Effect of Docosahexaenoic Acid Encapsulation with Whey Proteins on Rat Growth and Tissue Endocannabinoid Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Animal Experiment
2.2. Diets
2.3. Fatty Acid Profile of Oils and Omelettes
2.4. Preparation of Encapsulated DHA Oil and Omelettes
2.5. Endocannabinoid and Other N-Acyl Ethanolamide Analysis
2.6. Statistics
3. Results
3.1. Diet Characteristics
3.2. Dietary Intake and Animal Growth
3.3. Dietary Endocannabinoids and N-Acyl Ethanolamides
3.4. Effect of Diets on Tissue Endocannabinoid and N-Acyl Ethanolamide Profiles of Rats
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Sun, G.Y.; Simonyi, A.; Fritsche, K.L.; Chuang, D.Y.; Hannink, M.; Gu, Z.; Greenlief, C.M.; Yao, J.K.; Lee, J.C.; Beversdorf, D.Q. Docosahexaenoic Acid (DHA): An Essential Nutrient and a Nutraceutical for Brain Health and Diseases. Prostaglandins Leukot. Essent. Fat. Acids 2018, 136, 3–13. [Google Scholar] [CrossRef]
- Lauritzen, L.; Brambilla, P.; Mazzocchi, A.; Harsløf, L.B.S.; Ciappolino, V.; Agostoni, C. DHA Effects in Brain Development and Function. Nutrients 2016, 8, 6. [Google Scholar] [CrossRef]
- Ajith, T.A.; Jayakumar, T.G. Omega-3 Fatty Acids in Coronary Heart Disease: Recent Updates and Future Perspectives. Clin. Exp. Pharmacol. Physiol. 2019, 46, 11–18. [Google Scholar] [CrossRef]
- Elagizi, A.; Lavie, C.J.; O’Keefe, E.; Marshall, K.; O’Keefe, J.H.; Milani, R.V. An Update on Omega-3 Polyunsaturated Fatty Acids and Cardiovascular Health. Nutrients 2021, 13, 204. [Google Scholar] [CrossRef]
- Liu, L.; Bartke, N.; Van Daele, H.; Lawrence, P.; Qin, X.; Park, H.G.; Kothapalli, K.; Windust, A.; Bindels, J.; Wang, Z.; et al. Higher Efficacy of Dietary DHA Provided as a Phospholipid than as a Triglyceride for Brain DHA Accretion in Neonatal Piglets. J. Lipid Res. 2014, 55, 531–539. [Google Scholar] [CrossRef]
- Che, H.; Li, H.; Song, L.; Dong, X.; Yang, X.; Zhang, T.; Wang, Y.; Xie, W. Orally Administered DHA-Enriched Phospholipids and DHA-Enriched Triglyceride Relieve Oxidative Stress, Improve Intestinal Barrier, Modulate Inflammatory Cytokine and Gut Microbiota, and Meliorate Inflammatory Responses in the Brain in Dextran Sodium Sulfate Induced Colitis in Mice. Mol. Nutr. Food Res. 2021, 65, e2000986. [Google Scholar] [CrossRef]
- Hachem, M.; Nacir, H.; Picq, M.; Belkouch, M.; Bernoud-Hubac, N.; Windust, A.; Meiller, L.; Sauvinet, V.; Feugier, N.; Lambert-Porcheron, S.; et al. Docosahexaenoic Acid (DHA) Bioavailability in Humans after Oral Intake of DHA-Containing Triacylglycerol or the Structured Phospholipid AceDoPC®. Nutrients 2020, 12, 251. [Google Scholar] [CrossRef]
- Sugasini, D.; Lokesh, B.R. Enhanced Incorporation of Docosahexaenoic Acid in Serum, Heart, and Brain of Rats given Microemulsions of Fish Oil. Mol. Cell. Biochem. 2013, 382, 203–216. [Google Scholar] [CrossRef]
- Ghasemi Fard, S.; Loh, S.P.; Turchini, G.M.; Wang, B.; Elliott, G.; Sinclair, A.J. Microencapsulated Tuna Oil Results in Higher Absorption of DHA in Toddlers. Nutrients 2020, 12, 248. [Google Scholar] [CrossRef]
