Bioactive Ingredients from Dairy-Based Lactic Acid Bacterial Fermentations for Functional Food Production and Their Health Effects
Abstract
:1. Introduction
1.1. Food Product Regulations
- The food/constituent is defined and characterized.
- The claimed effect is based on nutrient essentiality, OR the claimed effect is defined and a beneficial physiological effect can be measured in vivo in humans.
- The food/constituent is required for bodily function, OR a cause-and-effect relationship between consumption and human health has been established.
- The quantity of the food/constituent can be consumed as part of a balanced diet to obtain the claimed effect.
- Functions of the nervous system.
- Physical performance.
- Bone, joints, skin, and oral health.
- Appetite ratings, weight management, and blood glucose concentrations.
- The immune system, the gastrointestinal tract, and defense against pathogenic organisms.
1.2. Current Functional Dairy Products on the European Market
Product | Product Name | Functional Ingredient | Health Benefit | Company | Ref. |
---|---|---|---|---|---|
Kefir | Kefir Smoothie | Probiotics Calcium | Gut health | Müller, Fischach, Germany | [22] |
Kefir | Kefir Yoghurt | Probiotics | Gut health | Glenillen Farm, Gurteeniher, Ireland | [23] |
Kefir | Spoonable Kefir | Probiotics Calcium | Gut health | Irish Yogurts, Clonakilty, Clonakilty, Ireland | [24] |
Kefir | Kefir Drink Original | Probiotics Vitamin B12 and B2 Calcium | Immune health Gut health | Biotiful Gut Health, London, The United Kingdom | [25] |
Kefir | Kefir Yoghurt Original | Probiotics Vitamin B12 and B2 Calcium | Digestion Immune health Gut health | Biotiful Gut Health, London, The United Kingdom | [26] |
Milk | Avonmore Super Milk | Vitamins | Bone health Nutrition | Tirlán, Ballyragget, Ireland | [27] |
Milk | Avonmore Fibre Plus Milk | Vitamins Fiber | Gut health Immune health Nutrition | Tirlán, Ballyragget, Ireland | [28] |
Milk | Avonmore Slimline Milk | Vitamins Iron | Nutrition | Tirlán, Ballyragget, Ireland | [29] |
Milk powder | Nido© | Vitamins Minerals | Nutrition | Nestlé, Ballyragget, Ireland | [30] |
Milk powder | Baby&Me© Organic | Vitamins Minerals Oligosaccharides | Nutrition | Arla, Viby, Denmark | [31] |
Milk powder | Aerabo Active Vitality | Amino acids Antioxidants Glucosamine Minerals Vitamins | Bone health Nutrition | Dairygold, Mitchelstown, Ireland | [19] |
Milk powder | Aerabo Active Boost | Amino acids Antioxidants Beta carotene Vitamins | Immune support Nutrition | Dairygold, Mitchelstown, Ireland | [20] |
Milk powder | Aerabo Active Light | Amino acids Antioxidants Beta carotene Minerals Vitamins | Nutrition | Dairygold, Mitchelstown, Ireland | [21] |
Milk drink | Goede Morgen! | Vitamins | Nutrition | Friesland Campina, Amersfoort, Netherlands | [32] |
Yoghurt | Activia | Probiotics | Gut health | Danone, Paris, France | [33] |
Yoghurt | Danonino | Minerals Vitamins | Nutrition | Danone, Paris, France | [34] |
Yoghurt | Benecol© Yoghurt | Plant sterols | Cholesterol-lowering | Raisio Group, Raisio, Finland | [35] |
Yoghurt | Natural Yoghurt | Probiotics | Gut health | Glenillen farm, Gurteeniher, Ireland | [36] |
Yoghurt | Greek style natural | Probiotics | Gut health | Irish Yoghurts, Clonakilty, Clonakilty, Ireland | [37] |
Yoghurt drink | Actimel | Probiotics Vitamins | Immune health | Danone, Paris, France | [38] |
Yoghurt drink | Benecol© Yoghurt Drink | Plant sterols | Cholesterol-lowering | Raisio Group, Raisio, Finland | [35] |
2. Vitamins
2.1. Folate
2.1.1. Production of Folate
2.1.2. Health Benefits of Folate
2.2. Cobalamin
2.2.1. Production of Cobalamin
2.2.2. Health Risks Associated with Cobalamin Deficiency
2.3. Riboflavin
2.3.1. Production of Riboflavin
2.3.2. Health Benefits of Riboflavin
2.4. Menaquinone
2.4.1. Production of Menaquinone
2.4.2. The Role of Menaquinone in Cardiovascular Disease and Bone Health
3. Bacteriocins
Microorganism (s) | Product | Fermentation | Media | Yield | Ref. |
---|---|---|---|---|---|
L. lactis | Nisin | Flask | Skim-milk-based media | 75 IU/mL | [137] |
L. lactis | Nisin | Shake flask | Whey-based media | 92.9 mg/L | [138] |
L. lactis | Nisin | Shake flask | Whey-based media | 1167 AU/mL | [139] |
L. lactis | Nisin | Shake flask | Whey-based media | 2618.7 IU/mL | [140] |
L. lactis | Nisin | Single batch—free cells | Whey-based media | 32,800 and 41,000 BU/mL (16,400 and 20,500 IU/mL) | [141] |
L. lactis | Nisin | Single batch—free cells | MRS | 160 AU/mL | [142] |
L. lactis | Nisin | Repeated cycle batch—ICT | Whey-based media | 20,480 IU/mL | [143] |
L. lactis | Nisin | Fed batch | Complex | 4185 IU/mL | [144] |
L. lactis | Nisin | Fed batch | Whey | 60.3 BU/mL | [145] |
L. lactis | Nisin | Fed batch | Whey + glucose | 124 BU/mL | [146] |
L. lactis | Nisin | Fed batch | Whey + MRS nutrients | 258.47 BU/mL | [147] |
L. lactis | Nisin | Fed batch | Defined | 2594 × 106 IU/mL | [148] |
L. delbrueckii subsp. bulgaricus S. thermophilus | Nisin | Continuous fermentation | Skim milk-based media | 4500 BU/mL | [149] |
L. lactis K. marxianus | Nisin | Single batch—free cells | Defined | 98 mg/L (3920 IU) | [150] |
L. lactis S. cerevisiae | Nisin | Shake flask | Defined | 150.3 mg/L | [151] |
L. lactis P. acidilactici | Nisin Pediocin | Shake flask | Whey-based media | 74 BU/mL 195 BU/mL | [152] |
L. lactis P. acidilactici | Nisin Pediocin | Shake flask | Whey-based media | 9 BU/mL 45 BU/mL | [153] |
