scholar] [CrossRef]
- Barnosky, A.R.; Hoddy, K.K.; Unterman, T.G.; Varady, K.A. Intermittent fasting vs daily calorie restriction for type 2 diabetes prevention: A review of human findings. Trans. Res. 2014, 164, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Varady, K.A.; Hellerstein, M.K. Alternate-day fasting and chronic disease prevention: A review of human and animal trials. Am. J. Clin. Nutr. 2007, 86, 7–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longo, V.D.; Mattson, M.P. Fasting: Molecular mechanisms and clinical applications. Cell Metab. 2014, 19, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Correia, J.M.; Santos, I.; Pezarat-Correia, P.; Minderico, C.; Mendonca, G.V. Effects of Intermittent Fasting on Specific Exercise Performance Outcomes: A Systematic Review Including Meta-Analysis. Nutrients 2020, 12, 1390. [Google Scholar] [CrossRef]
- Tinsley, G.M.; Gann, J.G.; La Bounty, P.M. Intermittent fasting programs and their effects on body composition: Implications for weight-restricted sports. Strength Cond. J. 2015, 37, 60–71. [Google Scholar] [CrossRef] [Green Version]
- Tinsley, G.M.; Moore, M.L.; Graybeal, A.J.; Paoli, A.; Kim, Y.; Gonzales, J.U.; Harry, J.R.; VanDusseldorp, T.A.; Kennedy, D.N.; Cruz, M.R. Time-restricted feeding plus resistance training in active females: A randomized trial. Am. J. Clin. Nutr. 2019, 110, 628–640. [Google Scholar] [CrossRef] [Green Version]
- Moro, T.; Tinsley, G.; Bianco, A.; Marcolin, G.; Pacelli, Q.F.; Battaglia, G.; Palma, A.; Gentil, P.; Neri, M.; Paoli, A. Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J. Trans. Med. 2016, 14, 290. [Google Scholar] [CrossRef]
- Aagaard, P.; Simonsen, E.B.; Andersen, J.L.; Magnusson, P.; Dyhre-Poulsen, P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J. Appl. Physiol. 2002, 93, 1318–1326. [Google Scholar] [CrossRef]
- Maffiuletti, N.A.; Aagaard, P.; Blazevich, A.J.; Folland, J.; Tillin, N.; Duchateau, J. Rate of force development: Physiological and methodological considerations. Eur. J. Appl. Physiol. 2016, 116, 1091–1116. [Google Scholar] [CrossRef] [Green Version]
- Tillin, N.A.; Pain, M.T.; Folland, J.P. Short-term training for explosive strength causes neural and mechanical adaptations. Exp. Physiol. 2012, 97, 630–641. [Google Scholar] [CrossRef]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2018, 71, e127–e248. [Google Scholar] [PubMed]
- McKay, A.K.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining training and performance caliber: A participant classification framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef]
- Medicine ACoS. ACSM’s Guidelines for Exercise Testing and Prescription; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013. [Google Scholar]
- Finfer, S.; Wernerman, J.; Preiser, J.-C.; Cass, T.; Desaive, T.; Hovorka, R.; Joseph, J.I.; Kosiborod, M.; Krinsley, J.; Mackenzie, I. Clinical review: Consensus recommendations on measurement of blood glucose and reporting glycemic control in critically ill adults. Crit. Care 2013, 17, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickering, T.G.; Hall, J.E.; Appel, L.J.; Falkner, B.E.; Graves, J.W.; Hill, M.N.; Jones, D.W.; Kurtz, T.; Sheps, S.G.; Roccella, E.J. Recommendations for blood pressure measurement in humans: An AHA scientific statement from the Council on High Blood Pressure Research Professional and Public Education Subcommittee. J. Clin. Hypertens. 2005, 7, 102. [Google Scholar] [CrossRef]