- Wang, J.; de Figueiredo Furtado, G.; Monthean, N.; Dupont, D.; Pédrono, F.; Madadlou, A. CaCl2 Supplementation of Hydrophobised Whey Proteins: Assessment of Protein Particles and Consequent Emulsions. Int. Dairy J. 2020, 110, 104815. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, K.; Li, T.; Mu, D.; Zhang, N.; Wang, Y.; Wu, R.; Wu, J. Encapsulation of docosahexaenoic acid (DHA) using self-assembling food-derived proteins for efficient biological functions. Food Sci. Hum. Wellness 2023, 12, 1861–1871. [Google Scholar] [CrossRef]
- Chang, P.-K.; Tsai, M.-F.; Huang, C.-Y.; Lee, C.-L.; Lin, C.; Shieh, C.-J.; Kuo, C.-H. Chitosan-Based Anti-Oxidation Delivery Nano-Platform: Applications in the Encapsulation of DHA-Enriched Fish Oil. Mar. Drugs 2021, 19, 470. [Google Scholar] [CrossRef]
- Ma, N.; Gao, Q.; Li, X.; Xu, D.; Yuan, Y.; Cao, Y. Enhancing the physicochemical stability and digestibility of DHA emulsions by encapsulation of DHA droplets in caseinate/alginate honeycomb-shaped microparticles. Food Funct. 2020, 11, 2080–2093. [Google Scholar] [CrossRef]
- Solomando, J.C.; Antequera, T.; Ruiz-Carrascal, J.; Perez-Palacios, T. Improvement of encapsulation and stability of EPA and DHA from monolayered and multilayered emulsions by high-pressure homogenization. J. Food Process. Preserv. 2020, 44, e14290. [Google Scholar] [CrossRef]
- Olloqui, E.J.; Castaneda-Ovando, A.; Contreras-Lopez, E.; Hernandez-Sanchez, D.; Tapia-Maruri, D.; Piloni-Martini, J.; Anorve-Morga, J. Encapsulation of fish oil into low-cost alginate beads and EPA-DHA release in a rumino-intestinal in vitro digestion model. Eur. J. Lipid Sci. Technol. 2018, 120, 1800036. [Google Scholar] [CrossRef]
- Wang, J.; Ossemond, J.; Le Gouar, Y.; Boissel, F.; Dupont, D.; Pédrono, F. Encapsulation of Docosahexaenoic Acid Oil Substantially Improves the Oxylipin Profile of Rat Tissues. Front. Nutr. 2021, 8, 812119. [Google Scholar] [CrossRef]
- Wang, J.; Ossemond, J.; Jardin, J.; Briard-Bion, V.; Henry, G.; Le Gouar, Y.; Ménard, O.; Lê, S.; Madadlou, A.; Dupont, D.; et al. Encapsulation of DHA Oil with Heat-Denatured Whey Protein in Pickering Emulsion Improves Its Bioaccessibility. Food Res. Int. 2022, 162, 112112. [Google Scholar] [CrossRef]
- Brown, I.; Cascio, M.G.; Wahle, K.W.J.; Smoum, R.; Mechoulam, R.; Ross, R.A.; Pertwee, R.G.; Heys, S.D. Cannabinoid Receptor-Dependent and -Independent Anti-Proliferative Effects of Omega-3 Ethanolamides in Androgen Receptor-Positive and -Negative Prostate Cancer Cell Lines. Carcinogenesis 2010, 31, 1584–1591. [Google Scholar] [CrossRef]
- Tyrtyshnaia, A.A.; Egorova, E.L.; Starinets, A.A.; Ponomarenko, A.I.; Ermolenko, E.V.; Manzhulo, I.V. N-Docosahexaenoylethanolamine Attenuates Neuroinflammation and Improves Hippocampal Neurogenesis in Rats with Sciatic Nerve Chronic Constriction Injury. Mar. Drugs 2020, 18, 516. [Google Scholar] [CrossRef]
- Tyrtyshnaia, A.; Bondar, A.; Konovalova, S.; Sultanov, R.; Manzhulo, I. N-Docosahexanoylethanolamine Reduces Microglial Activation and Improves Hippocampal Plasticity in a Murine Model of Neuroinflammation. Int. J. Mol. Sci. 2020, 21, 9703. [Google Scholar] [CrossRef]
- Park, T.; Chen, H.; Kevala, K.; Lee, J.-W.; Kim, H.-Y. N-Docosahexaenoylethanolamine Ameliorates LPS-Induced Neuroinflammation via CAMP/PKA-Dependent Signaling. J. Neuroinflamm. 2016, 13, 284. [Google Scholar] [CrossRef] [PubMed]