L. lactis P. acidilactici | Nisin Pediocin | Shake flask | MRS Whey-based media | 50 and 22.9 BU/mL 493.2 and 57.9 BU/mL | [154] |
L. lactis P. acidilactici | Nisin Pediocin | Single batch—free cells | Whey-based media | 3000 AU/mL (18 h) 1359 AU/mL (16 h) | [155] |
P. acidilactici | Pediocin | Flask | Whey-based media | 12,800 AU/mL | [156] |
P. acidilactici | Pediocin | Flask | MRS | 12,800 AU/mL | [157] |
P. acidilactici | Pediocin | Flask | Whey-based media | 150,000 AU/mL | [158] |
P. acidilactici | Pediocin | Shake flask | Whey-based media | 189 BU/mL | [159] |
P. acidilactici | Pediocin | Shake flask | MRS Whey-based media | 493.2 BU/mL 167.3 BU/mL | [160] |
P. acidilactici | Pediocin | Single batch—free cells | TGE broth | 40,000 AU/mL | [161] |
P. acidilactici | Pediocin | Repeated cycle batch—ICT | MRS Whey-based media | 4096 AU/mL (0.75 h) 4096 AU/mL (2 h) | [162] |
P. acidilactici | Pediocin | Fed batch | Defined | 712 BU/mL | [159] |
P. acidilactici | Pediocin | Fed batch | Whey-based media | 517 BU/mL | [160] |
P. acidilactici S. thermophilus L. delbrueckii subsp. bulgaricus | Pediocin | Flask | Skim-milk-based media | 6400 AU/mL | [157] |
P. acidilactici P. pentosaceus | Pediocin | Flask | Whey-based media | 3220 AU/mL 26,100 AU/mL | [163] |
P. pentosaceus L. plantarum | Pediocin | Flask | Whey-based media | 51,200 AU/mL | [164] |
3.1. Production of Nisin
3.2. Production of Pediocin
3.3. Mixed Culture Induction
3.4. Health Benefits of Bacteriocins
3.4.1. Treatment of Pathogens and Alternatives to Antibiotics
3.4.2. Anti-Cancer Treatment
3.4.3. Immunomodulatory Role of Bacteriocins
4. Bioactive Peptides
4.1. Angiotensin-Converting Enzyme Inhibitory Peptides
Antihypertensive Effect and Cardiovascular Diseases
4.2. Peptides with Antioxidant Activity
Health Benefits of Antioxidant Peptides Produced by LAB
5. Bioactive Compounds
5.1. Gamma-Aminobutyric Acid
5.1.1. Production of GABA
5.1.2. Health Benefits of GABA
5.2. Carotenoids
5.2.1. Production of Carotenoids
Microorganism (s) | Fermentation | Medium | Yield | Ref. |
---|---|---|---|---|
L. fermentum | Flask | MRS | 765 µg/kg CDW | [283] |
L. plantarum | Flask | Supplemented MRS | 54.89 mg/kg CDW | [285] |
L. plantarum | Flask | Defined medium | 54.55 mg/kg CDW | [283] |
L. casei R.rubra | Flask | Supplemented whey ultrafiltrate | 12.35 mg/mL | [287] |
L. delbrueckii. subsp. bulgaricus S. thermophilus R. rubra | Flask | Supplemented whey ultrafiltrate | 13.09 mg/mL | [288] |
L. delbrueckii. subsp. bulgaricus S. thermophilus R. rubra | Flask | Supplemented whey ultrafiltrate | 13.37 mg/L | [289] |
L. helveticus R. glutinis | Batch | Supplemented whey ultrafiltrate | 8.3 mg/L | [290] |
5.2.2. Health Benefits of Carotenoids
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Papagianni, M. Metabolic Engineering of Lactic Acid Bacteria for the Production of Industrially Important Compounds. Comput. Struct. Biotechnol. 2012, 3, e201210003. [Google Scholar] [CrossRef]
- Bintsis, T. Lactic Acid Bacteria: Their Applications in Foods. J. Bacteriol. Mycol. 2018, 6, 89–94. [Google Scholar] [CrossRef]
- Khalid, K. An Overview of Lactic Acid Bacteria. Int. J. Biosci. 2011, 1, 1–13. [Google Scholar]
- Ayivi, R.D.; Gyawali, R.; Krastanov, A.; Aljaloud, S.O.; Worku, M.; Tahergorabi, R.; Silva, R.C.D.; Ibrahim, S.A. Lactic Acid Bacteria: Food Safety and Human Health Applications. Dairy 2020, 1, 202–232. [Google Scholar] [CrossRef]
- Feord, J. Lactic Acid Bacteria in a Changing Legislative Environment. Antonie Leeuwenhoek 2002, 82, 353–360. [Google Scholar] [CrossRef]
- Sørensen, H.M.; Rochfort, K.D.; Maye, S.; MacLeod, G.; Brabazon, D.; Loscher, C.; Freeland, B. Exopolysaccharides of Lactic Acid Bacteria: Production, Purification and Health Benefits towards Functional Food. Nutrients 2022, 14, 2938. [Google Scholar] [CrossRef]
- Hugenholtz, J. The Lactic Acid Bacterium as a Cell Factory for Food Ingredient Production. Int. Dairy J. 2008, 18, 466–475. [Google Scholar] [CrossRef]
- Taskila, S.; Ojamo, H. The Current Status and Future Expectations in Industrial Production of Lactic Acid by Lactic Acid Bacteria. Lact. Acid Bact.—R D Food Health Livest. Purp. 2013. [Google Scholar] [CrossRef]
- Vijayakumar, J.; Aravindan, R.; Viruthagiri, T. Recent Trends in the Production, Purification and Application of Lactic Acid. Chem. Biochem. Eng. Q. 2008, 22, 245–264. [Google Scholar]
- Khedkar, S.; Bröring, S.; Ciliberti, S. Exploring the Nutrition and Health Claims Regulation (EC) No. 1924/2006: What Is the Impact on Innovation in the EU Food Sector ? Int. J. Food Sci. Nutr. 2016, 68, 10–17. [Google Scholar] [CrossRef]
- Verhagen, H.; Verloo, D.; Bronzwaer, S.; Kass, G.; Robinson, T.; Vrbos, D.; Hugas, M. Food Safety Regulatory Research Needs 2030. EFSA J. 2019, 17, e170622. [Google Scholar] [CrossRef]
- Official Journal of the European Union. Regulation (EC) No. 1924/2006 of the European Parliament and of the Council of 20th December 2006 on Nutrition and Health Claims Made on Foods. 2006. [Google Scholar]
- EFSA Panel on Dietetic Products; Nutrition and Allergies (NDA); Turck, D.; Bresson, J.L.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; et al. Scientific and technical guidance for the preparation and presentation of a health claim application (Revision 2). EFSA J. 2017, 15, e04680. [Google Scholar]
- Collins, N. Hans Verhagen Nutrition and Health Claims in the European Union in 2022. Available online: https://www.raps.org/news-and-articles/news-articles/2022/9/nutrition-and-health-claims-in-the-european-union (accessed on 10 July 2023).