- Hutchison, A.T.; Regmi, P.; Manoogian, E.N.; Fleischer, J.G.; Wittert, G.A.; Panda, S.; Heilbronn, L.K. Time-restricted feeding improves glucose tolerance in men at risk for type 2 diabetes: A randomized crossover trial. Obesity 2019, 27, 724–732. [Google Scholar] [CrossRef]
- Kim, J.; Heshka, S.; Gallagher, D.; Kotler, D.P.; Mayer, L.; Albu, J.; Shen, W.; Freda, P.U.; Heymsfield, S.B. Intermuscular adipose tissue-free skeletal muscle mass: Estimation by dual-energy X-ray absorptiometry in adults. J. Appl. Physiol. 2004, 97, 655–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esformes, J.I.; Keenan, M.; Moody, J.; Bampouras, T.M. Effect of different types of conditioning contraction on upper body postactivation potentiation. J. Strength Cond. Res. 2011, 25, 143–148. [Google Scholar] [CrossRef]
- Kilduff, L.P.; Vidakovic, P.; Cooney, G.; Twycross-Lewis, R.; Amuna, P.; Parker, M.; Paul, L.; Pitsiladis, Y.P. Effects of creatine on isometric bench-press performance in resistance-trained humans. Med. Sci. Sports Exerc. 2002, 34, 1176–1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paoli, A.; Grimaldi, K.; D’Agostino, D.; Cenci, L.; Moro, T.; Bianco, A.; Palma, A. Ketogenic diet does not affect strength performance in elite artistic gymnasts. J. Int. Soc. Sports Nutr. 2012, 9, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canavan, P.K.; Vescovi, J.D. Evaluation of power prediction equations: Peak vertical jumping power in women. Med. Sci. Sports Exerc. 2004, 36, 1589–1593. [Google Scholar] [CrossRef] [PubMed]
- Attia, A.; Dhahbi, W.; Chaouachi, A.; Padulo, J.; Wong, D.; Chamari, K. Measurement errors when estimating the vertical jump height with flight time using photocell devices: The example of Optojump. Biol. Sport 2017, 34, 63–70. [Google Scholar] [CrossRef]
- Warr, D.M.; Pablos, C.; Sánchez-Alarcos, J.V.; Torres, V.; Izquierdo, J.M.; Carlos Redondo, J. Reliability of measurements during countermovement jump assessments: Analysis of performance across subphases. Cogent. Soc. Sci. 2020, 6, 1843835. [Google Scholar] [CrossRef]
- Petronijevic, M.S.; Ramos, A.G.; Mirkov, D.M.; Jaric, S.; Valdevit, Z.; Knezevic, O.M. Self-preferred initial position could be a viable alternative to the standard squat jump testing procedure. J. Strength Cond. Res. 2018, 32, 3267–3275. [Google Scholar] [CrossRef]
- McLellan, C.P.; Lovell, D.I.; Gass, G.C. The role of rate of force development on vertical jump performance. J. Strength Cond. Res. 2011, 25, 379–385. [Google Scholar] [CrossRef]
- Comfort, P.; Jones, P.A.; McMahon, J.J.; Newton, R. Effect of knee and trunk angle on kinetic variables during the isometric midthigh pull: Test–retest reliability. Int. J. Sports Physiol. Perform. 2015, 10, 58–63. [Google Scholar] [CrossRef]
- Dos’Santos, T.; Jones, P.A.; Kelly, J.; McMahon, J.J.; Comfort, P.; Thomas, C. Effect of sampling frequency on isometric midthigh-pull kinetics. Int. J. Sports Physiol. Perform. 2016, 11, 255–260. [Google Scholar] [CrossRef]
