Increased Intake of Omega-3 Polyunsaturated Fatty Acids Is Associated with Reduced Odds of Low Hand Grip Strength in Korean Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Measurement of Hand Grip Strength
2.3. Assessment of Dietary Intake
2.4. General Characteristics, Anthropometric Measurements, and Biochemical Variables
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Springstroh, K.A.; Gal, N.J.; Ford, A.L.; Whiting, S.J.; Dahl, W.J. Evaluation of handgrip strength and nutritional risk of congregate nutrition program participants in Florida. J. Nutr. Gerontol. Geriatr. 2016, 35, 193–208. [Google Scholar] [CrossRef] [PubMed]
- Rijk, J.M.; Roos, P.R.; Deckx, L.; van den Akker, M.; Buntinx, F. Prognostic value of handgrip strength in people aged 60 years and older: A systematic review and meta-analysis. Geriatr. Gerontol. Int. 2016, 16, 5–20. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Xia, Y.; Tong, S.; Wu, Q.; Zhao, Y. Association of handgrip strength with the prevalence of metabolic syndrome in US adults: The national health and nutrition examination survey. Aging 2020, 12, 7818. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Isiozor, N.M.; Khan, H.; Laukkanen, J.A. Handgrip strength—A risk indicator for type 2 diabetes: Systematic review and meta-analysis of observational cohort studies. Diabetes Metab. Res. Rev. 2021, 37, e3365. [Google Scholar] [CrossRef] [PubMed]
- Lawman, H.G.; Troiano, R.P.; Perna, F.M.; Wang, C.Y.; Fryar, C.D.; Ogden, C.L. Associations of relative handgrip strength and cardiovascular disease biomarkers in US adults, 2011–2012. Am. J. Prev. Med. 2016, 50, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Norman, K.; Stobäus, N.; Reiß, J.; Schulzke, J.; Valentini, L.; Pirlich, M. Effect of sexual dimorphism on muscle strength in cachexia. J. Cachexia Sarcopenia Muscle 2012, 3, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Thorpe, R.J., Jr.; Simonsick, E.; Zonderman, A.; Evans, M.K. Association between race, poverty status and grip strength in middle to old age adults. Ethn. Dis. 2016, 26, 493–500. [Google Scholar] [CrossRef] [Green Version]
- Baker, W.L.; Karan, S.; Kenny, A.M. Effect of dehydroepiandrosterone on muscle strength and physical function in older adults: A systematic review. J. Am. Geriatr. Soc. 2011, 59, 997–1002. [Google Scholar] [CrossRef]
- Deutz, N.E.; Bauer, J.M.; Barazzoni, R.; Biolo, G.; Boirie, Y.; Bosy-Westphal, A.; Cederholm, T.; Cruz-Jentoft, A.; Krznaric, Z.; Nair, K.S. Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2014, 33, 929–936. [Google Scholar] [CrossRef] [Green Version]
- Mithal, A.; Bonjour, J.P.; Boonen, S.; Burckhardt, P.; Degens, H.; El Hajj Fuleihan, G.; Josse, R.; Lips, P.; Morales Torres, J.; Rizzoli, R.; et al. Impact of nutrition on muscle mass, strength, and performance in older adults. Osteoporos. Int. 2013, 24, 1555–1566. [Google Scholar] [CrossRef]
- Beasley, J.M.; Shikany, J.M.; Thomson, C.A. The role of dietary protein intake in the prevention of sarcopenia of aging. Nutr. Clin. Pract. 2013, 28, 684–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schutzer, K.A.; Graves, B.S. Barriers and motivations to exercise in older adults. Prev. Med. 2004, 39, 1056–1061. [Google Scholar] [CrossRef]
- Seo, Y.B.; Oh, Y.H.; Yang, Y.J. Current Status of Physical Activity in South Korea. Korean J. Fam. Med. 2020, 43, 209. [Google Scholar] [CrossRef] [PubMed]