- EFSA Nutrition Applications: Regulations and Guidance. Available online: https://www.efsa.europa.eu/en/applications/nutrition/regulationsandguidance (accessed on 10 July 2023).
- Becker, T. European Food Quality Policy: The Importance of Geographical Indications, Organic Certification and Food Quality Assurance Schemes in European Countries. Estey J. Int. Law Trade Policy 2009, 10, 111–130. [Google Scholar] [CrossRef]
- Schnettler, B.; Bou, L.; García, M.; Mercedes, S. Consumers’ Willingness to Pay for Health Claims during the COVID-19 Pandemic: A Moderated Mediation Analysis. J. Agric. Food Res. 2023, 11, 100523. [Google Scholar] [CrossRef]
- Boer, A. De Fifteen Years of Regulating Nutrition and Health Claims in Europe: The Past, the Present and the Future. Nutrients 2021, 13, 1725. [Google Scholar] [CrossRef]
- Dairygold Food Ingredients Ltd. Aerabo Active Vitality. Available online: https://aerabo.ie/ (accessed on 10 July 2023).
- Dairygold Food Ingredients Ltd. Aerabo Active Boost. Available online: https://aerabo.ie/ (accessed on 7 October 2023).
- Dairygold Food Ingredients Ltd. Aerabo Active Light. Available online: https://aerabo.ie/ (accessed on 10 July 2023).
- Müller Kefir Smoothie. Available online: https://www.muller.co.uk/our-brands/muller-kefir-smoothie/muller-kefir-smoothie (accessed on 7 July 2023).
- Glenillen Farm Gut Health Kefir. Available online: https://glenilenfarm.com/gut-health-kefir/?_gl=1*872m4o*_up*MQ..*_ga*MzI2MTQ0NTAzLjE2ODg3MzU0Mzc.*_ga_DQMB2TF4BR*MTY4ODczNTQzNi4xLjAuMTY4ODczNTQzNi4wLjAuMA (accessed on 7 July 2023).
- Irish Yogurts Clonakilty. Spoonable Kefir. Available online: https://www.irish-yogurts.ie/product/irish-yogurts-clonakilty-spoonable-kefir-natural-350g/ (accessed on 7 July 2023).
- Biotiful Gut Health. Kefir Drink Original. Available online: https://biotifulguthealth.com/products/kefir/ (accessed on 7 July 2023).
- Biotiful Gut Health. Kefir Yoghurt Original. Available online: https://biotifulguthealth.com/products/kefir-yogurt-original/ (accessed on 7 July 2023).
- Tirlán Avonmore Super Milk. Available online: https://www.avonmore.ie/products/whole-super-milk (accessed on 7 July 2023).
- Tirlán Avonmore Fibre Plus Milk. Available online: https://www.avonmore.ie/products/avonmore-fibre-plus-milk (accessed on 7 July 2023).
- Tirlán Avonmore Slimline Milk. Available online: https://www.avonmore.ie/products/slimline-milk (accessed on 7 July 2023).
- Nestle Nido. Available online: https://www.nestle.com/brands/baby-foods/nido (accessed on 7 July 2023).
- Arla Baby&Me Organic. Available online: https://www.arla.com/our-brands/babyme-organic/ (accessed on 7 July 2023).
- Campina, F. Goede Morgen. Available online: https://www.vifit.nl/producten (accessed on 7 July 2023).
- Danone Activia. Available online: https://www.danone.com/brands/dairy-plant-based-products/activia.html (accessed on 7 July 2023).
- Danone Danonino. Available online: https://www.danone.com/brands/dairy-plant-based-products/danonino.html (accessed on 7 July 2023).
- Raisio Plc Benecol Yoghurt. Available online: https://benecol.ie/products/#/feed&categories=yogurts (accessed on 7 July 2023).
- Farm, G. Natural Yoghurt. Available online: https://glenilenfarm.com/natural-yoghurt/?_gl=1*1k6o5yn*_up*MQ..*_ga*MTk3NzM2Mzc5OS4xNjg4NzM1OTY2*_ga_DQMB2TF4BR*MTY4ODczNTk2NS4xLjAuMTY4ODczNTk2NS4wLjAuMA (accessed on 7 July 2023).
- Irish Yogurts Clonakilty Greek Style Natural. Available online: https://www.irish-yogurts.ie/products/?gclid=Cj0KCQjw756lBhDMARIsAEI0AgkFfC8BwPWXFKmOU8J4UcStFaReW7gm2CKQBogmHBWcMsi1PuDHvHIaAo2sEALw_wcB (accessed on 7 July 2023).
- Danone Actimel. Available online: https://www.danone.com/brands/dairy-plant-based-products/actimel.html (accessed on 7 July 2023).
- World Health Organization. Vitamin and Mineral Requirements in Human Nutrition, 2nd ed.; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Gangadharan, D.; Nampoothiri, K.M. Folate Production Using Lactococcus lactis Ssp Cremoris with Implications for Fortification of Skim Milk and Fruit Juices. LWT—Food Sci. Technol. 2011, 44, 1859–1864. [Google Scholar] [CrossRef]
- Linares, D.M.; Fitzgerald, G.; Hill, C.; Stanton, C.; Ross, P. Production of Vitamins, Exopolysaccharides and Bacteriocins by Probiotic Bacteria. In Probiotic Dairy Products; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; pp. 359–388. ISBN 9781119214106. [Google Scholar]
- Saubade, F.; Hemery, Y.M.; Guyot, J.P.; Humblot, C. Lactic Acid Fermentation as a Tool for Increasing the Folate Content of Foods. Crit. Rev. Food Sci. Nutr. 2017, 57, 3894–3910. [Google Scholar] [CrossRef]
- Santos, F.; Wegkamp, A.; De Vos, W.M.; Smid, E.J.; Hugenholtz, J. High-Level Folate Production in Fermented Foods by the B12 Producer Lactobacillus reuteri JCM1112. Appl. Environ. Microbiol. 2008, 74, 3291–3294. [Google Scholar] [CrossRef]
- Hugenholtz, J.; Smid, E.J. Nutraceutical Production with Food-Grade Microorganisms. Curr. Opin. Biotechnol. 2002, 13, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Sybesma, W.; Starrenburg, M.; Kleerebezem, M.; Mierau, I.; De Vos, W.M.; Hugenholtz, J. Increased Production of Folate by Metabolic Engineering of Lactococcus lactis. Appl. Environ. Microbiol. 2003, 69, 3069–3076. [Google Scholar] [CrossRef] [PubMed]