- Meijerink, J.; Poland, M.; Balvers, M.G.J.; Plastina, P.; Lute, C.; Dwarkasing, J.; van Norren, K.; Witkamp, R.F. Inhibition of COX-2-Mediated Eicosanoid Production Plays a Major Role in the Anti-Inflammatory Effects of the Endocannabinoid N-Docosahexaenoylethanolamine (DHEA) in Macrophages. Br. J. Pharmacol. 2015, 172, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari, M.-M.; Loron, A.G.; Sayyah, M. The ω-3 Endocannabinoid Docosahexaenoyl Ethanolamide Reduces Seizure Susceptibility in Mice by Activating Cannabinoid Type 1 Receptors. Brain Res. Bull. 2021, 170, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Nishi, K.; Kanayama, Y.; Kim, I.-H.; Nakata, A.; Nishiwaki, H.; Sugahara, T. Docosahexaenoyl Ethanolamide Mitigates IgE-Mediated Allergic Reactions by Inhibiting Mast Cell Degranulation and Regulating Allergy-Related Immune Cells. Sci. Rep. 2019, 9, 16213. [Google Scholar] [CrossRef]
- Kim, J.; Carlson, M.E.; Watkins, B.A. Docosahexaenoyl Ethanolamide Improves Glucose Uptake and Alters Endocannabinoid System Gene Expression in Proliferating and Differentiating C2C12 Myoblasts. Front. Physiol. 2014, 5, 100. [Google Scholar] [CrossRef]
- Mock, E.D.; Gagestein, B.; van der Stelt, M. Anandamide and Other N-Acylethanolamines: A Class of Signaling Lipids with Therapeutic Opportunities. Prog. Lipid Res. 2023, 89, 101194. [Google Scholar] [CrossRef]
- Di Marzo, V.; Matias, I. Endocannabinoid Control of Food Intake and Energy Balance. Nat. Neurosci. 2005, 8, 585–589. [Google Scholar] [CrossRef]
- Williams, C.M.; Kirkham, T.C. Anandamide Induces Overeating: Mediation by Central Cannabinoid (CB1) Receptors. Psychopharmacology 1999, 143, 315–317. [Google Scholar] [CrossRef]
- Kirkham, T.C.; Williams, C.M.; Fezza, F.; Di Marzo, V. Endocannabinoid Levels in Rat Limbic Forebrain and Hypothalamus in Relation to Fasting, Feeding and Satiation: Stimulation of Eating by 2-Arachidonoyl Glycerol. Br. J. Pharmacol. 2002, 136, 550–557. [Google Scholar] [CrossRef]
- Ryberg, E.; Vu, H.K.; Larsson, N.; Groblewski, T.; Hjorth, S.; Elebring, T.; Sjögren, S.; Greasley, P.J. Identification and Characterisation of a Novel Splice Variant of the Human CB1 Receptor. FEBS Lett. 2005, 579, 259–264. [Google Scholar] [CrossRef]
- Zou, S.; Kumar, U. Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System. Int. J. Mol. Sci. 2018, 19, 833. [Google Scholar] [CrossRef] [PubMed]
- Noriega-Prieto, J.A.; Kofuji, P.; Araque, A. Endocannabinoid Signaling in Synaptic Function. Glia 2023, 71, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Gorzkiewicz, A.; Szemraj, J. Brain Endocannabinoid Signaling Exhibits Remarkable Complexity. Brain Res. Bull. 2018, 142, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, A.; Cheer, J.F. Endocannabinoid Regulation of Hippocampus-Dependent Memory. Exp. Neurol. 2023, 364, 114384. [Google Scholar] [CrossRef] [PubMed]
- Kasatkina, L.A.; Rittchen, S.; Sturm, E.M. Neuroprotective and Immunomodulatory Action of the Endocannabinoid System under Neuroinflammation. Int. J. Mol. Sci. 2021, 22, 5431. [Google Scholar] [CrossRef]
