Bone Status and Early Nutrition in Preterm Newborns with and without Intrauterine Growth Restriction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
2.2. Collection of Data
2.3. Analysis of Data
3. Results
3.1. Demographic and Clinical Data
3.2. IUGR vs. Non IUGR: Clinical, Biochemical, Nutritional and Bone Status Comparisons
3.3. Newborns’ Bone Status and Correlations with Anthropometric and Clinical Parameters
3.4. Markers of Bone Status in the Preterm Population
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miller, M.E. The Bone Disease of Preterm Birth: A Biomechanical Perspective. Pediatr. Res. 2003, 53, 10–15. [Google Scholar] [CrossRef]
- Hovi, P.; Andersson, S.; Järvenpää, A.L.; Eriksson, J.G.; Strang-Karlsson, S.; Kajantie, E.; Mäkitie, O. Decreased Bone Mineral Density in Adults Born with Very Low Birth Weight: A Cohort Study. PLoS Med. 2009, 6, e1000135. [Google Scholar] [CrossRef]
- Balasuriya, C.N.D.; Evensen, K.A.I.; Mosti, M.P.; Brubakk, A.M.; Jacobsen, G.W.; Indredavik, M.S.; Schei, B.; Stunes, A.K.; Syversen, U. Peak Bone Mass and Bone Microarchitecture in Adults Born with Low Birth Weight Preterm or at Term: A Cohort Study. J. Clin. Endocrinol. Metab. 2017, 102, 2491–2500. [Google Scholar] [CrossRef] [PubMed]
- Blencowe, H.; Cousens, S.; Oestergaard, M.Z.; Chou, D.; Moller, A.-B.; Narwal, R.; Adler, A.; Vera Garcia, C.; Rohde, S.; Say, L.; et al. National, Regional, and Worldwide Estimates of Preterm Birth Rates in the Year 2010 with Time Trends since 1990 for Selected Countries: A Systematic Analysis and Implications. Lancet 2012, 379, 2162–2172. [Google Scholar] [CrossRef] [PubMed]
- Nardozza, L.M.M.; Caetano, A.C.R.; Zamarian, A.C.P.; Mazzola, J.B.; Silva, C.P.; Marçal, V.M.G.; Lobo, T.F.; Peixoto, A.B.; Araujo Júnior, E. Fetal Growth Restriction: Current Knowledge. Arch. Gynecol. Obstet. 2017, 295, 1061–1077. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Shastri, S.; Sharma, P. Intrauterine Growth Restriction: Antenatal and Postnatal Aspects. Clin. Med. Insights Pediatr. 2016, 10, S40070. [Google Scholar] [CrossRef] [PubMed]
- Colella, M.; Frérot, A.; Novais, A.R.B.; Baud, O. Neonatal and Long-Term Consequences of Fetal Growth Restriction. Curr. Pediatr. Rev. 2018, 14, 212–218. [Google Scholar] [CrossRef]
- Kosmeri, C.; Giapros, V.; Rallis, D.; Balomenou, F.; Serbis, A.; Baltogianni, M. Classification and Special Nutritional Needs of SGA Infants and Neonates of Multiple Pregnancies. Nutrients 2023, 15, 2736. [Google Scholar] [CrossRef]
- Muhlhausler, B.S.; Duffield, J.A.; Ozanne, S.E.; Pilgrim, C.; Turner, N.; Morrison, J.L.; McMillen, I.C. The Transition from Fetal Growth Restriction to Accelerated Postnatal Growth: A Potential Role for Insulin Signalling in Skeletal Muscle. J. Physiol. 2009, 587, 4199–4211. [Google Scholar] [CrossRef]