- Revuelta, J.L.; Serrano-Amatriain, C.; Ledesma-Amaro, R.; Jiménez, A. Formation of Folates by Microorganisms: Towards the Biotechnological Production of This Vitamin. Appl. Microbiol. Biotechnol. 2018, 102, 8613–8620. [Google Scholar] [CrossRef] [PubMed]
- Laiño, J.E.; Juarez del Valle, M.; Savoy de Giori, G.; LeBlanc, J.G.J. Applicability of a Lactobacillus amylovorus Strain as Co-Culture for Natural Folate Bio-Enrichment of Fermented Milk. Int. J. Food Microbiol. 2014, 191, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Hugenschmidt, S.; Schwenninger, S.M.; Gnehm, N.; Lacroix, C. Screening of a Natural Biodiversity of Lactic and Propionic Acid Bacteria for Folate and Vitamin B12 Production in Supplemented Whey Permeate. Int. Dairy J. 2010, 20, 852–857. [Google Scholar] [CrossRef]
- Masuda, M.; Ide, M.; Utsumi, H.; Niiro, T.; Shimamura, Y.; Murata, M. Production Potency of Folate, Vitamin B12, and Thiamine by Lactic Acid Bacteria Isolated from Japanese Pickles. Biosci. Biotechnol. Biochem. 2012, 76, 2061–2067. [Google Scholar] [CrossRef] [PubMed]
- Sybesma, W.; Starrenburg, M.; Tijsseling, L.; Hoefnagel, M.H.N.; Hugenholtz, J. Effects of Cultivation Conditions on Folate Production by Lactic Acid Bacteria. Appl. Environ. Microbiol. 2003, 69, 4542–4548. [Google Scholar] [CrossRef]
- Laiño, J.E.; Juarez del Valle, M.; Savoy de Giori, G.; LeBlanc, J.G.J. Development of a High Folate Concentration Yogurt Naturally Bio-Enriched Using Selected Lactic Acid Bacteria. LWT—Food Sci. Technol. 2013, 54, 1–5. [Google Scholar] [CrossRef]
- Hugenschmidt, S.; Schwenninger, S.M.; Lacroix, C. Concurrent High Production of Natural Folate and Vitamin B12 Using a Co-Culture Process with Lactobacillus plantarum SM39 and Propionibacterium Freudenreichii DF13. Process Biochem. 2011, 46, 1063–1070. [Google Scholar] [CrossRef]
- Mousavi, S.S.; Moeini, H.; Mohamad, R.; Dinarvand, M.; Ariff, A.; Ling, F.H.; Raha, A.R. Effects of Medium and Culture Conditions on Folate Production by Streptococcus thermophilus BAA-250. Res. Biotechnol. 2013, 4, 21–29. [Google Scholar]
- World Health Organization. Human Vitamin and Mineral Requirements; World Health Organization: Geneva, Switzerland, 2001; p. 303. [Google Scholar]
- Rad, A.H.; Yari Khosroushahi, A.; Khalili, M.; Jafarzadeh, S. Folate Bio-Fortification of Yoghurt and Fermented Milk: A Review. Dairy Sci. Technol. 2016, 96, 427–441. [Google Scholar] [CrossRef]
- Choi, J.H.; Yates, Z.; Veysey, M.; Heo, Y.R.; Lucock, M. Contemporary Issues Surrounding Folic Acid Fortification Initiatives. Prev. Nutr. Food Sci. 2014, 19, 247–260. [Google Scholar] [CrossRef]
- Blencowe, H.; Cousens, S.; Modell, B.; Lawn, J. Folic Acid to Reduce Neonatal Mortality from Neural Tube Disorders. Int. J. Epidemiol. 2010, 39, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Yates, A.A.; Schlicker, S.A.; Suitor, C.W. Dietary Reference Intakes: The New Basis for Recommendations for Calcium and Related Nutrients, B Vitamins, and Choline. J. Am. Diet. Assoc. 1998, 98, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.X.; Wahlin, Å.; Basun, H.; Fastbom, J.; Winblad, B.; Fratiglioni, L. Vitamin B12 and Folate in Relation to the Development of Alzheimer’s Disease. Neurology 2001, 56, 1188–1194. [Google Scholar] [CrossRef] [PubMed]
- Ho, P.I.; Ashline, D.; Dhitavat, S.; Ortiz, D.; Collins, S.C.; Shea, T.B.; Rogers, E. Folate Deprivation Induces Neurodegeneration: Roles of Oxidative Stress and Increased Homocysteine. Neurobiol. Dis. 2003, 14, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Duthie, S.J.; Whalley, L.J.; Collins, A.R.; Leaper, S.; Berger, K.; Deary, I.J. Homocysteine, B Vitamin Status, and Cognitive Function in the Elderly. Am. J. Clin. Nutr. 2002, 75, 908–913. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.S. Folate, Homocysteine, and Neurological Function. Nutr. Clin. Care 2007, 44, 113–122. [Google Scholar] [CrossRef]
- Godfrey, P.S.A.; Toone, B.K.; Carney, M.W.P.; Flynn, T.G.; Bottiglien, T.; Laundy, M.; Chanarin, I.; Reynolds, E.H. Enhancement of Recovery from Psychiatric Illness by Methylfolate. Psychosomatics 1990, 336, 392–395. [Google Scholar]
- Iyer, R.; Tomar, S.K. Folate: A Functional Food Constituent. J. Food Sci. 2009, 74, R114–R122. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, Y.; Wang, Y.; Li, L.; Liao, Y.; Zhang, Y.; Yu, D.; Omboni, S. The Effect of Folic Acid in Patients with Cardiovascular Disease: A Systematic Review and Meta-Analysis. Medicine 2019, 98, e17095. [Google Scholar] [CrossRef] [PubMed]
- Clarke, R.; Brattström, L.; Landgren, F.; Israelsson, B.; Lindgren, A.; Hultberg, B.; Andersson, A.; Cuskelly, G.; McNulty, H.; Strain, S.S.; et al. Lowering Blood Homocysteine with Folic Acid Based Supplements: Meta-Analysis of Randomised Trials. Br. Med. J. 1998, 316, 894–898. [Google Scholar] [CrossRef]
- Ulrich, C.M. Folate and Cancer Prevention: A Closer Look at a Complex Picture. Am. J. Clin. Nutr. 2007, 86, 271–273. [Google Scholar] [CrossRef] [PubMed]
- Survase, S.A.; Bajaj, I.B.; Singhal, R.S. Biotechnological Production of Vitamins. Food Technol. Biotechnol. 2006, 44, 381–396. [Google Scholar]