- Oddi, S.; Scipioni, L.; Maccarrone, M. Endocannabinoid System and Adult Neurogenesis: A Focused Review. Curr. Opin. Pharmacol. 2020, 50, 25–32. [Google Scholar] [CrossRef]
- Grimaldi, P.; Di Giacomo, D.; Geremia, R. The Endocannabinoid System and Spermatogenesis. Front. Endocrinol. 2013, 4, 192. [Google Scholar] [CrossRef]
- Correa, F.; Wolfson, M.L.; Valchi, P.; Aisemberg, J.; Franchi, A.M. Endocannabinoid System and Pregnancy. Reproduction 2016, 152, R191–R200. [Google Scholar] [CrossRef]
- Maia, J.; Fonseca, B.M.; Teixeira, N.; Correia-da-Silva, G. The Fundamental Role of the Endocannabinoid System in Endometrium and Placenta: Implications in Pathophysiological Aspects of Uterine and Pregnancy Disorders. Hum. Reprod. Update 2020, 26, 586–602. [Google Scholar] [CrossRef]
- Jager, G.; Witkamp, R.F. The Endocannabinoid System and Appetite: Relevance for Food Reward. Nutr. Res. Rev. 2014, 27, 172–185. [Google Scholar] [CrossRef]
- Coccurello, R.; Maccarrone, M. Hedonic Eating and the “Delicious Circle”: From Lipid-Derived Mediators to Brain Dopamine and Back. Front. Neurosci. 2018, 12, 271. [Google Scholar] [CrossRef] [PubMed]
- Woodhams, S.G.; Sagar, D.R.; Burston, J.J.; Chapman, V. The Role of the Endocannabinoid System in Pain. Handb. Exp. Pharmacol. 2015, 227, 119–143. [Google Scholar] [CrossRef] [PubMed]
- Zieglgänsberger, W.; Brenneisen, R.; Berthele, A.; Wotjak, C.T.; Bandelow, B.; Tölle, T.R.; Lutz, B. Chronic Pain and the Endocannabinoid System: Smart Lipids—A Novel Therapeutic Option? Med. Cannabis Cannabinoids 2022, 5, 61–75. [Google Scholar] [CrossRef]
- Grabon, W.; Rheims, S.; Smith, J.; Bodennec, J.; Belmeguenai, A.; Bezin, L. CB2 Receptor in the CNS: From Immune and Neuronal Modulation to Behavior. Neurosci. Biobehav. Rev. 2023, 150, 105226. [Google Scholar] [CrossRef] [PubMed]
- Braile, M.; Marcella, S.; Marone, G.; Galdiero, M.R.; Varricchi, G.; Loffredo, S. The Interplay between the Immune and the Endocannabinoid Systems in Cancer. Cells 2021, 10, 1282. [Google Scholar] [CrossRef]
- Tegeder, I. Endocannabinoids as Guardians of Metastasis. Int. J. Mol. Sci. 2016, 17, 230. [Google Scholar] [CrossRef]
- Fraguas-Sánchez, A.I.; Martín-Sabroso, C.; Torres-Suárez, A.I. Insights into the Effects of the Endocannabinoid System in Cancer: A Review. Br. J. Pharmacol. 2018, 175, 2566–2580. [Google Scholar] [CrossRef]
- Reeves, P.G.; Nielsen, F.H.; Fahey, G.C. AIN-93 Purified Diets for Laboratory Rodents: Final Report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of the AIN-76A Rodent Diet. J. Nutr. 1993, 123, 1939–1951. [Google Scholar] [CrossRef]
- Potier de Courcy, G.; Durand, G.; Abraham, J.; Gueguen, L. Recommandations Sur Les Conditions d’alimentation Des Animaux de Laboratoire (Rats et Souris). Sci. Aliment. 1989, 9, 209–217. [Google Scholar]
- Habib, A.; Chokr, D.; Wan, J.; Hegde, P.; Mabire, M.; Siebert, M.; Ribeiro-Parenti, L.; Le Gall, M.; Lettéron, P.; Pilard, N.; et al. Inhibition of Monoacylglycerol Lipase, an Anti-Inflammatory and Antifibrogenic Strategy in the Liver. Gut 2019, 68, 522–532. [Google Scholar] [CrossRef]