- Ornoy, A. Prenatal Origin of Obesity and Their Complications: Gestational Diabetes, Maternal Overweight and the Paradoxical Effects of Fetal Growth Restriction and Macrosomia. Reprod. Toxicol. 2011, 32, 205–212. [Google Scholar] [CrossRef]
- Padoan, A.; Rigano, S.; Ferrazzi, E.; Beaty, B.L.; Battaglia, F.C.; Galan, H.L. Differences in Fat and Lean Mass Proportions in Normal and Growth-Restricted Fetuses. Am. J. Obstet. Gynecol. 2004, 191, 1459–1464. [Google Scholar] [CrossRef] [PubMed]
- Paolini, C.L.; Marconi, A.M.; Ronzoni, S.; Di Noio, M.; Fennessey, P.V.; Pardi, G.; Battaglia, F.C. Placental Transport of Leucine, Phenylalanine, Glycine, and Proline in Intrauterine Growth-Restricted Pregnancies. J. Clin. Endocrinol. Metab. 2001, 86, 5427–5432. [Google Scholar] [CrossRef] [PubMed]
- Calek, E.; Binder, J.; Palmrich, P.; Eibensteiner, F.; Thajer, A.; Kainz, T.; Harreiter, K.; Berger, A.; Binder, C. Effects of Intrauterine Growth Restriction (IUGR) on Growth and Body Composition Compared to Constitutionally Small Infants. Nutrients 2023, 15, 4158. [Google Scholar] [CrossRef]
- Carver, T.D.; Quick, A.A.; Teng, C.C.; Pike, A.W.; Fennessey, P.V.; Hay, W.W. Leucine Metabolism in Chronically Hypoglycemic Hypoinsulinemic Growth-Restricted Fetal Sheep. Am. J. Physiol. Endocrinol. Metab. 1997, 272, E107–E117. [Google Scholar] [CrossRef] [PubMed]
- Embleton, N.D.; Jennifer Moltu, S.; Lapillonne, A.; van den Akker, C.H.P.; Carnielli, V.; Fusch, C.; Gerasimidis, K.; van Goudoever, J.B.; Haiden, N.; Iacobelli, S.; et al. Enteral Nutrition in Preterm Infants (2022): A Position Paper from the ESPGHAN Committee on Nutrition and Invited Experts. J. Pediatr. Gastroenterol. Nutr. 2023, 76, 248–268. [Google Scholar] [CrossRef]
- Barker, D.J.P.; Osmond, C.; Winter, P.D.; Margetts, B.; Simmonds, S.J. WEIGHT IN INFANCY AND DEATH FROM ISCHAEMIC HEART DISEASE. Lancet 1989, 334, 577–580. [Google Scholar] [CrossRef] [PubMed]
- Fewtrell, M.S. Does Early Nutrition Program Later Bone Health in Preterm Infants? Am. J. Clin. Nutr. 2011, 94, S1870–S1873. [Google Scholar] [CrossRef]
- Smith, C.M.; Wright, N.P.; Wales, J.K.H.; Mackenzie, C.; Primhak, R.A.; Eastell, R.; Walsh, J.S. Very Low Birth Weight Survivors Have Reduced Peak Bone Mass and Reduced Insulin Sensitivity. Clin. Endocrinol. 2011, 75, 443–449. [Google Scholar] [CrossRef]
- Chen, H.; Miller, S.; Lane, R.; Moyer-Mileur, L. Intrauterine Growth Restriction Decreases Endochondral Ossification and Bone Strength in Female Rats. Am. J. Perinatol. 2012, 30, 261–266. [Google Scholar] [CrossRef]