- Burdge, G.C.; Jones, A.E.; Wootton, S.A. Eicosapentaenoic and docosapentaenoic acids are the principal products of alpha-linolenic acid metabolism in young men. Br. J. Nutr. 2002, 88, 355–363. [Google Scholar] [CrossRef] [Green Version]
- Calder, P.C. Marine omega-3 fatty acids and infammatory processes: Efects, mechanisms and clinical relevance. Biochim. Biophys. Acta. Mol. Cell. Biol. Lipids. 2015, 1851, 469–484. [Google Scholar] [CrossRef] [PubMed]
- Zulyniak, M.A.; Roke, K.; Gerling, C.; Logan, S.L.; Spriet, L.L.; Mutch, D.M. Fish oil regulates blood fatty acid composition and oxylipin levels in healthy humans: A comparison of young and older men. Mol. Nutr. Food. Res. 2016, 60, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.L.; Steg, P.G.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Ketchum, S.B. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N. Engl. J. Med. 2019, 380, 11–22. [Google Scholar] [CrossRef]
- Rimm, E.B.; Appel, L.J.; Chiuve, S.E.; Djoussé, L.; Engler, M.B.; Kris-Etherton, P.M.; Lichtenstein, A.H. Seafood long-chain n-3 polyunsaturated fatty acids and cardiovascular disease: A science advisory from the American Heart Association. Circulation 2018, 138, e35–e47. [Google Scholar] [CrossRef]
- Robinson, S.M.; Jameson, K.A.; Batelaan, S.F.; Martin, H.J.; Syddall, H.E.; Dennison, E.M. Diet and its relationship with grip strength in community-dwelling older men and women: The Hertfordshire cohort study. J. Am. Geriatr. Soc. 2008, 56, 84–90. [Google Scholar] [CrossRef]
- Reinders, I.; Song, X.; Visser, M.; Eiriksdottir, G.; Gudnason, V.; Sigurdsson, S. Plasma phospholipid pufas are associated with greater muscle and knee extension strength but not with changes in muscle parameters in older adults. J. Nutr. 2015, 145, 105–112. [Google Scholar] [CrossRef]
- Rolland, Y.; Barreto, P.S.; Maltais, M.; Guyonnet, S.; Cantet, C.; Andrieu, S.; Vellas, B. Effect of Long-Term Omega 3 Polyunsaturated Fatty Acid Supplementation with or without Multidomain Lifestyle Intervention on Muscle Strength in Older Adults: Secondary Analysis of the Multidomain Alzheimer Preventive Trial (MAPT). Nutrients 2019, 11, 1931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministry of Health and Welfare (KR). Korean National Health and Nutrition Examination Survey (KNHANES). Available online: http://knhanes.cdc.go.kr (accessed on 19 March 2009).
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardised approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.K.; Liu, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Bahyah, K.S.; Chou, M.Y.; Chen, L.Y.; Hsu, P.S.; Krairit, O. Sarcopenia in Asia: Consensus report of the Asian Working Group for Sarcopenia. J. Am. Med. Dir. Assoc. 2014, 15, 95–101. [Google Scholar] [CrossRef]
- National Institute of Agricultural Sciences. Food Composition Table, 7th ed.; National Institute of Agricultural Sciences: Suwon, Republic of Korea, 2006.
- National Institute of Agricultural Sciences. Food Composition Table, 8th ed.; National Institute of Agricultural Sciences: Suwon, Republic of Korea, 2011.
- National Institute of Agricultural Sciences. Food Composition Table, 9th ed.; National Institute of Agricultural Sciences: Suwon, Republic of Korea, 2017.
- Ministry of Health and Welfare, The Korean Nutrition Society. Dietary Reference Intakes for Koreans 2015; Report No. 11-1352000-001537-14; Ministry of Health and Welfare: Sejong, Republic of Korea, 2015.