- Le Faouder, P.; Baillif, V.; Spreadbury, I.; Motta, J.-P.; Rousset, P.; Chêne, G.; Guigné, C.; Tercé, F.; Vanner, S.; Vergnolle, N.; et al. LC–MS/MS Method for Rapid and Concomitant Quantification of pro-Inflammatory and pro-Resolving Polyunsaturated Fatty Acid Metabolites. J. Chromatogr. B 2013, 932, 123–133. [Google Scholar] [CrossRef] [PubMed]
- DiPatrizio, N.V.; Astarita, G.; Schwartz, G.; Li, X.; Piomelli, D. Endocannabinoid Signal in the Gut Controls Dietary Fat Intake. Proc. Natl. Acad. Sci. USA 2011, 108, 12904–12908. [Google Scholar] [CrossRef] [PubMed]
- Prestifilippo, J.P.; Fernández-Solari, J.; de la Cal, C.; Iribarne, M.; Suburo, A.M.; Rettori, V.; McCann, S.M.; Elverdin, J.C. Inhibition of Salivary Secretion by Activation of Cannabinoid Receptors. Exp. Biol. Med. 2006, 231, 1421–1429. [Google Scholar] [CrossRef]
- Proserpio, C.; de Graaf, C.; Laureati, M.; Pagliarini, E.; Boesveldt, S. Impact of Ambient Odors on Food Intake, Saliva Production and Appetite Ratings. Physiol. Behav. 2017, 174, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.-P.; Zhang, H.-Q.; Wang, W.; Guo, Y.-F.; Xiao, N.; Cao, X.-H.; Liu, L.-J. Some Subtypes of Endocannabinoid/Endovanilloid Receptors Mediate Docosahexaenoic Acid-Induced Enhanced Spatial Memory in Rats. Brain Res. 2011, 1412, 18–27. [Google Scholar] [CrossRef]
- Zbucki, R.L.; Sawicki, B.; Hryniewicz, A.; Winnicka, M.M. Cannabinoids Enhance Gastric X/A-like Cells Activity. Folia Histochem. Cytobiol. 2008, 46, 219–224. [Google Scholar] [CrossRef]
- Howard, A.D.; Feighner, S.D.; Cully, D.F.; Arena, J.P.; Liberator, P.A.; Rosenblum, C.I.; Hamelin, M.; Hreniuk, D.L.; Palyha, O.C.; Anderson, J.; et al. A Receptor in Pituitary and Hypothalamus That Functions in Growth Hormone Release. Science 1996, 273, 974–977. [Google Scholar] [CrossRef]
- Wielinga, P.Y.; Harthoorn, L.F.; Verschuren, L.; Schoemaker, M.H.; Jouni, Z.E.; van Tol, E.A.F.; Kleemann, R.; Kooistra, T. Arachidonic Acid/Docosahexaenoic Acid-Supplemented Diet in Early Life Reduces Body Weight Gain, Plasma Lipids, and Adiposity in Later Life in ApoE*3Leiden Mice. Mol. Nutr. Food Res. 2012, 56, 1081–1089. [Google Scholar] [CrossRef]
- Komal, F.; Khan, M.K.; Imran, M.; Ahmad, M.H.; Anwar, H.; Ashfaq, U.A.; Ahmad, N.; Masroor, A.; Ahmad, R.S.; Nadeem, M.; et al. Impact of Different Omega-3 Fatty Acid Sources on Lipid, Hormonal, Blood Glucose, Weight Gain and Histopathological Damages Profile in PCOS Rat Model. J. Transl. Med. 2020, 18, 349. [Google Scholar] [CrossRef]
- Thorsdottir, I.; Tomasson, H.; Gunnarsdottir, I.; Gisladottir, E.; Kiely, M.; Parra, M.D.; Bandarra, N.M.; Schaafsma, G.; Martinéz, J.A. Randomized Trial of Weight-Loss-Diets for Young Adults Varying in Fish and Fish Oil Content. Int. J. Obes. 2007, 31, 1560–1566. [Google Scholar] [CrossRef]
- Irving, G.F.; Freund-Levi, Y.; Eriksdotter-Jönhagen, M.; Basun, H.; Brismar, K.; Hjorth, E.; Palmblad, J.; Vessby, B.; Vedin, I.; Wahlund, L.-O.; et al. Omega-3 Fatty Acid Supplementation Effects on Weight and Appetite in Patients with Alzheimer’s Disease: The Omega-3 Alzheimer’s Disease Study. J. Am. Geriatr. Soc. 2009, 57, 11–17. [Google Scholar] [CrossRef]