- Li, J.; Funato, M.; Tamai, H.; Wada, H.; Nishihara, M.; Morita, T.; Miller, S.L.; Egashira, K. Impact of Intra- and Extrauterine Growth on Bone Mineral Density and Content in the Neonatal Period of Very-Low-Birth-Weight Infants. Early Hum. Dev. 2016, 92, 1–6. [Google Scholar] [CrossRef]
- Gordijn, S.J.; Beune, I.M.; Ganzevoort, W. Building Consensus and Standards in Fetal Growth Restriction Studies. Best. Pract. Res. Clin. Obstet. Gynaecol. 2018, 49, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Betto, M.; Gaio, P.; Ferrini, I.; De Terlizzi, F.; Zambolin, M.; Scattolin, S.; Pasinato, A.; Verlato, G. Assessment of Bone Health in Preterm Infants through Quantitative Ultrasound and Biochemical Markers. J. Matern. -Fetal Neonatal Med. 2014, 27, 1343–1347. [Google Scholar] [CrossRef] [PubMed]
- Fenton, T.R.; Kim, J.H. A Systematic Review and Meta-Analysis to Revise the Fenton Growth Chart for Preterm Infants. BMC Pediatr. 2013, 13, 59. [Google Scholar] [CrossRef] [PubMed]
- Feldman, A.G.; Sokol, R.J. Neonatal Cholestasis. Neoreviews 2013, 14, e63–e73. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, C.S. Calcium, Phosphorus, and Bone Metabolism in the Fetus and Newborn. Early Hum. Dev. 2015, 91, 623–628. [Google Scholar] [CrossRef]
- Ehrenkranz, R.A.; Younes, N.; Lemons, J.A.; Fanaroff, A.A.; Donovan, E.F.; Wright, L.L.; Katsikiotis, V.; Tyson, J.E.; Oh, W.; Shankaran, S.; et al. Longitudinal Growth of Hospitalized Very Low Birth Weight Infants. Pediatrics 1999, 104, 280–289. [Google Scholar] [CrossRef]
- Scattolin, S.; Gaio, P.; Betto, M.; Palatron, S.; De Terlizzi, F.; Intini, F.; Visintin, G.; Verlato, G. Parenteral Amino Acid Intakes: Possible Influences of Higher Intakes on Growth and Bone Status in Preterm Infants. J. Perinatol. 2013, 33, 33–39. [Google Scholar] [CrossRef]
- Meneghelli, M.; Pasinato, A.; Salvadori, S.; Gaio, P.; Fantinato, M.; Vanzo, V.; De Terlizzi, F.; Verlato, G. Bone Status in Preterm Infant: Influences of Different Nutritional Regimens and Possible Markers of Bone Disease. J. Perinatol. 2016, 36, 394–400. [Google Scholar] [CrossRef]
- Hendrix, M.L.E.; van Kuijk, S.M.J.; El Bahaey, S.E.; Gerver, W.J.M.; Feron, F.J.M.; Kuin, M.E.; Spaanderman, M.E.A.; Bons, J.A.P.; Al-Nasiry, S. Postnatal Growth during the First Five Years of Life in SGA and AGA Neonates with Reduced Fetal Growth. Early Hum. Dev. 2020, 151, 105199. [Google Scholar] [CrossRef]
- Singhal, A.; Fewtrell, M.; Cole, T.J.; Lucas, A. Low Nutrient Intake and Early Growth for Later Insulin Resistance in Adolescents Born Preterm. Lancet 2003, 361, 1089–1097. [Google Scholar] [CrossRef]
- Embleton, N.D.; Korada, M.; Wood, C.L.; Pearce, M.S.; Swamy, R.; Cheetham, T.D. Catch-up Growth and Metabolic Outcomes in Adolescents Born Preterm. Arch. Dis. Child. 2016, 101, 1026. [Google Scholar] [CrossRef] [PubMed]