- Martens, J.H.; Barg, H.; Warren, M.; Jahn, D. Microbial Production of Vitamin B12. Appl. Microbiol. Biotechnol. 2002, 58, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Quesada-Chanto, A.; Afschar, A.S.; Wagner, F. Optimization of a Propionibacterium Acidipropionici Continuous Culture Utilizing Sucrose. Appl. Microbiol. Biotechnol. 1994, 3, 16–21. [Google Scholar] [CrossRef]
- Li, K.T.; Liu, D.H.; Li, Y.L.; Chu, J.; Wang, Y.H.; Zhuang, Y.P.; Zhang, S.L. Improved Large-Scale Production of Vitamin B12 by Pseudomonas Denitrificans with Betaine Feeding. Bioresour. Technol. 2008, 99, 8516–8520. [Google Scholar] [CrossRef]
- Li, K.-T.; Liu, D.-H.; Chu, J.; Wang, Y.-H.; Zhuang, Y.-P.; Zhang, S.-L. An Effective and Simplified PH-Stat Control Strategy for the Industrial Fermentation of Vitamin B12 by Pseudomonas Denitrificans. Bioprocess Biosyst. Eng. 2008, 31, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Ye, K.; Shijo, M.; Jin, S.; Shimizu, K. Efficient Production of Vitamin B12 from Propionic Acid Bacteria under Periodic Variation of Dissolved Oxygen Concentration. J. Ferment. Bioeng. 1996, 82, 484–491. [Google Scholar] [CrossRef]
- Miyano, K.I.; Ye, K.; Shimizu, K. Improvement of Vitamin B12 Fermentation by Reducing the Inhibitory Metabolites by Cell Recycle System and a Mixed Culture. Biochem. Eng. J. 2000, 6, 207–214. [Google Scholar] [CrossRef]
- Bullerman, L.; Berry, E.C. Use of Cheese Whey for Vitamin B12 Production: I. Whey Solids and Yeast Extract Levels. Appl. Microbiol. 1966, 14, 353–355. [Google Scholar] [CrossRef]
- Marwaha, S.S.; Sethi, R.P. Utilization of Dairy Waste for Vitamin B12 Fermentation. Agric. Wastes 1984, 9, 111–130. [Google Scholar] [CrossRef]
- Marwaha, S.S.; Sethi, R.P.; Kennedy, J.F.; Kumar, R. Simulation of Fermentation Conditions for Vitamin B12 Biosynthesis from Whey. Enzyme Microb. Technol. 1983, 5, 449–453. [Google Scholar] [CrossRef]
- Marwaha, S.S.; Sethi, R.P.; Kennedy, J.F. Role of Amino Acids, Betaine and Choline in Vitamin B12 Biosynthesis by Strains of Propionibacterium. Enzyme Microb. Technol. 1983, 5, 454–456. [Google Scholar] [CrossRef]
- Hunik, J.H. Improved process for the production of vitamin B12. Patent WO00/37669, 2000. [Google Scholar]
- Hsu, S.-T.; Yang, S.-T. Propionic Acid Fermentation of Lactose by Propionibacterium Acidipropionici: Effects of PH. J. Biol. Chem. 1991, 56, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Hunt, A.; Harrington, D.; Robinson, S. Vitamin B12 Deficiency. BMJ 2014, 349, g5226. [Google Scholar] [CrossRef]
- Allen, L.H. How Common Is Vitamin B-12 Deficiency? Am. J. Clin. Nutr. 2009, 89, 693–696. [Google Scholar] [CrossRef] [PubMed]
- Ray, J.G.; Wyatt, P.R.; Thompson, M.D.; Vermeulen, M.J.; Meier, C.; Wong, P.Y.; Farrell, S.A.; Cole, D.E.C. Vitamin B12 and the Risk of Neural Tube Defects in a Folic-Acid-Fortified Population. Epidemiology 2007, 18, 362–366. [Google Scholar] [CrossRef]
- Afman, L.A.; Van Der Put, N.M.J.; Thomas, C.M.G.; Trijbels, J.M.F.; Blom, H.J. Reduced Vitamin B12 Binding by Transcobalamin II Increases the Risk of Neural Tube Defects. QJM—Mon. J. Assoc. Physicians 2001, 94, 159–166. [Google Scholar] [CrossRef]
- Molloy, A.M. Should Vitamin B12 Status Be Considered in Assessing Risk of Neural Tube Defects? Ann. N. Y. Acad. Sci. 2018, 1414, 109–125. [Google Scholar] [CrossRef]
- Clarke, R.; Frost, C.; Sherliker, P.; Lewington, S.; Collins, R.; Brattstrom, L.; Brouwer, I.; van Dusseldorp, M.; Steegers-Theunissen, R.P.M.; Cuskelly, G.; et al. Dose-Dependent Effects of Folic Acid on Blood Concentrations of Homocysteine: A Meta-Analysis of the Randomized Trials. Am. J. Clin. Nutr. 2005, 82, 806–812. [Google Scholar] [CrossRef]
- O’Leary, F.; Samman, S. Vitamin B12 in Health and Disease. Nutrients 2010, 2, 299–316. [Google Scholar] [CrossRef]
- Dhonukshe-Rutten, R.A.M.; Van Dusseldorp, M.; Schneede, J.; De Groot, L.C.P.G.M.; Van Staveren, W.A. Low Bone Mineral Density and Bone Mineral Content Are Associated with Low Cobalamin Status in Adolescents. Eur. J. Nutr. 2005, 44, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Muthayya, S.; Kurpad, A.V.; Duggan, C.P.; Bosch, R.J.; Dwarkanath, P.; Mhaskar, A.; Mhaskar, R.; Thomas, A.; Vaz, M.; Bhat, S.; et al. Low Maternal Vitamin B12 Status Is Associated with Intrauterine Growth Retardation in Urban South Indians. Eur. J. Clin. Nutr. 2006, 60, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Roman-Garcia, P.; Quiros-Gonzalez, I.; Mottram, L.; Lieben, L.; Sharan, K.; Wangwiwatsin, A.; Tubio, J.; Lewis, K.; Wilkinson, D.; Santhanam, B.; et al. Vitamin B12-Dependent Taurine Synthesis Regulates Growth and Bone Mass. J. Clin. Investig. 2014, 124, 2988–3002. [Google Scholar] [CrossRef] [PubMed]
- Sybesma, W.; Burgess, C.; Starrenburg, M.; van Sinderen, D.; Hugenholtz, J. Multivitamin Production in Lactococcus lactis Using Metabolic Engineering. Metab. Eng. 2004, 6, 109–115. [Google Scholar] [CrossRef]
- Stahmann, K.P.; Kupp, C.; Feldmann, S.D.; Sahm, H. Formation and Degradation of Lipid Bodies Found in the Riboflavin-Producing Fungus Ashbya Gossypii. Appl. Microbiol. Biotechnol. 1994, 42, 121–127. [Google Scholar] [CrossRef]
- Guru, V.; Viswanathan, K. Riboflavin Production in Milk Whey Using Probiotic Bacteria-Lactobacillus acidophilus and Lactococcus lactis. Indian J. Fundam. Appl. Life Sci. 2013, 3, 169–176. [Google Scholar]