- Haff, G.G.; Carlock, J.M.; Hartman, M.J.; Kilgore, J.L. Force-time curve characteristics of dynamic and isometric muscle actions of elite women olympic weightlifters. J. Strength Cond. Res. 2005, 19, 741. [Google Scholar] [PubMed]
- Coburn, J.W.; Malek, M.H. NSCA’s Essentials of Personal Training, 2nd ed.; Hum Kinet: Champaign, IL, USA, 2012. [Google Scholar]
- Young, K.P.; Haff, G.G.; Newton, R.U.; Gabbett, T.J.; Sheppard, J.M. Assessment and monitoring of ballistic and maximal upper-body strength qualities in athletes. Int. J. Sports Physiol. Perform. 2015, 10, 232–237. [Google Scholar] [CrossRef]
- Young, K.P.; Haff, G.G.; Newton, R.U.; Sheppard, J.M. Reliability of a novel testing protocol to assess upper-body strength qualities in elite athletes. Int. J. Sports Physiol. Perform. 2014, 9, 871–875. [Google Scholar] [CrossRef] [PubMed]
- Newton, R.U.; Murphy, A.J.; Humphries, B.J.; Wilson, G.J.; Kraemer, W.J.; Häkkinen, K. Influence of load and stretch shortening cycle on the kinematics, kinetics and muscle activation that occurs during explosive upper-body movements. Eur. J. Appl. Physiol. Occup. Physiol. 1997, 75, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Asmussen, E.; Bonde-Petersen, F. Storage of elastic energy in skeletal muscles in man. Act. Physiol. Scand. 1974, 91, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rosell, D.; Pareja-Blanco, F.; Aagaard, P.; González-Badillo, J.J. Physiological and methodological aspects of rate of force development assessment in human skeletal muscle. Clin. Physiol. Funct. 2018, 38, 743–762. [Google Scholar] [CrossRef]
- Sheppard, J.M.; Chapman, D.; Taylor, K.-L. An evaluation of a strength qualities assessment method for the lower body. J. Aust. Strength Cond. 2011, 19, 4–10. [Google Scholar]
- Pérez-Castilla, A.; Piepoli, A.; Delgado-García, G.; Garrido-Blanca, G.; García-Ramos, A. Reliability and concurrent validity of seven commercially available devices for the assessment of movement velocity at different intensities during the bench press. J. Strength Cond. Res. 2019, 33, 1258–1265. [Google Scholar] [CrossRef]
- Brown, L.E.; Weir, J.P. ASEP procedures recommendation I: Accurate assessment of muscular strength and power. J. Exerc. Physiol. 2001, 4, 1–21. [Google Scholar]
- Hunter, G.R.; Seelhorst, D.; Snyder, S. Comparison of metabolic and heart rate responses to super slow vs. traditional resistance training. J. Strength Cond. Res. 2003, 17, 76–81. [Google Scholar]
- Schoenfeld, B.J.; Grgic, J.; Ogborn, D.; Krieger, J.W. Strength and hypertrophy adaptations between low-vs. high-load resistance training: A systematic review and meta-analysis. J. Strength Cond. Res. 2017, 31, 3508–3523. [Google Scholar] [CrossRef]
- Willoughby, D.; Stout, J.; Wilborn, C. Effects of resistance training and protein plus amino acid supplementation on muscle anabolism, mass, and strength. Amino Acids 2007, 32, 467–477. [Google Scholar] [CrossRef]
- Linke, S.E.; Gallo, L.C.; Norman, G.J. Attrition and adherence rates of sustained vs. intermittent exercise interventions. Ann. Behav. Med. 2011, 42, 197–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: London, UK, 2013. [Google Scholar]