- Buonocore, G.; Bracci, R.; Weindling, M. (Eds.) Neonatology: A Practical Approach to Neonatal Diseases, 2nd ed.; Springer Science & Business Media: Berlin, Germany, 2018. [Google Scholar]
- Bonsante, F.; Iacobelli, S.; Latorre, G.; Rigo, J.; De Felice, C.; Robillard, P.Y.; Gouyon, J.B. Initial Amino Acid Intake Influences Phosphorus and Calcium Homeostasis in Preterm Infants—It Is Time to Change the Composition of the Early Parenteral Nutrition. PLoS ONE 2013, 8, e72880. [Google Scholar] [CrossRef]
- Mizumoto, H.; Mikami, M.; Oda, H.; Hata, D. Refeeding Syndrome in a Small-for-Dates Micro-Preemie Receiving Early Parenteral Nutrition. Pediatr. Int. 2012, 54, 715–717. [Google Scholar] [CrossRef] [PubMed]
- Crook, M.A. Refeeding Syndrome: Problems with Definition and Management. Nutrition 2014, 30, 1448–1455. [Google Scholar] [CrossRef]
- Lee, J.; Park, H.-K.; Kim, J.H.; Choi, Y.Y.; Lee, H.J. Bone Mineral Density According to Dual Energy X-ray Absorptiometry Is Associated with Serial Serum Alkaline Phosphatase Level in Extremely Low Birth Weight Infants at Discharge. Pediatr. Neonatol. 2017, 58, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Beltrand, J.; Alison, M.; Nicolescu, R.; Verkauskiene, R.; Deghmoun, S.; Sibony, O.; Sebag, G.; Lévy-Marchal, C. Bone Mineral Content at Birth Is Determined Both by Birth Weight and Fetal Growth Pattern. Pediatr. Res. 2008, 64, 86–90. [Google Scholar] [CrossRef]
- Bernstein, I.M.; Horbar, J.D.; Badger, G.J.; Ohlsson, A.; Golan, A. Morbidity and Mortality among Very-Low-Birth-Weight Neonates with Intrauterine Growth Restriction. Am. J. Obstet. Gynecol. 2000, 182, 198–206. [Google Scholar] [CrossRef]
- Rigo, J.; Senterre, J.; Rigo, J.; Senterre, J. Nutritional Needs of Premature Infants: Current Issues. J. Pediatr. 2006, 149, S80–S88. [Google Scholar] [CrossRef]
- Gaio, P.; Verlato, G.; Daverio, M.; Cavicchiolo, M.E.; Nardo, D.; Pasinato, A.; de Terlizzi, F.; Baraldi, E. Incidence of Metabolic Bone Disease in Preterm Infants of Birth Weight <1250 g and in Those Suffering from Bronchopulmonary Dysplasia. Clin. Nutr. ESPEN 2018, 23, 234–239. [Google Scholar] [CrossRef]
- Nilsson, O.; Marino, R.; De Luca, F.; Phillip, M.; Baron, J. Endocrine Regulation of the Growth Plate. Horm. Res. 2005, 64, 157–165. [Google Scholar] [CrossRef]
- Mohamed, M.; Kamleh, M.; Muzzy, J.; Groh-Wargo, S.; Abu-Shaweesh, J. Association of Protein and Vitamin D Intake with Biochemical Markers in Premature Osteopenic Infants: A Case-Control Study. Front. Pediatr. 2020, 8, 546544. [Google Scholar] [CrossRef] [PubMed]