- Smith, G.I.; Julliand, S.; Reeds, D.N.; Sinacore, D.R.; Klein, S.; Mittendorfer, B. Fish oilderived n-3 pufa therapy increases muscle mass and function in healthy older adults. Am. J. Clin. Nutr. 2015, 102, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Krzyminska-Siemaszko, R.; Czepulis, N.; Lewandowicz, M.; Zasadzka, E.; Suwalska, A.; Witowski, J. The effect of a 12-week omega-3 supplementation on body composition, muscle strength and physical performance in elderly individuals with decreased muscle mass. Int. J. Environ. Res. Public Health 2015, 12, 10558–10574. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Dietetic Products N and Allergies. Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J. 2010, 8, 1461. [Google Scholar]
- Fats and Fatty Acids in Human Nutrition. Report of an Expert Consultation; FAO food and nutrition paper; Food and Agriculture Organization: Rome, Italy, 2010; Volume 91, pp. 1–166.
- Ministry of Health and Welfare, The Korean Nutrition Society. Dietary Reference Intakes for Koreans 2020: Energy and Macronutrients; Report No. 11-1352000-002852-01; Ministry of Health and Welfare: Sejong, Republic of Korea, 2020.
- Gray, S.R.; Mittendorfer, B. Fish oil-derived n-3 polyunsaturated fatty acids for the prevention and treatment of sarcopenia. Curr. Opin. Clin. Nutr. Metab. Care 2018, 21, 104–109. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.I.; Atherton, P.; Reeds, D.N.; Mohammed, B.S.; Rankin, D.; Rennie, M.J.; Mittendorfer, B. Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: A randomized controlled trial. Am. J. Clin. Nutr. 2011, 93, 402–412. [Google Scholar] [CrossRef] [Green Version]
- Jeromson, S.; Gallagher, I.J.; Galloway, S.D.; Hamilton, D.L. Omega-3 fatty acids and skeletal muscle health. Mar. Drugs 2015, 13, 6977–7004. [Google Scholar] [CrossRef]
- Vaughan, R.A.; Garcia-Smith, R.; Bisoffi, M.; Conn, C.A.; Trujillo, K.A. Conjugated linoleic acid or omega 3 fatty acids increase mitochondrial biosynthesis and metabolism in skeletal muscle cells. Lipids Health Dis. 2012, 11, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neschen, S.; Moore, I.; Regittnig, W.; Yu, C.L.; Wang, Y.; Pypaert, M.; Petersen, K.F.; Shulman, G.I. Contrasting effects of fish oil and safflower oil on hepatic peroxisomal and tissue lipid content. Am. J. Physiol. Endocrinol. Metab. 2002, 282, E395–E401. [Google Scholar] [CrossRef] [PubMed]
- Walser, B.; Giordano, R.M.; Stebbins, C.L. Supplementation with omega-3 polyunsaturated fatty acids augments brachial artery dilation and blood flow during forearm contraction. Eur. J. Appl. Physiol. 2006, 97, 347–354. [Google Scholar] [CrossRef]