- Pauter, A.M.; Olsson, P.; Asadi, A.; Herslöf, B.; Csikasz, R.I.; Zadravec, D.; Jacobsson, A. Elovl2 Ablation Demonstrates That Systemic DHA Is Endogenously Produced and Is Essential for Lipid Homeostasis in Mice. J. Lipid Res. 2014, 55, 718–728. [Google Scholar] [CrossRef] [PubMed]
- Pauter, A.M.; Fischer, A.W.; Bengtsson, T.; Asadi, A.; Talamonti, E.; Jacobsson, A. Synergistic Effects of DHA and Sucrose on Body Weight Gain in PUFA-Deficient Elovl2 -/- Mice. Nutrients 2019, 11, 852. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, S.E.; Yates, A.S.; Porter, R.K. The Peripheral Cannabinoid Receptor Type 1 (CB1) as a Molecular Target for Modulating Body Weight in Man. Molecules 2021, 26, 6178. [Google Scholar] [CrossRef] [PubMed]
- DiPatrizio, N.V. Endocannabinoids and the Gut-Brain Control of Food Intake and Obesity. Nutrients 2021, 13, 1214. [Google Scholar] [CrossRef] [PubMed]
- Deval, C.; Capel, F.; Laillet, B.; Polge, C.; Béchet, D.; Taillandier, D.; Attaix, D.; Combaret, L. Docosahexaenoic Acid-Supplementation Prior to Fasting Prevents Muscle Atrophy in Mice. J. Cachexia Sarcopenia Muscle 2016, 7, 587–603. [Google Scholar] [CrossRef]
- Gómez, R.; Navarro, M.; Ferrer, B.; Trigo, J.M.; Bilbao, A.; Del Arco, I.; Cippitelli, A.; Nava, F.; Piomelli, D.; Rodríguez de Fonseca, F. A Peripheral Mechanism for CB1 Cannabinoid Receptor-Dependent Modulation of Feeding. J. Neurosci. 2002, 22, 9612–9617. [Google Scholar] [CrossRef]
- Zhao, Z.; Soria-Gómez, E.; Varilh, M.; Covelo, A.; Julio-Kalajzić, F.; Cannich, A.; Castiglione, A.; Vanhoutte, L.; Duveau, A.; Zizzari, P.; et al. A Novel Cortical Mechanism for Top-Down Control of Water Intake. Curr. Biol. 2020, 30, 4789–4798.e4. [Google Scholar] [CrossRef]
- Mietlicki, E.G.; Nowak, E.L.; Daniels, D. The Effect of Ghrelin on Water Intake during Dipsogenic Conditions. Physiol. Behav. 2009, 96, 37–43. [Google Scholar] [CrossRef]
- Wood, J.T.; Williams, J.S.; Pandarinathan, L.; Janero, D.R.; Lammi-Keefe, C.J.; Makriyannis, A. Dietary Docosahexaenoic Acid Supplementation Alters Select Physiological Endocannabinoid-System Metabolites in Brain and Plasma. J. Lipid Res. 2010, 51, 1416–1423. [Google Scholar] [CrossRef]
- Berger, A.; Crozier, G.; Bisogno, T.; Cavaliere, P.; Innis, S.; Di Marzo, V. Anandamide and Diet: Inclusion of Dietary Arachidonate and Docosahexaenoate Leads to Increased Brain Levels of the Corresponding N-Acylethanolamines in Piglets. Proc. Natl. Acad. Sci. USA 2001, 98, 6402–6406. [Google Scholar] [CrossRef] [PubMed]
- Pu, S.; Eck, P.; Jenkins, D.J.A.; Connelly, P.W.; Lamarche, B.; Kris-Etherton, P.M.; West, S.G.; Liu, X.; Jones, P.J.H. Interactions between Dietary Oil Treatments and Genetic Variants Modulate Fatty Acid Ethanolamides in Plasma and Body Weight Composition. Br. J. Nutr. 2016, 115, 1012–1023. [Google Scholar] [CrossRef] [PubMed]
- Isaac, A.R.; de Velasco, P.C.; Fraga, K.Y.D.; das Graças Tavares-do-Carmo, M.; Campos, R.M.P.; Iannotti, F.A.; Verde, R.; Martins, D.B.G.; Santos, T.A.; Ferreira, B.K.; et al. Maternal Omega-3 Intake Differentially Affects the Endocannabinoid System in the Progeny`s Neocortex and Hippocampus: Impact on Synaptic Markers. J. Nutr. Biochem. 2021, 96, 108782. [Google Scholar] [CrossRef]