- Backström, M.C.; Mäki, R.; Kuusela, A.-L.; Sievänen, H.; Koivisto, A.-M.; Ikonen, R.S.; Kouri, T.; Mäki, M. Randomised Controlled Trial of Vitamin D Supplementation on Bone Density and Biochemical Indices in Preterm Infants. Arch. Dis. Child. Fetal Neonatal Ed. 1999, 80, F161. [Google Scholar] [CrossRef] [PubMed]
- 8. Vitamins. J. Pediatr. Gastroenterol. Nutr. 2005, 41, S47–S53. [CrossRef]
- Littner, Y.; Mandel, D.; Mimouni, F.B.; Dollberg, S. Bone Ultrasound Velocity Curves of Newly Born Term and Preterm Infants. J. Pediatr. Endocrinol. Metab. 2003, 16, 43–48. [Google Scholar] [CrossRef] [PubMed]
IUGR (n = 75) Mean ± s.d or Prevalence (Absolute Number) | Non-IUGR (n = 75) Mean ± s.d or Prevalence (Absolute Number) | p Level | |
---|---|---|---|
Birth weight (g) | 860 ± 260 | 1128 ± 255 | <0.001 |
Length (cm) | 34.3 ± 3.9 | 35.9 ± 2.9 | 0.005 |
Head circumference (cm) | 25.1 ± 2.4 | 26.5 ± 2.0 | <0.001 |
Lower limb length (mm) | 79.80 ± 11.03 | 87.51 ± 11.47 | 0.001 |
Apgar at 5 min | 7.7 ± 1.0 | 7.6 ± 1.0 | 0.554 |
Gestational age (days) | 29.1 ± 2.1 | 28.9 ± 2.0 | 0.501 |
Sex (males) | 47% (35) | 41% (31) | 0.204 |
Multiple pregnancy | 26.6% | 34.6% | 0.376 |
Mode of delivery (CS) | 97.3% | 92.0% | 0.276 |
Small for gestational age (SGA) | 70.6% (53) | 14.6% (11) | <0.001 |
Prenatal steroids | 0.318 | ||
Complete course | 86.6% (65) | 78.6% (59) | |
Incomplete course | 8% (6) | 16% (12) | |
Mechanical ventilation + CPAP (days) | 32.23 ± 33.86 | 20.17 ± 25.31 | 0.020 |
RDS | 92.0% (69) | 85.3% (64) | 1.000 |
BPD 28 day | 43% (32) | 26% (19) | 0.039 |
BPD 36 weeks GA | 20% (15) | 9% (6) | 0.096 |
PDA | 46.6% (35) | 53.3% (40) | 0.514 |
IVH | 10.6% (8) | 6.6% (5) | 0.563 |
Sepsis | 25.3% (19) | 24.0% (18) | 0.690 |
NEC | 5.3% (4) | 6.6% (5) | 1.000 |
ROP | 18.6% (14) | 14.6% (11) | 0.662 |
Cholestasis | 18.6% (14) | 13.3% (10) | 0.480 |
EUGR (weight) at 36 weeks of GA | 98.6% (73) | 58.0% (43) | <0.001 |
Death | 1.3% (1) | 1.3% (1) | 1.000 |
Days of Hospitalization | 72.14 ± 36.41 | 57.30 ± 27.43 | 0.009 |
IUGR (n = 75) Mean ± s.d or Prevalence (Absolute Number) | Non-IUGR (n = 75) Mean ± s.d or Prevalence (Absolute Number) | p Level | |
---|---|---|---|
Maximum weight loss (%) | 9.74 ± 7.57 | 11.55 ± 6.39 | 0.133 |
Days to regain birth weight | 9.91 ± 4.91 | 13.66 ± 5.74 | <0.001 |
Minimum weight (g) | 750.89 ± 211.19 | 965.62 ± 235.19 | <0.001 |
Days to reach 1800 g | 60.71 ± 21.77 | 45.02 ± 19.02 | <0.001 |
Weight at 36 weeks GA (g) | 1540 ± 298 | 1939 ± 309 | <0.001 |
Head circumference at 36 weeks GA (cm) | 30.24 ± 2.11 | 31.11 ± 2.59 | 0.084 |
Total length at 36 weeks GA (cm) | 39.51 ± 2.99 | 42.69 ± 2.35 | <0.001 |
Lower limb length at 36 weeks GA (mm) | 98.1 ± 9.7 | 105.0 ± 8.3 | 0.002 |
Serum calcium at birth (mmol/L) | 2.22 ± 0.24 | 2.05 ± 0.28 | <0.001 |