- Schuenke, M.D.; Mikat, R.P.; McBride, J.M. Effect of an acute period of resistance exercise on excess post-exercise oxygen consumption: Implications for body mass management. Eur. J. Appl. Physiol. 2002, 86, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Weier, A.T.; Pearce, A.J.; Kidgell, D.J. Strength training reduces intracortical inhibition. Act. Physiol. 2012, 206, 109–119. [Google Scholar] [CrossRef]
- Cuevas-Aburto, J.; Janicijevic, D.; Pérez-Castilla, A.; Chirosa-Ríos, L.; García-Ramos, A. Changes in bench press performance and throwing velocity after strength-oriented and ballistic resistance training programs. J. Sports Med. Physical. Fit. 2020, 60, 1423–1430. [Google Scholar] [CrossRef]
- Thomas, C.; Jones, P.A.; Comfort, P. Reliability of the dynamic strength index in college athletes. Int. J. Sports Physiol. Perform. 2015, 10, 542–545. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The importance of muscular strength in athletic performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef]
Variables | Before TRE | Before Non-TRE | p Value |
---|---|---|---|
Energy intake (kcal) | 2433.3 ± 760.5 (2055.1–2811.5) | 2427.0 ± 556.8 (2150.1–2703.9) | 0.96 |
Carbohydrate (%) | 44.3 ± 7.1 (40.8–47.9) | 44.1 ± 6.0 (41.1–47.0) | 0.87 |
Fat (%) | 31.6 ± 5.5 (28.8–34.3) | 31.0 ± 4.8 (28.6–33.5) | 0.70 |
Protein (%) | 23.3 ± 3.8 (18.5–30.9) | 24.3 ± 3.5 (18.9–30.4) | 0.25 |
Protein (g/kg) | 1.9 ± 0.6 (1.0–2.8) | 2.0 ± 0.5 (1.1–2.9) | 0.45 |
TRE | Non-TRE | |||
---|---|---|---|---|
Pre-Intervention | Post-Intervention | Pre-Intervention | Post-Intervention | |
Body composition | ||||
Body mass (kg) | 73.2 ± 7.2 (69.6–76.8) | 72.8 ± 7.1 (69.3–76.3) | 73.0 ± 6.9 (69.6–76.4) | 73.1 ± 7.0 (69.6–76.6) |
Fat mass (kg) * | 12.8 ± 4.4 (10.6–15.0) | 12.2 ± 4.6 (9.9–14.5) | 12.7 ± 4.2 (10.6–14.8) | 12.5 ± 4.5 (10.2–14.7) |
Fat-free mass (kg) | 59.4 ± 4.6 (57.1–61.7) | 59.6 ± 4.6 (57.4–61.9) | 59.2 ± 4.8 (56.8–61.6) | 59.6 ± 4.5 (57.4–61.8) |
Skeletal muscle (kg) | 28.6 ± 2.8 (27.2–29.9) | 28.6 ± 3.0 (27.1–30.1) | 28.6 ± 3.2 (27.1–30.2) | 28.8 ± 2.9 (27.4–30.3) |
TRE | Non-TRE | ||||
---|---|---|---|---|---|
Pre-Intervention | Post-Intervention | Pre-Intervention | Post-Intervention | ||
Isometric mid-thigh pull | Peak force (N) † | 1535.8 ± 216.8 (1428.0–1643.6) | 1575.1 ± 285.5 (1433.1–1717.1) | 1618.4 ± 213.8 (1512.1–1724.7) | 1615.1 ± 254.8 (1488.4–1741.8) |
RFDmax (N.m.s−1) | 6.8 ± 1.1 (6.1–7.5) | 6.8 ± 1.7 (6.1–7.4) | 6.4 ± 1.3 (5.4–6.9) | 6.7 ± 1.4 (6.2–7.2) | |
Force 50 ms (% MVC) | 10.1 ± 2.8 (8.6–11.7) | 10.2 ± 2.8 (8.5–11.9) | 11.2 ± 4.2 (8.8–13.5) | 9.7 ± 2.9 (8.5–11.1) | |
Force 100 ms (% MVC) | 26.9 ± 6.7 (23.3–30.7) | 26.9 ± 7.7 (22.3–31.6) | 25.9 ± 7.8 (21.6–30.2) | 24.7 ± 8.1 (21.3–28.1) | |
Force 150 ms (% MVC) | 49.4 ± 11.1 (41.3–51.0) | 47.4 ± 11.5 (41.6–53.2) | 45.7 ± 12.7 (36.9–49.3) | 44.6 ± 12.5 (40.1–49.1) | |
Force 200 ms (% MVC) | 63.1 ± 9.1 (56.5–65.9) | 62.6 ± 12.2 (56.4–68.9) | 59.6 ± 12.7 (50.7–64.5) | 60.4 ± 13.4 (55.2–65.7) | |
Countermovement squat jump | Jump height (cm) ‡ | 37.6 ± 5.9 (34.7–40.6) | 37.7 ± 5.7 (36.2–39.3) | 37.1 ± 5.9 (34.2–40.1) | 38.6 ± 6.7 (37.7–39.5) |
Peak force (N) ‡ | 1010.9 ± 150.0 (936.3–1085.5) | 1023.5 ± 198.7 (936.3–1085.5) | 1071.8 ± 213.9 (965.4–1178.2) | 1038.9 ± 150.0 (965.4–1178.2) | |