- Murru, E.; Lopes, P.A.; Carta, G.; Manca, C.; Abolghasemi, A.; Guil-Guerrero, J.L.; Prates, J.A.M.; Banni, S. Different Dietary N-3 Polyunsaturated Fatty Acid Formulations Distinctively Modify Tissue Fatty Acid and N-Acylethanolamine Profiles. Nutrients 2021, 13, 625. [Google Scholar] [CrossRef]
- Kaschina, E. Cannabinoid CB1/CB2 Receptors in the Heart: Expression, Regulation, and Function. In Cannabinoids in Health and Disease; Meccariello, R., Chianese, R., Eds.; InTech: London, UK, 2016; ISBN 978-953-51-2429-0. [Google Scholar]
% | Pre-Diet | Diet | |
---|---|---|---|
Diet mix | Starch | 54.6 | 54.9 |
Sucrose | 10.2 | 10.2 | |
Cellulose | 5.1 | 5.1 | |
Casein | 20.6 | 20.8 | |
Oil mix | 5.0 | 4.5 | |
Mineral mix | 3.5 | 3.5 | |
Vitamin mix | 1.0 | 1.0 | |
Oil mix | Linseed | 1.4 | 2.9 |
Sunflower | 8.6 | 8.8 | |
Olive | 13.5 | 12.6 | |
Rapeseed | 25.0 | 25.2 | |
Palm | 51.5 | 50.5 |
Diets | Omelettes | Diet with Omelettes | ||||||
---|---|---|---|---|---|---|---|---|
FA (%) | Pre-diet | Diet | Control | DHA-O | Enc-DHA-O | Control | DHA-O | Enc-DHA-O |
saturates | 31.0 | 30.5 | 33.6 | 29.9 | 29.6 | 31.2 | 30.9 | 30.9 |
n−7 | 1.6 | 1.6 | 4.9 | 4.4 | 4.4 | 2.4 | 2.3 | 2.3 |
n−9 | 47.0 | 46.4 | 43.0 | 38.9 | 38.3 | 45.6 | 45.7 | 45.7 |
n−6 | 17.0 | 17.2 | 17.1 | 15.6 | 15.5 | 17.2 | 17.3 | 17.2 |
18:3n−3 | 3.4 | 4.3 | 0.5 | 0.4 | 0.5 | 3.4 | 3.4 | 3.5 |
20:5n−3 | 0.0 | 0.0 | 0.0 | 0.5 | 0.5 | 0.0 | 0.1 | 0.1 |
22:5n−3 | 0.0 | 0.0 | 0.0 | 0.5 | 0.5 | 0.0 | 0.1 | 0.1 |
22:6n−3 | 0.0 | 0.0 | 0.8 | 9.8 | 10.6 | 0.2 | 2.5 | 2.5 |
n−3 | 3.4 | 4.3 | 1.3 | 11.2 | 12.1 | 3.6 | 6.1 | 6.2 |
Concentrations of endocannabinoids and N-acyl ethanolamides in pg/mg | ||||
omelette | ||||
EC + NAE | DHA oil | Control | DHA-O | Enc-DHA-O |
PEA (from PA) | 0.0 | 0.0 | 0.0 | 0.0 |
SEA (from SA) | 56.7 | 50.6 | 43.3 | 49.4 |
OEA (from OA) | 48.0 | 42.6 | 37.0 | 43.3 |
DLE (from DGL) | 10.0 | 8.6 | 6.2 | 5.3 |
AEA (from ARA) | 0.0 | 4.1 | 4.9 | 6.5 |
2-AG (from ARA) | 9817.8 | 378.4 | 515.5 | 474.7 |
EPEA (from EPA) | 0.0 | 3.1 | 2.0 | 2.5 |
DHEA (from DHA) | 16.2 | 2.6 | 2.9 | 3.5 |
Sum (ng/mg) | 9.95 | 0.49 | 0.61 | 0.59 |
Concentrations of endocannabinoids and N-acyl ethanolamides in ng/serving | ||||
expected from DHA oil | omelette | |||
EC + NAE | Control | DHA-O | Enc-DHA-O | |
PEA (from PA) | 0.0 | 0.0 | 0.0 | 0.0 |
SEA (from SA) | 2.7 | 151.7 | 129.8 | 148.1 |
OEA (from OA) | 2.2 | 127.9 | 111.1 | 129.9 |
DLE (from DGL) | 0.5 | 25.9 | 18.5 | 15.9 |
AEA (from ARA) | 0.0 | 12.4 | 14.6 | 19.6 |
2-AG (from ARA) | 459.7 | 1135.3 | 1546.6 | 1424.1 |
EPEA (from EPA) | 0.0 | 9.2 | 6.1 | 7.6 |
DHEA (from DHA) | 0.8 | 7.9 | 8.8 | 10.5 |
Sum (µg/serving) | 1.47 | 1.84 | 1.76 |
Brain | |||||||||||||
EC + NAE | Control | DHA-O | Enc-DHA-O | Anova | |||||||||
PEA (from PA) | 5.88 | ± | 0.58 | 5.34 | ± | 0.56 | 4.58 | ± | 0.72 | ns | |||
SEA(from SA) | 16.04 | ± | 2.39 | a | 8.35 | ± | 1.00 | b | 7.34 | ± | 1.30 | b | ** |
OEA (from OA) | 44.96 | ± | 3.59 | a | 25.70 | ± | 2.83 | b | 21.70 | ± | 2.97 | b | **** |
DLE (from DGL) | 0.00 | ± | 0.00 | a | 0.04 | ± | 0.02 | b | 0.00 | ± | 0.00 | a | ** |
AEA (from ARA) | 11.81 | ± | 1.25 | a | 7.41 | ± | 0.81 | b | 7.26 | ± | 1.28 | b | * |