Serum calcium at 21st day (mmol/L) | 2.46 ± 0.13 | 2.44 ± 0.22 | 0.767 |
Serum phosphate at birth (mmol/L) | 1.45 ± 0.44 | 1.79 ± 0.39 | <0.001 |
Serum phosphate at 21st day (mmol/L) | 1.76 ± 0.36 | 1.94 ± 0.25 | 0.005 |
Serum ALP at birth (IU/L) | 169.69 ± 55.50 | 217.00 ± 77.89 | <0.001 |
Serum ALP at 21st day (IU/L) | 420.06 ± 146.31 | 370.54 ± 122.69 | 0.072 |
Basal mc-BTT (µs) | 0.45 ± 0.10 | 0.51 ± 0.09 | <0.001 |
mc-BTT at 21st day (µs) | 0.43 ± 0.08 | 0.46 ± 0.09 | 0.040 |
mc-BTT at 36 weeks GA (µs) | 0.48 ± 0.08 | 0.50 ± 0.07 | 0.160 |
IUGR (n = 75) Mean ± s.d or Prevalence (Absolute Number) | Non-IUGR (n = 75) Mean ± s.d or Prevalence (Absolute Number) | p Level | |
---|---|---|---|
Proteins intake 1st week iv (g/kg/day) | 2.76 ± 0.51 | 2.68 ± 0.64 | 0.439 |
Proteins intake 2nd week iv (g/kg/day) | 2.94 ± 0.73 | 2.74 ± 0.89 | 0.177 |
Mean total energy 1st week (kcal/kg/day) | 73.42 ± 16.17 | 79.50 ± 16.25 | 0.032 |
Mean total energy 1st month | 100.98 ± 14.88 | 106.37 ± 16.90 | 0.052 |
Total Parenteral Nutrition days | 23.46 ± 13.10 | 16.04 ± 9.24 | <0.001 |
Phosphorus intake 1st week iv (mmol/kg/day) | 1.15 ±0.31 | 1.05 ± 0.28 | 0.078 |
Phosphorus intake 2nd week iv (mmol/kg/day) | 1.47 ± 0.32 | 1.26 ± 0.39 | 0.006 |
Calcium intake in 1st week iv (mmol/kg/day) | 0.83 ± 0.24 | 0.93 ± 0.28 | 0.039 |
Calcium intake in 2nd week iv (mmol/kg/day) | 0.72 ± 0.31 | 0.72 ± 0.43 | 0.986 |
Vitamin D 1st week iv (IU/kg/day) | 32.29 ± 14.58 | 45.09 ± 20.33 | <0.001 |
Days to FEF (150 mL/kg/day) | 27.13 ± 13.86 | 22.45 ± 13.34 | 0.046 |
Days of exclusive breast milk | 28.74 ± 22.48 | 23.92 ± 21.37 | 0.332 |
Mother’s own milk at discharge | 36% (26) | 37% (25) | 0.795 |
IUGR | Non-IUGR | ||||||
---|---|---|---|---|---|---|---|
mcBTT Basal | mcBTT 21 Day | mcBTT 36 Weeks GA | mcBTT Basal | mcBTT 21 Day | mcBTT 36 Weeks GA | ||
Birth weight | r | 0.597 | 0.494 | 0.331 | 0.711 | 0.502 | 0.462 |
p value | <0.001 | <0.001 | 0.020 | <0.001 | <0.001 | 0.002 | |
Lower limb length at birth | r | 0.593 | 0.336 | 0.192 | 0.248 | 0.030 | 0.481 |
p value | <0.001 | 0.024 | 0.249 | 0.093 | 0.851 | 0.006 | |
Weight 36 weeks GA | r | n.a | n.a. | 0.541 | n.a. | n.a. | 0.204 |
p value | n.a. | n.a. | <0.001 | n.a. | n.a. | 0.225 | |
Lower limb length 36 weeks GA | r | n.a. | n.a. | 0.428 | n.a. | n.a. | 0.086 |
p value | n.a. | n.a. | 0.010 | n.a. | n.a. | 0.645 |
IUGR | Non-IUGR | ||||
---|---|---|---|---|---|
mcBTT 21 Day | mcBTT 36 wGA | mcBTT 21 Day | mcBTT 36wGA | ||
Total mean energy intake 1st week (kcal/kg/day) | r p value | 0.239 0.071 | 0.294 0.040 | 0.257 0.060 | 0.111 0.496 |
Total mean energy intake 1st month (kcal/kg/day) | r p value | 0.470 <0.001 | 0.338 0.017 | 0.339 0.011 | 0.120 0.454 |