- Russo, P.; Capozzi, V.; Arena, M.P.; Spadaccino, G.; Dueñas, M.T.; López, P.; Fiocco, D.; Spano, G. Riboflavin-Overproducing Strains of Lactobacillus fermentum for Riboflavin-Enriched Bread. Appl. Microbiol. Biotechnol. 2014, 98, 3691–3700. [Google Scholar] [CrossRef]
- Jayashree, S.; Rajendhran, J.; Jayaraman, K.; Kalaichelvan, G.; Gunasekaran, P. Improvement of Riboflavin Production by Lactobacillus fermentum Isolated from Yogurt. Food Biotechnol. 2011, 25, 240–251. [Google Scholar] [CrossRef]
- Mohedano, M.L.; Hernández-Recio, S.; Yépez, A.; Requena, T.; Martínez-Cuesta, M.C.; Peláez, C.; Russo, P.; LeBlanc, J.G.; Spano, G.; Aznar, R.; et al. Real-Time Detection of Riboflavin Production by Lactobacillus plantarum Strains and Tracking of Their Gastrointestinal Survival and Functionality in Vitro and in Vivo Using MCherry Labeling. Front. Microbiol. 2019, 10, 1748. [Google Scholar] [CrossRef]
- Arena, M.P.; Russo, P.; Capozzi, V.; López, P.; Fiocco, D.; Spano, G. Probiotic Abilities of Riboflavin-Overproducing Lactobacillus strains: A Novel Promising Application of Probiotics. Appl. Microbiol. Biotechnol. 2014, 98, 7569–7581. [Google Scholar] [CrossRef]
- Hemalatha, M.; Subathra Devi, C. A Statistical Optimization by Response Surface Methodology for the Enhanced Production of Riboflavin from Lactobacillus plantarum–HDS27: A Strain Isolated from Bovine Milk. Front. Microbiol. 2022, 13, 982260. [Google Scholar] [CrossRef]
- Juarez del Valle, M.; Laiño, J.E.; Savoy de Giori, G.; LeBlanc, J.G. Factors Stimulating Riboflavin Produced by Lactobacillus plantarum CRL 725 Grown in a Semi-Defined Medium. J. Basic Microbiol. 2017, 57, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Burgess, C.; O’Connell-Motherway, M.; Sybesma, W.; Hugenholtz, J.; Van Sinderen, D. Riboflavin Production in Lactococcus lactis: Potential for in Situ Production of Vitamin-Enriched Foods. Appl. Environ. Microbiol. 2004, 70, 5769–5777. [Google Scholar] [CrossRef] [PubMed]
- Powers, H.J. Riboflavin (Vitamin B-2) and Health. Am. J. Clin. Nutr. 2003, 77, 1352–1360. [Google Scholar] [CrossRef] [PubMed]
- Ashoori, M.; Saedisomeolia, A. Riboflavin (Vitamin B2) and Oxidative Stress: A Review. Br. J. Nutr. 2014, 111, 1985–1991. [Google Scholar] [CrossRef]
- Saedisomeolia, A.; Ashoori, M. Riboflavin in Human Health: A Review of Current Evidences. In Advances in Food and Nutrition Research; Elsevier Inc.: Amsterdam, The Netherlands, 2018; Volume 83, pp. 57–81. [Google Scholar]
- Shrubsole, M.J.; Shu, X.O.; Li, H.L.; Cai, H.; Yang, G.; Gao, Y.T.; Gao, J.; Zheng, W. Dietary B Vitamin and Methionine Intakes and Breast Cancer Risk among Chinese Women. Am. J. Epidemiol. 2011, 173, 1171–1182. [Google Scholar] [CrossRef] [PubMed]
- Takata, Y.; Cai, Q.; Beeghly-Fadiel, A.; Li, H.; Shrubsole, M.J.; Ji, B.T.; Yang, G.; Chow, W.H.; Gao, Y.T.; Zheng, W.; et al. Dietary B Vitamin and Methionine Intakes and Lung Cancer Risk among Female Never Smokers in China. Cancer Causes Control 2012, 23, 1965–1975. [Google Scholar] [CrossRef]
- Van Den Donk, M.; Buijsse, B.; Van Den Berg, S.W.; Ocké, M.C.; Harryvan, J.L.; Nagengast, F.M.; Kok, F.J.; Kampman, E. Dietary Intake of Folate and Riboflavin, MTHFR C677T Genotype, and Colorectal Adenoma Risk: A Dutch Case-Control Study. Cancer Epidemiol. Biomark. Prev. 2005, 14, 1562–1566. [Google Scholar] [CrossRef] [PubMed]
- Eussen, S.J.P.M.; Vollset, S.E.; Hustad, S.; Midttun, Ø.; Meyer, K.; Fredriksen, Å.; Ueland, P.M.; Jenab, M.; Slimani, N.; Ferrari, P.; et al. Vitamins B2 and B6 and Genetic Polymorphisms Related to One-Carbon Metabolism as Risk Factors for Gastric Adenocarcinoma in the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiol. Biomark. Prev. 2010, 19, 28–38. [Google Scholar] [CrossRef]
- Kabat, G.C.; Miller, A.B.; Jain, M.; Rohan, T.E. Dietary Intake of Selected B Vitamins in Relation to Risk of Major Cancers in Women. Br. J. Cancer 2008, 99, 816–821. [Google Scholar] [CrossRef]
- Coimbra, C.G.; Junqueira, V.B.C. High Doses of Riboflavin and the Elimination of Dietary Red Meat Promote the Recovery of Some Motor Functions in Parkinson’s Disease Patients. Braz. J. Med. Biol. Res. 2003, 36, 1409–1417. [Google Scholar] [CrossRef]
- Johnson, C.C.; Gorell, J.M.; Rybicki, B.A.; Sanders, K.; Peterson, E.L. Adult Nutrient Intake as a Risk Factor for Parkinson’s Disease. Int. J. Epidemiol. 1999, 28, 1102–1109. [Google Scholar] [CrossRef] [PubMed]
- Håglin, L.; Johansson, I.; Forsgren, L.; Bäckman, L. Intake of Vitamin B before Onset of Parkinson’s Disease and Atypical Parkinsonism and Olfactory Function at the Time of Diagnosis. Eur. J. Clin. Nutr. 2017, 71, 97–102. [Google Scholar] [CrossRef]
- Naghashpour, M.; Amani, R.; Sarkaki, A.; Ghadiri, A.; Samarbafzadeh, A.; Jafarirad, S.; Saki Malehi, A. Brain-Derived Neurotrophic and Immunologic Factors: Beneficial Effects of Riboflavin on Motor Disability in Murine Model of Multiple Sclerosis. Iran. J. Basic Med. Sci. 2016, 19, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Naghashpour, M.; Majdinasab, N.; Shakerinejad, G.; Kouchak, M.; Haghighizadeh, M.H.; Jarvandi, F.; Hajinajaf, S. Riboflavin Supplementation to Patients with Multiple Sclerosis Does Not Improve Disability Status nor Is Riboflavin Supplementation Correlated to Homocysteine. Int. J. Vitam. Nutr. Res. 2013, 83, 281–290. [Google Scholar] [CrossRef]