- Shevalye, H.; Yorek, M.S.; Coppey, L.J.; Holmes, A.; Harper, M.M.; Kardon, R.H.; Yorek, M.A. Effect of enriching the diet with menhaden oil or daily treatment with resolvin D1 on neuropathy in a mouse model of type 2 diabetes. J. Neurophysiol. 2015, 114, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Coppey, L.J.; Davidson, E.P.; Obrosov, A.; Yorek, M.A. Enriching the diet with menhaden oil improves peripheral neuropathy in streptozotocin-induced type 1 diabetic rats. J. Neurophysiol. 2015, 113, 701–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hvid, L.G.; Suetta, C.; Aagaard, P.; Kjaer, M.; Frandsen, U.; Ørtenblad, N. Four days of muscle disuse impairs single fiber contractile function in young and old healthy men. Exp. Gerontol. 2013, 48, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Suetta, C.; Frandsen, U.; Mackey, A.L.; Jensen, L.; Hvid, L.G.; Bayer, M.L.; Kjaer, M. Aging is associated with diminished muscle re-growth and myogenic precursor cell expansion in the early recovery phase after immobility-induced atrophy in human skeletal muscle. J. Physiol. 2013, 591, 3789–3804. [Google Scholar] [CrossRef] [PubMed]
- Thalacker-Mercer, A.E.; Fleet, J.C.; Craig, B.A.; Carnell, N.S.; Campbell, W.W. Inadequate protein intake affects skeletal muscle transcript profiles in older humans. Am. J. Clin. Nutr. 2007, 85, 1344–1352. [Google Scholar] [CrossRef] [Green Version]
- Bohannon, R.W. Grip Strength: An Indispensable Biomarker for Older Adults. Clin. Interv. Aging 2019, 14, 1681–1691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, S.K.; Thompson, M.W.; Adams, R.D. Relationships among age-associated strength changes and physical activity level, limb dominance, and muscle group in women. J. Gerontol. A Biol. Sci. Med. Sci. 2000, 55, B264–B273. [Google Scholar] [CrossRef]
- Rantanen, T.; Masaki, K.; Foley, D.; Izmirlian, G.; White, L.; Guralnik, J.M. Grip strength changes over 27 yr in Japanese-American men. J. Appl. Physiol. 1998, 85, 2047–2053. [Google Scholar] [CrossRef] [PubMed]
- Korea Health Industry Development Institute. National Food & Nutrition Statistics: Based on 2009 Korea National Health and Nutrition Examination Survey; Korea Health Industry Development Institute: Osong, Republic of Korea, 2011. [Google Scholar]
Men | Women | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Q 1 (n = 1953) <0.86 g | Q 2 (n = 1953) 0.86–1.55 g | Q 3 (n = 1953) 1.55–2.6 g | Q 4 (n = 1953) >2.6 g | Trend p | Q 1 (n = 2617) <0.65 g | Q 2 (n = 2617) 0.65–1.20 g | Q 3 (n = 2617) 1.20–2.09 g | Q 4 (n = 2617) >2.09 g | Trend p | |