Vitamin D iv intake 1st week (UI/kg/day) | r p value | 0.287 0.185 | 0.686 <0.001 | 0.042 0.849 | 0.484 0.023 |
TPN days | r p value | −0.428 0.001 | −0.464 0.001 | −0.296 0.027 | −0.331 0.032 |
Days to reach FEF (150 mL/kg/day) | r p value | −0.436 0.001 | −0.418 0.004 | −0.221 0.104 | −0.147 0.360 |
Basal serum phosphate (mmol/L) | r p value | 0.283 0.052 | 0.341 0.029 | 0.200 0.163 | 0.079 0.643 |
Serum phosphate at 21st day (mmol/L) | r p value | 0.182 0.249 | 0.359 0.031 | 0.453 0.003 | 0.484 0.004 |
Alkaline Phosphatase 21st day (IU/L) | r p value | −0.310 0.043 | −0.045 0.790 | −0.311 0.033 | −0.300 0.072 |
mcBTT 36 Weeks GA | ||||
---|---|---|---|---|
Cut-Off | Mean | sd | p Value | |
Lower limb length at 21st day (mm) | <91 ≥91 | 0.47 0.53 | 0.01 0.01 | <0.001 |
Mean energy intake 1st week (Kcal/kg/day) | <77 ≥77 | 0.47 0.50 | 0.01 0.01 | 0.039 |
Mean energy intake 1st month (Kcal/kg/day) | <106 ≥106 | 0.47 0.51 | 0.01 0.01 | 0.017 |
VitD iv 1st week (IU/Kg/day) | <37 ≥37 | 0.45 0.52 | 0.01 0.01 | <0.001 |
TPN days | <16 ≥16 | 0.53 0.46 | 0.01 0.01 | <0.001 |
Regression Coefficient | Standard Error | Prob. Level | Power (α = 0.05) | |
---|---|---|---|---|
Intercept | 0.4962 | 0.0221 | / | / |
Mean energy intake 1st week | 0.0094 | 0.0205 | 0.5165 | 0.0983 |
TPN days | −0.0569 | 0.0194 | 0.0041 | 0.8377 |
VitD iv 1st week (IU/Kg/day) | 0.0401 | 0.0200 | 0.0268 | 0.6090 |
Lower limb length at 21 days (mm) | 0.0421 | 0.0186 | 0.0302 | 0.5901 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meneghelli, M.; Peruzzo, A.; Priante, E.; Cavicchiolo, M.E.; Bonadies, L.; Moschino, L.; De Terlizzi, F.; Verlato, G. Bone Status and Early Nutrition in Preterm Newborns with and without Intrauterine Growth Restriction. Nutrients 2023, 15, 4753. https://doi.org/10.3390/nu15224753
Meneghelli M, Peruzzo A, Priante E, Cavicchiolo ME, Bonadies L, Moschino L, De Terlizzi F, Verlato G. Bone Status and Early Nutrition in Preterm Newborns with and without Intrauterine Growth Restriction. Nutrients. 2023; 15(22):4753. https://doi.org/10.3390/nu15224753
Chicago/Turabian StyleMeneghelli, Marta, Andrea Peruzzo, Elena Priante, Maria Elena Cavicchiolo, Luca Bonadies, Laura Moschino, Francesca De Terlizzi, and Giovanna Verlato. 2023. "Bone Status and Early Nutrition in Preterm Newborns with and without Intrauterine Growth Restriction" Nutrients 15, no. 22: 4753. https://doi.org/10.3390/nu15224753
APA StyleMeneghelli, M., Peruzzo, A., Priante, E., Cavicchiolo, M. E., Bonadies, L., Moschino, L., De Terlizzi, F., & Verlato, G. (2023). Bone Status and Early Nutrition in Preterm Newborns with and without Intrauterine Growth Restriction. Nutrients, 15(22), 4753. https://doi.org/10.3390/nu15224753