- Lewis, D.; Ashwal, S.; Hershey, A.; Hirtz, D.; Yonker, M.; Silberstein, S. Practice Parameter: Pharmacological Treatment of Migraine Headache in Children and Adolescents: Report of the American Academy of Neurology Quality Standards Subcommittee and the Practice Committee of the Child Neurology Society. Neurology 2004, 63, 2215–2224. [Google Scholar] [CrossRef]
- Schoenen, J.; Jacquy, J.; Lenaerts, M. Effectiveness of High-Dose Riboflavin in Migraine Prophylaxis: A Randomized Controlled Trial. Neurology 1998, 50, 466–470. [Google Scholar] [CrossRef] [PubMed]
- Boehnke, C.; Reuter, U.; Flach, U.; Schuh-Hofer, S.; Einhäupl, K.M.; Arnold, G. High-Dose Riboflavin Treatment Is Efficacious in Migraine Prophylaxis: An Open Study in a Tertiary Care Centre. Eur. J. Neurol. 2004, 11, 475–477. [Google Scholar] [CrossRef] [PubMed]
- Mahdinia, E.; Demirci, A.; Berenjian, A. Production and Application of Menaquinone-7 (Vitamin K2): A New Perspective. World J. Microbiol. Biotechnol. 2017, 33, 2. [Google Scholar] [CrossRef]
- Lim, S.D.; Kim, K.S.; Do, J.R. Physiological Characteristics and Production of Vitamin K2 by Lactobacillus fermentum LC272 Isolated from Raw Milk. Korean J. Food Sci. Anim. Resour. 2011, 31, 513–520. [Google Scholar] [CrossRef]
- Morishita, T.; Tamura, N.; Makino, T.; Kudo, S. Production of Menaquinones by Lactic Acid Bacteria. J. Dairy Sci. 1999, 82, 1897–1903. [Google Scholar] [CrossRef] [PubMed]
- Furuichi, K.; Hojo, K.I.; Katakura, Y.; Ninomiya, K.; Shioya, S. Aerobic Culture of Propionibacterium Freudenreichii ET-3 Can Increase Production Ratio of 1,4-Dihydroxy-2-Naphthoic Acid to Menaquinone. J. Biosci. Bioeng. 2006, 101, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Berenjian, A.; Mahanama, R.; Kavanagh, J.; Dehghani, F. Vitamin K Series: Current Status and Future Prospects. Crit. Rev. Biotechnol. 2015, 35, 199–208. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; Bhutani, J.; O’Keefe, J.H. The Health Benefits of Vitamin K. Open Heart 2015, 2, e000300. [Google Scholar] [CrossRef]
- Geleijnse, J.M.; Vermeer, C.; Grobbee, D.E.; Schurgers, L.J.; Knapen, M.H.J.; Van Der Meer, I.M.; Hofman, A.; Witteman, J.C.M. Dietary Intake of Menaquinone Is Associated with a Reduced Risk of Coronary Heart Disease: The Rotterdam Study. J. Nutr. 2004, 134, 3100–3105. [Google Scholar] [CrossRef]
- Beulens, J.W.J.; Booth, S.L.; Van Den Heuvel, E.G.H.M.; Stoecklin, E.; Baka, A.; Vermeer, C. The Role of Menaquinones (Vitamin K2) in Human Health. Br. J. Nutr. 2013, 110, 1357–1368. [Google Scholar] [CrossRef]
- Gast, G.C.M.; de Roos, N.M.; Sluijs, I.; Bots, M.L.; Beulens, J.W.J.; Geleijnse, J.M.; Witteman, J.C.; Grobbee, D.E.; Peeters, P.H.M.; van der Schouw, Y.T. A High Menaquinone Intake Reduces the Incidence of Coronary Heart Disease. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 504–510. [Google Scholar] [CrossRef]
- Beulens, J.W.J.; Bots, M.L.; Atsma, F.; Bartelink, M.L.E.L.; Prokop, M.; Geleijnse, J.M.; Witteman, J.C.M.; Grobbee, D.E.; van der Schouw, Y.T. High Dietary Menaquinone Intake Is Associated with Reduced Coronary Calcification. Atherosclerosis 2009, 203, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Kanellakis, S.; Moschonis, G.; Tenta, R.; Schaafsma, A.; Van Den Heuvel, E.G.H.M.; Papaioannou, N.; Lyritis, G.; Manios, Y. Changes in Parameters of Bone Metabolism in Postmenopausal Women Following a 12-Month Intervention Period Using Dairy Products Enriched with Calcium, Vitamin D, and Phylloquinone (Vitamin K1) or Menaquinone-7 (Vitamin K2): The Postmenopausal Health Stud. Calcif. Tissue Int. 2012, 90, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Knapen, M.H.J.; Drummen, N.E.; Smit, E.; Vermeer, C.; Theuwissen, E. Three-Year Low-Dose Menaquinone-7 Supplementation Helps Decrease Bone Loss in Healthy Postmenopausal Women. Osteoporos. Int. 2013, 24, 2499–2507. [Google Scholar] [CrossRef]
- Emaus, N.; Gjesdal, C.G.; Almås, B.; Christensen, M.; Grimsgaard, A.S.; Berntsen, G.K.R.; Salomonsen, L.; Fønnebø, V. Vitamin K2 Supplementation Does Not Influence Bone Loss in Early Menopausal Women: A Randomised Double-Blind Placebo-Controlled Trial. Osteoporos. Int. 2010, 21, 1731–1740. [Google Scholar] [CrossRef] [PubMed]
- de Arauz, L.J.; Jozala, A.F.; Mazzola, P.G.; Vessoni Penna, T.C. Nisin Biotechnological Production and Application: A Review. Trends Food Sci. Technol. 2009, 20, 146–154. [Google Scholar] [CrossRef]
- Gálvez, A.; López, R.L.; Abriouel, H.; Valdivia, E.; Omar, N. Ben Application of Bacteriocins in the Control of Foodborne Pathogenic and Spoilage Bacteria. Crit. Rev. Biotechnol. 2008, 28, 125–152. [Google Scholar] [CrossRef] [PubMed]
- Balciunas, E.M.; Castillo Martinez, F.A.; Todorov, S.D.; Franco, B.D.G.D.M.; Converti, A.; Oliveira, R.P. de S. Novel Biotechnological Applications of Bacteriocins: A Review. Food Control 2013, 32, 134–142. [Google Scholar] [CrossRef]
- Amiali, M.N.; Lacroix, C.; Simard, R.E.; Anastasiadou, S.; Papagianni, M.; Ambrosiadis, I.; Koidis, P.; Balciunas, E.M.; Castillo Martinez, F.A.; Todorov, S.D.; et al. High Nisin Z Production by Lactococcus lactis UL719 in Whey Permeate with Aeration. Int. Dairy J. 2008, 9, 17. [Google Scholar]