Age (years) | 54.8 ± 0.41 | 51.8 ± 0.38 | 50.0 ± 0.37 | 49.9 ± 0.37 | <0.001 | 54.9 ± 0.34 | 51.2 ± 0.32 | 49.9 ± 0.31 | 50.2 ± 0.29 | <0.001 |
Body mass index (kg/m2) | 24.3 ± 0.08 | 24.4 ± 0.07 | 24.6 ± 0.07 | 24.7 ± 0.07 | 0.006 | 23.8 ± 0.07 | 23.4 ± 0. 07 | 23.5 ± 0. 07 | 23.3 ± 0.07 | 0.096 |
Systolic blood pressure (mmHg) | 122.7 ± 0.36 | 121.2 ± 0.33 | 120.8 ± 0.33 | 120.1 ± 0.33 | 0.006 | 120.2 ± 0.37 | 117.5 ± 0.35 | 116.0 ± 0.33 | 116.4 ± 0.34 | 0.002 |
Diastolic blood pressure (mmHg) | 76.6 ± 0.24 | 77.8 ± 0.22 | 78.0 ± 0.23 | 77.6 ± 0.23 | 0.137 | 73.8 ± 0.19 | 74.1 ± 0.18 | 73.9 ± 0.18 | 74.1 ± 0.18 | 0.151 |
Glucose (mg/dL) | 105.6 ± 0.63 | 104.3 ± 0.58 | 102.7 ± 0.50 | 103.1 ± 0.53 | 0.122 | 100.1 ± 0.43 | 98.5 ± 0.42 | 97.9 ± 0.39 | 98.1 ± 0.40 | 0.431 |
HbA1c (%) | 5.8 ± 0.02 | 5.8 ± 0.02 | 5.7 ± 0.02 | 5.7 ± 0.02 | 0.106 | 5.8 ± 0.02 | 5.7 ± 0.01 | 5.7 ± 0.01 | 5.7 ± 0.01 | 0.318 |
Total cholesterol (mg/dL) | 187.0 ± 0.88 | 189.9 ± 0.85 | 191.1 ± 0.87 | 191.5 ± 0.84 | 0.008 | 192.1 ± 0.75 | 194.3 ± 0.72 | 194.0 ± 0.72 | 195.9 ± 0.73 | <0.001 |
HDL cholesterol (mg/dL) | 46.8 ± 0.26 | 47.9 ± 0.26 | 47.2 ± 0.25 | 47.8 ± 0.25 | 0.232 | 53.1 ± 0.24 | 54.9 ± 0.25 | 55.3 ± 0.25 | 55.7 ± 0.26 | <0.001 |
Triglycerides (mg/dL) | 156.1 ± 2.78 | 157.6 ± 2.84 | 157.7 ± 2.91 | 152.3 ± 2.90 | 0.282 | 120.4 ± 1.54 | 114.8 ± 1.68 | 113.7 ± 1.73 | 110.6 ± 1.45 | 0.035 |
LDL cholesterol (mg/dL) | 110.7 ± 0.79 | 112.7 ± 0.77 | 114.5 ± 0.78 | 115.2 ± 0.75 | 0.001 | 115.4 ± 0.68 | 117.1 ± 0.66 | 116.5 ± 0.63 | 118.4 ± 0.66 | 0.000 |
Atherogenic index | 3.2 ± 0.03 | 3.2 ± 0.03 | 3.2 ± 0.03 | 3.2 ± 0.03 | 0.803 | 2.8 ± 0.02 | 2.7 ± 0.02 | 2.7 ± 0.02 | 2.7 ± 0.02 | 0.172 |
hs-CRP (mg/L) | 1.52 ± 0.07 | 1.18 ± 0.05 | 1.30 ± 0.06 | 1.25 ± 0.06 | 0.030 | 1.17 ± 0.04 | 1.08 ± 0.04 | 1.07 ± 0.04 | 1.00 ± 0.04 | 0.042 |
Current drinker (%) | 1500 (76.8) | 1621 (83.0) | 1669 (85.4) | 1663 (85.2) | <0.001 | 1566 (59.9) | 1749 (66.8) | 1802 (68.9) | 1762 (37.4) | 0.507 |
Current smoker (%) | 651 (33.3) | 633 (32.4) | 653 (33.4) | 563 (28.8) | <0.001 | 129 (4.9) | 134 (5.1) | 133 (5.1) | 108 (4.1) | 0.024 |
Aerobic exercise (%) | 793 (40.6) | 908 (46.5) | 955 (48.9) | 990 (50.7) | <0.001 | 949 (36.3) | 1108 (42.3) | 1121 (42.8) | 1131 (43.2) | 0.012 |
Resistance exercise (%) | 469 (24.0) | 578 (29.6) | 599 (30.7) | 614 (31.4) | <0.001 | 284 (10.9) | 399 (15.3) | 400 (15.3) | 438 (16.8) | <0.001 |