Dynamic strength index | 0.67 ± 0.11 (0.59–0.71) | 0.66 ± 0.13 (0.62–0.72) | 0.67 ± 0.16 (0.57–0.77) | 0.65 ± 0.09 (0.59–0.76) | |
Squat jump | Jump height (cm) | 34.0 ± 5.4 (30.5–36.8) | 35.0 ± 5.2 (33.5–36.6) | 34.1 ± 5.1 (31.1–37.1) | 34.8 ± 5.5 (33.9–35.9) |
Peak force (N) ‡ | 928.9 ± 177.8 (825.1–1039.1) | 895.5 ± 125.9 (857.1–933.9) | 944.1 ± 200.7 (855.0–1078.9) | 951.6 ± 179.8 (917.8–985.3) | |
Dynamic strength index | 0.61 ± 0.11 (0.53–0.67) | 0.58 ± 0.12 (0.53–0.63 | 0.59 ± 0.16 (0.52–0.69) | 0.60 ± 0.11 (0.56–0.63) |
TRE | Non-TRE | ||||
---|---|---|---|---|---|
Pre-Intervention | Post-Intervention | Pre-Intervention | Post-Intervention | ||
Isometric Strength—Bench Press | Peak Force (N) | 820.3 ± 162.9 (739.3–901.3) | 797.5 ± 105.7 (770.7–824.3) | 799.6 ± 102.0 (748.9–850.4) | 809.6 ± 94.6 (772.9–846.3) |
RFDmax (N.m.s−1) ‡ | 4.5 ± 1.2 (3.9–5.1) | 4.4 ± 1.3 (4.1–4.8) | 4.3 ± 0.8 (3.9–4.7) | 4.8 ± 0.6 (4.5–5.0) | |
Force 50 ms (% MVC) | 15.5 ± 6.1 (12.5–18.5) | 17.7 ± 7.3 (13.9–21.6) | 16.5 ± 5.8 (13.6–19.4) | 18.1 ± 2.9 (17.1–20.6) | |
Force 100 ms (% MVC) * | 37.4 ± 13.6 (30.6–44.2) | 46.5 ± 14.9 (37.8–55.1) | 41.1 ± 13.8 (34.2–48.0) | 47.0 ± 6.5 (43.5–50.5) | |
Force 150 ms (% MVC) * | 54.8 ± 17.8 (45.9–63.7) | 67.7 ± 11.7 (60.6–74.9) | 61.2 ± 18.8 (51.8–70.5) | 68.3 ± 7.9 (63.7–72.9) | |
Force 200 ms (% MVC) * | 62.1 ± 18.7 (52.8–71.4) | 74.7 ± 14.7 (65.7–83.7) | 69.5 ± 19.5 (59.8–79.2) | 77.2 ± 7.8 (72.3–82.2) | |
Ballistic Strength—Bench press throw | Peak Force (N) § | 639.8 ± 87.6 (596.2–683.3) | 652.3 ± 93.6 (630.8–673.8) | 641.9 ± 87.1 (598.5–685.2) | 547.4 ± 134.0 (479.8–615.0) |
Mean Velocity (m.s−1) | 0.88 ± 0.13 (0.80–0.93) | 0.89 ± 0.09 (0.85–0.92) | 0.89 ± 0.13 (0.83–0.96) | 0.89 ± 0.10 (0.85–0.94) | |
Mean power (W) | 500.4 ± 175.0 (413.3–587.4) | 541.9 ± 194.1 (477.4–606.4) | 517.3 ± 161.7 (436.9–597.7) | 559.6 ± 199.9 (497.9–621.3) | |
Dynamic strength index § | 0.79 ± 0.13 (0.74–0.86) | 0.82 ± 0.11 (0.80–0.85) | 0.81 ± 0.11 (0.76–0.87) | 0.68 ± 0.18 (0.60–0.77) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correia, J.M.; Santos, P.D.G.; Pezarat-Correia, P.; Minderico, C.S.; Infante, J.; Mendonca, G.V. Effect of Time-Restricted Eating and Resistance Training on High-Speed Strength and Body Composition. Nutrients 2023, 15, 285. https://doi.org/10.3390/nu15020285
Correia JM, Santos PDG, Pezarat-Correia P, Minderico CS, Infante J, Mendonca GV. Effect of Time-Restricted Eating and Resistance Training on High-Speed Strength and Body Composition. Nutrients. 2023; 15(2):285. https://doi.org/10.3390/nu15020285
Chicago/Turabian StyleCorreia, Joana M., Paulo D. G. Santos, Pedro Pezarat-Correia, Cláudia S. Minderico, Jorge Infante, and Goncalo V. Mendonca. 2023. "Effect of Time-Restricted Eating and Resistance Training on High-Speed Strength and Body Composition" Nutrients 15, no. 2: 285. https://doi.org/10.3390/nu15020285
APA StyleCorreia, J. M., Santos, P. D. G., Pezarat-Correia, P., Minderico, C. S., Infante, J., & Mendonca, G. V. (2023). Effect of Time-Restricted Eating and Resistance Training on High-Speed Strength and Body Composition. Nutrients, 15(2), 285. https://doi.org/10.3390/nu15020285