2-AG (from ARA) | 438.56 | ± | 60.21 | a | 175.63 | ± | 22.85 | b | 172.59 | ± | 24.93 | b | *** |
EPEA(from EPA) | 0.00 | ± | 0.00 | 0.00 | ± | 0.00 | 0.00 | ± | 0.00 | - | |||
DHEA (from DHA) | 15.73 | ± | 1.67 | a | 9.67 | ± | 1.04 | b | 10.31 | ± | 2.02 | a*b | * |
Sum | 532.98 | ± | 66.46 | a | 232.14 | ± | 23.90 | b | 223.79 | ± | 31.55 | b | **** |
* p = 0.069 | |||||||||||||
Heart | |||||||||||||
EC + NAE | Control | DHA-O | Enc-DHA-O | Anova | |||||||||
PEA (from PA) | 0.29 | ± | 0.04 | ab | 0.18 | ± | 0.01 | a | 0.39 | ± | 0.05 | b | * |
SEA(from SA) | 4.14 | ± | 0.63 | 2.15 | ± | 0.24 | 4.27 | ± | 0.75 | ns | |||
OEA (from OA) | 5.68 | ± | 0.74 | a | 2.44 | ± | 0.14 | b | 5.54 | ± | 0.77 | a | ** |
DLE (from DGL) | 0.00 | ± | 0.00 | 0.00 | ± | 0.00 | 0.00 | ± | 0.00 | - | |||
AEA (from ARA) | 1.94 | ± | 0.22 | ab | 0.97 | ± | 0.09 | a | 2.20 | ± | 0.38 | b | * |
2-AG (from ARA) | 88.64 | ± | 16.20 | 41.33 | ± | 3.81 | 80.31 | ± | 14.99 | ns | |||
EPEA(from EPA) | 0.00 | ± | 0.00 | 0.00 | ± | 0.00 | 0.00 | ± | 0.00 | - | |||
DHEA (from DHA) | 1.67 | ± | 0.18 | a | 1.72 | ± | 0.13 | a | 4.12 | ± | 0.69 | b | * |
Sum | 102.36 | ± | 17.76 | 48.79 | ± | 4.26 | 96.83 | ± | 17.53 | ns | |||
Plasma | |||||||||||||
EC + NAE | Control | DHA-O | Enc-DHA-O | Anova | |||||||||
PEA (from PA) | 4.67 | ± | 1.04 | a | 2.50 | ± | 0.21 | b | 2.89 | ± | 0.35 | b | *** |
SEA(from SA) | 23.45 | ± | 3.72 | 27.37 | ± | 2.45 | 21.92 | ± | 0.92 | ns | |||
OEA (from OA) | 78.46 | ± | 17.41 | a | 63.54 | ± | 1.73 | b | 65.95 | ± | 2.81 | b | * |
DLE (from DGL) | 0.00 | ± | 0.00 | 0.02 | ± | 0.02 | 0.00 | ± | 0.00 | - | |||
AEA (from ARA) | 0.00 | ± | 0.00 | a | 0.64 | ± | 0.32 | a* | 0.00 | ± | 0.00 | a | *** |
2-AG (from ARA) | 191.86 | ± | 66.03 | a | 44.14 | ± | 5.54 | b | 53.85 | ± | 6.59 | b | *** |
EPEA(from EPA) | 0.00 | ± | 0.00 | 0.00 | ± | 0.00 | 0.00 | ± | 0.00 | - | |||
DHEA (from DHA) | 0.00 | ± | 0.00 | a | 3.29 | ± | 0.22 | b | 3.48 | ± | 0.25 | b | *** |
Sum | 298.44 | ± | 70.37 | a | 141.49 | ± | 6.03 | b | 148.10 | ± | 5.16 | b | *** |
* p = 0.055 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Ossemond, J.; Le Gouar, Y.; Boissel, F.; Dupont, D.; Pédrono, F. Effect of Docosahexaenoic Acid Encapsulation with Whey Proteins on Rat Growth and Tissue Endocannabinoid Profile. Nutrients 2023, 15, 4622. https://doi.org/10.3390/nu15214622
Wang J, Ossemond J, Le Gouar Y, Boissel F, Dupont D, Pédrono F. Effect of Docosahexaenoic Acid Encapsulation with Whey Proteins on Rat Growth and Tissue Endocannabinoid Profile. Nutrients. 2023; 15(21):4622. https://doi.org/10.3390/nu15214622
Chicago/Turabian StyleWang, Jun, Jordane Ossemond, Yann Le Gouar, Françoise Boissel, Didier Dupont, and Frédérique Pédrono. 2023. "Effect of Docosahexaenoic Acid Encapsulation with Whey Proteins on Rat Growth and Tissue Endocannabinoid Profile" Nutrients 15, no. 21: 4622. https://doi.org/10.3390/nu15214622
APA StyleWang, J., Ossemond, J., Le Gouar, Y., Boissel, F., Dupont, D., & Pédrono, F. (2023). Effect of Docosahexaenoic Acid Encapsulation with Whey Proteins on Rat Growth and Tissue Endocannabinoid Profile. Nutrients, 15(21), 4622. https://doi.org/10.3390/nu15214622