Education (≧high school, %) | 1247 (63.9) | 1483 (75.9) | 1569 (80.3) | 1602 (82.0) | <0.001 | 1423 (54.4) | 1733 (66.2) | 1897 (72.5) | 1935 (74.0) | <0.001 |
Monthly income (≧50th, %) | 920 (47.1) | 1151 (58.9) | 1235 (63.2) | 1269 (64.3) | <0.001 | 1211 (46.3) | 1463 (55.9) | 1553 (59.3) | 1629 (62.3) | <0.001 |
Hypertension (%) | 790 (40.5) | 710 (36.4) | 661 (33.9) | 650 (33.3) | 0.205 | 972 (37.2) | 778 (29.7) | 676 (25.8) | 660 (25.2) | 0.002 |
Type 2 diabetes (%) | 359 (18.4) | 297 (15.2) | 265 (13.6) | 254 (13.0) | 0.015 | 365 (14.0) | 280 (10.7) | 231 (8.8) | 233 (8.9) | 0.022 |
Dyslipidemia (%) | 929 (47.6) | 889 (45.5) | 938 (48.0) | 878 (45.0) | 0.042 | 892 (34.1) | 834 (31.9) | 775 (29.6) | 814 (31.1) | 0.033 |
Men | Women | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
The Amount of intake per 1000 kcal | Q 1 (n = 1953) | Q 2 (n = 1953) | Q 3 (n = 1953) | Q 4 (n = 1953) | Trend p | Q 1 (n = 2617) | Q 2 (n = 2617) | Q 3 (n = 2617) | Q 4 (n = 2617) | Trend p |
Energy (kcal) | 1688.6 ± 14.08 | 2105.1 ± 15.65 | 2403.2 ± 17.11 | 2751.8 ± 19.21 | <0.001 | 1233.6 ± 8.64 | 1548.2 ± 10.26 | 1762.3 ± 10.89 | 2070.1 ± 14.00 | <0.001 |
Carbohydrate (g) | 166.2 ± 0.84 | 154.6 ± 0.76 | 147.9 ± 0.76 | 138.7 ± 0.72 | <0.001 | 178.08 ± 0.59 | 164.10 ± 0.58 | 155.43 ± 0.59 | 148.45 ± 0.58 | <0.001 |
Protein (g) | 32.4 ± 0.26 | 35.1 ± 0.21 | 37.4 ± 0.23 | 39.0 ± 0.23 | <0.001 | 31.71 ± 0.21 | 35.40 ± 0.19 | 37.51 ± 0.19 | 38.52 ± 0.20 | <0.001 |
Fat (g) | 15.8 ± 0.21 | 19.6 ± 0.20 | 22.0 ± 0.21 | 25.7 ± 0.23 | <0.001 | 15.86 ± 0.19 | 20.46 ± 0.19 | 23.26 ± 0.19 | 26.16 ± 0.20 | <0.001 |
Omega-3 PUFA (g) | 0.52 ± 0.004 | 1.20 ± 0.01 | 2.02 ± 0.01 | 4.51 ± 0.07 | <0.001 | 0.34 ± 0.003 | 0.65 ± 0.005 | 0.99 ± 0.01 | 2.01 ± 0.03 | <0.001 |
Alpha-linoenic acid (mg) | 264.9 ± 3.30 | 494.7 ± 4.98 | 698.4 ± 6.95 | 1288.2 ± 22.91 | <0.001 | 279.7 ± 2.90 | 518.2 ± 4.49 | 768.7 ± 6.65 | 1549.3 ± 24.19 | <0.001 |
Eicosapentaenoic acid (mg) | 18.8 ± 0.64 | 37.6 ± 1.05 | 63.7 ± 1.84 | 135.8 ± 4.20 | <0.001 | 18.3 ± 0.50 | 37.1 ± 0.95 | 63.1 ± 1.63 | 122.2 ± 3.33 | <0.001 |
Docosahexaenoic acid (mg) | 35.3 ± 1.14 | 73.5 ± 2.03 | 124.8 ± 3.46 | 289.5 ± 9.41 | <0.001 | 34.0 ± 0.87 | 73.5 ± 1.76 | 123.3 ± 3.09 | 256.9 ± 7.45 | <0.001 |
Omega-6 PUFA (g) | 2.8 ± 0.03 | 4.2 ± 0.04 | 5.1 ± 0.05 | 6.5 ± 0.07 | <0.001 | 2.85 ± 0.03 | 4.27 ± 0.04 | 5.35 ± 0.04 | 6.67 ± 0.07 | <0.001 |
Nuts (g) | 2.4 ± 0.38 | 2.5 ± 0.22 | 3.4 ± 0.30 | 4.2 ± 0.25 | <0.001 | 3.2 ± 0.31 | 4.3 ± 0.36 | 4.6 ± 0.34 | 6.2 ± 0.34 | <0.001 |
Beans (g) | 10.7 ± 0.62 | 20.4 ± 0.86 | 24.4 ± 1.07 | 24.0 ± 1.05 | <0.001 | 10.9 ± 0.60 | 21.2 ± 0.97 | 26.7 ± 0.98 | 28.7 ± 1.10 | <0.001 |
Oils in plant foods (g) | 1.3 ± 0.05 | 2.4 ± 0.06 | 3.3 ± 0.07 | 4.7 ± 0.10 | <0.001 | 1.5 ± 0.05 | 2.5 ± 0.06 | 3.5 ± 0.07 | 4.7 ± 0.08 | <0.001 |
Fish and shellfish (g) | 37.7 ± 1.90 | 52.6 ± 1.83 | 62.4 ± 1.89 | 73.0 ± 1.90 | <0.001 | 44.2 ± 1.91 | 52.1 ± 1.66 | 61.2 ± 1.79 | 73.7 ± 1.81 | <0.001 |
Eggs (g) | 10.5 ± 0.48 | 15.0 ± 0.51 | 15.3 ± 0.49 | 15.3 ± 0.48 | <0.001 | 12.4 ± 0.49 | 17.6 ± 0.52 | 18.7 ± 0.52 | 17.3 ± 0.47 | <0.001 |
Oils in animal foods (g) | 0.1 ± 0.01 | 0.1 ± 0.01 | 0.1 ± 0.02 | 0.2 ± 0.02 | <0.001 | 0.1 ± 0.01 | 0.1 ± 0.02 | 0.1 ± 0.01 | 0.2 ± 0.02 | <0.001 |
Men | Women | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Prevalence (%) | Unadjusted | Model 1 | Model 2 | Model 3 | Prevalence (%) | Unadjusted | Model 1 | Model 2 | Model 3 | |
Q1 | 578 (29.6) | 2.44 (2.08–2.86) | 1.68 (1.41–2.00) | 1.65 (1.38–1.97) | 1.42 (1.17–1.72) | 729 (27.9) | 2.16 (1.88–2.48) | 1.62 (1.40–1.87) | 1.60 (1.38–1.85) | 1.61 (1.37–1.89) |
Q2 | 383 (19.6) | 1.42 (1.20–1.68) | 1.21 (1.01–1.45) | 1.21 (1.01–1.46) | 1.11 (0.91–1.34) | 565 (21.6) | 1.54 (1.34–1.77) | 1.41 (1.21–1.64) | 1.43 (1.22–1.65) | 1.42 (1.22–1.66) |
Q3 | 324 (16.6) | 1.16 (0.97–1.37) | 1.13 (0.94–1.36) | 1.15 (0.94–1.39) | 1.09 (0.90–1.32) | 432 (16.5) | 1.11 (0.95–1.28) | 1.09 (0.94–1.28) | 1.10 (0.94–1.29) | 1.11 (0.95–1.30) |
Q4 | 287 (14.7) | 1.00 (Ref.) | 1.00 (Ref.) | 1.00 (Ref.) | 1.00 (Ref.) | 397 (15.2) | 1.00 (Ref.) | 1.00 (Ref.) | 1.00 (Ref.) | 1.00 (Ref.) |
Trend p | <0.001 | <0.001 | <0.001 | <0.001 | 0.002 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Men | Women | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Q 1 (n = 1953) | Q 2 (n = 1953) | Q 3 (n = 1953) | Q 4 (n = 1953) | Trend p | Q 1 (n = 2617) | Q 2 (n = 2617) | Q 3 (n = 2617) | Q 4 (n = 2617) | Trend p | |
Aerobic exercise | ||||||||||
Yes | 1.45 (1.07–1.96) | 1.46 (1.09–1.95) | 0.15 (0.86–1.55) | 1.00 (ref.) | 0.017 | 1.39 (1.07-1.81) | 1.29 (1.00–1.65) | 1.04 (0.80–1.34) | 1.00 (ref.) | 0.001 |
No | 1.87 (1.43–2.46) | 1.23 (0.93–1.62) | 1.43 (1.08–1.89) | 1.36 (1.03–1.80) | 0.050 | 1.83 (1.46–2.30) | 1.59 (1.27–2.00) | 1.22 (0.97–1.53) | 1.06 (0.84–1.33) | <0.0001 |
Resistance exercise | ||||||||||
Yes | 1.30 (0.89–1.90) | 1.07 (0.74–1.56) | 1.00 (0.69–1.47) | 1.00 (ref.) | 0.169 | 1.12 (0.70–1.80) | 1.37 (0.90–2.09) | 1.09 (0.70–1.69) | 1.00 (ref.) | 0.565 |
No | 2.35 (1.72–3.20) | 1.84 (1.35–2.50) | 1.87 (1.37–2.55) | 1.68 (1.23–2.30) | 0.017 | 2.26 (1.63–3.13) | 1.96 (1.42–2.70) | 1.52 (1.10–2.11) | 1.39 (1.00–1.92) | <0.0001 |
Adequate protein intake | ||||||||||
Yes | 1.32 (0.81–2.17) | 1.17 (0.75–1.81) | 1.33 (0.88–2.01) | 1.00 (ref.) | 0.268 | 0.94 (0.56–1.58) | 0.87 (0.59–1.29) | 0.96 (0.67–1.37) | 1.00 (ref.) | 0.311 |
No | 2.32 (1.66–3.25) | 1.83 (1.31–2.55) | 1.78 (1.27–2.49) | 1.71 (1.22–2.40) | 0.014 | 1.89 (1.43–2.50) | 1.74 (1.32–2.30) | 1.31 (0.99–1.74) | 1.13 (0.85–1.49) | <0.0001 |
Hypertension | ||||||||||
No | 1.32 (1.03–1.70) | 1.04 (0.81–1.33) | 1.00 (0.78–1.28) | 1.00 (ref.) | 0.041 | 1.38 (1.13–1.69) | 1.31 (1.08–1.59) | 1.07 (0.88–1.30) | 1.00 (ref.) | 0.0001 |
Yes | 1.37 (1.05–1.78) | 1.06 (0.81–1.38) | 1.09 (0.83–1.44) | 0.88 (0.66–1.17) | 0.023 | 1.81 (1.45–2.26) | 1.49 (1.19–1.87) | 1.08 (0.85–1.37) | 0.91 (0.71–1.16) | <0.0001 |
Type 2 diabetes | ||||||||||
No | 1.43 (1.15–1.78) | 1.13 (0.91–1.40) | 1.12 (0.91–1.39) | 1.00 (ref.) | 0.009 | 1.62 (1.36–1.93) | 1.39 (1.17–1.64) | 1.11 (0.94–1.32) | 1.00 (ref.) | <0.0001 |
Yes | 1.84 (1.37–2.47) | 1.38 (1.00–1.89) | 1.33 (0.95–1.87) | 1.35 (0.96–1.90) | 0.120 | 1.97 (1.51–2.58) | 2.06 (1.54–2.75) | 1.37 (0.99–1.91) | 1.26 (0.90–1.77) | 0.415 |
Dyslipidemia | ||||||||||
No | 1.45 (1.13–1.87) | 1.12 (0.87–1.43) | 1.04 (0.80–1.34) | 1.00 (ref.) | 0.054 | 1.58 (1.29–1.92) | 1.54 (1.28–1.87) | 1.06 (0.87–1.28) | 1.00 (ref.) | <0.0001 |
Yes | 1.35 (1.04–1.75) | 1.07 (0.82–1.40) | 1.13 (0.87–1.48) | 0.98 (0.74–1.29) | 0.012 | 1.74 (1.39–2.16) | 1.28 (1.02–1.60) | 1.28 (1.01–1.61) | 1.05 (0.83–1.33) | 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, Y.; Chang, E. Increased Intake of Omega-3 Polyunsaturated Fatty Acids Is Associated with Reduced Odds of Low Hand Grip Strength in Korean Adults. Nutrients 2023, 15, 321. https://doi.org/10.3390/nu15020321
Shin Y, Chang E. Increased Intake of Omega-3 Polyunsaturated Fatty Acids Is Associated with Reduced Odds of Low Hand Grip Strength in Korean Adults. Nutrients. 2023; 15(2):321. https://doi.org/10.3390/nu15020321
Chicago/Turabian StyleShin, Yoonjin, and Eugene Chang. 2023. "Increased Intake of Omega-3 Polyunsaturated Fatty Acids Is Associated with Reduced Odds of Low Hand Grip Strength in Korean Adults" Nutrients 15, no. 2: 321. https://doi.org/10.3390/nu15020321
APA StyleShin, Y., & Chang, E. (2023). Increased Intake of Omega-3 Polyunsaturated Fatty Acids Is Associated with Reduced Odds of Low Hand Grip Strength in Korean Adults. Nutrients, 15(2), 321. https://doi.org/10.3390/nu15020321