- Cleveland, J.; Montville, T.J.; Nes, I.F.; Chikindas, M.L. Bacteriocins: Safe, Natural Antimicrobials for Food Preservation. Int. J. Food Microbiol. 2011, 2, 90. [Google Scholar] [CrossRef] [PubMed]
- Deegan, L.H.; Cotter, P.D.; Hill, C.; Ross, P. Bacteriocins: Biological Tools for Bio-Preservation and Shelf-Life Extension. Int. Dairy J. 2006, 16, 1058–1071. [Google Scholar] [CrossRef]
- Silva, C.C.G.; Silva, S.P.M.; Ribeiro, S.C. Application of Bacteriocins and Protective Cultures in Dairy Food Preservation. Front. Microbiol. 2018, 9, 594. [Google Scholar] [CrossRef]
- García-Parra, M.D.; García-Almendárez, B.E.; Guevara-Olvera, L.; Guevara-González, R.G.; Rodríguez, A.; Martínez, B.; Domínguez-Domínguez, J.; Regalado, C. Effect of Sub-Inhibitory Amounts of Nisin and Mineral Salts on Nisin Production by Lactococcus lactis UQ2 in Skim Milk. Food Bioprocess Technol. 2011, 4, 646–654. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Y.; Liao, W.; Wen, Z.; Chen, S. Simultaneous Production of Nisin and Lactic Acid from Cheese Whey: Optimization of Fermentation Conditions through Statistically Based Experimental Designs. Appl. Biochem. Biotechnol.—Part A Enzym. Eng. Biotechnol. 2004, 114, 627–638. [Google Scholar] [CrossRef]
- Jozala, A.F.; Silva, D.P.; Vicente, A.A.; Teixeira, J.A.; Júnior, P.; Penna, T.C. V Processing of Byproducts to Improve Nisin Production by Lactococcus lactis. Int. Dairy J. 2011, 10, 14920–14925. [Google Scholar] [CrossRef]
- Senan, S.; El-aal, H.A.; Dave, R.; Hassan, A. Production and Stability of Nisin in Whey Protein Concentrate. LWT—Food Sci. Technol. 2016, 71, 125–129. [Google Scholar] [CrossRef]
- Amiali, M.N.; Lacroix, C.; Simard, R.E. High Nisin Z Production by Lactococcus lactis UL719 in Whey Permeate with Aeration. World J. Microbiol. Biotechnol. 1998, 14, 887–894. [Google Scholar] [CrossRef]
- Anastasiadou, S.; Papagianni, M.; Ambrosiadis, I.; Koidis, P. Rapid Quantifiable Assessment of Nutritional Parameters Influencing Pediocin Production by Pediococcus acidilactici NRRL B5627. Bioresour. Technol. 2008, 99, 6646–6650. [Google Scholar] [CrossRef]
- Bertrand, N.; Fliss, I.; Lacroix, C. High Nisin-Z Production during Repeated-Cycle Batch Cultures in Supplemented Whey Permeate Using Immobilized Lactococcus lactis UL719. Int. Dairy J. 2001, 11, 953–960. [Google Scholar] [CrossRef]
- Lv, W.; Zhang, X.; Cong, W. Modelling the Production of Nisin by Lactococcus lactis in Fed-Batch Culture. Appl. Microbiol. Biotechnol. 2005, 68, 322–326. [Google Scholar] [CrossRef]
- Malvido, M.C.; González, E.A.; Guerra, N.P. Nisin Production in Realkalized Fed-Batch Cultures in Whey with Feeding with Lactose- or Glucose-Containing Substrates. Appl. Microbiol. Biotechnol. 2016, 100, 7899–7908. [Google Scholar] [CrossRef] [PubMed]
- Malvido, M.C.; Alonso González, E.; Outeiriño, D.; Fajardo Bernárdez, P.; Pérez Guerra, N. Combination of Food Wastes for an Efficient Production of Nisin in Realkalized Fed-Batch Cultures. Biochem. Eng. J. 2017, 123, 13–23. [Google Scholar] [CrossRef]
- Malvido, M.C.; González, E.A.; Bazán Tantaleán, D.L.; Bendaña Jácome, R.J.; Guerra, N.P. Batch and Fed-Batch Production of Probiotic Biomass and Nisin in Nutrient-Supplemented Whey Media. Braz. J. Microbiol. 2019, 50, 915–925. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, L.; Jing, Y.; Li, X.; Zhao, Y. Variable Volume Fed-Batch Fermentation for Nisin Production by Lactococcus lactis subsp. Lactis W28. Appl. Biochem. Biotechnol. 2009, 152, 372–382. [Google Scholar] [CrossRef]
- Simova, E.D.; Beshkova, D.M.; Angelov, M.P.; Dimitrov, Z.P. Bacteriocin Production by Strain Lactobacillus delbrueckii ssp. bulgaricus BB18 during Continuous Prefermentation of Yogurt Starter Culture and Subsequent Batch Coagulation of Milk. J. Ind. Microbiol. Biotechnol. 2008, 35, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, H.; Mizuguchi, T.; Tanaka, E.; Shioya, S. Nisin Production by a Mixed-Culture System Consisting of Lactococcus lactis and Kluyveromyces marxianus. Appl. Environ. Microbiol. 1999, 65, 3134–3141. [Google Scholar] [CrossRef]
- Liu, C.; Hu, B.; Liu, Y.; Chen, S. Stimulation of Nisin Production from Whey by a Mixed Culture of Lactococcus lactis and Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 2006, 131, 751–761. [Google Scholar] [CrossRef] [PubMed]
- Guerra, N.P.; Pastrana, L. Enhanced Nisin and Pediocin Production on Whey Supplemented with Different Nitrogen Sources. Biotechnol. Lett. 2001, 23, 609–612. [Google Scholar] [CrossRef]
- Guerra, N.P.; Pastrana, L. Influence of PH Drop on Both Nisin and Pediocin Production by Lactococcus lactis and Pediococcus acidilactici. Lett. Appl. Microbiol. 2003, 37, 51–55. [Google Scholar] [CrossRef]
- Guerra, N.P.; Rua, M.L.; Pastrana, L. Nutritional Factors Affecting the Production of Two Bacteriocins from Lactic Acid Bacteria on Whey. Int. J. Food Microbiol. 2001, 70, 267–281. [Google Scholar] [CrossRef]
- Goulhen, F.; Meghrous, J.; Lacroix, C. Production of a Nisin Z/Pediocin Mixture by PH-Controlled Mixed-Strain Batch Cultures in Supplemented Whey Permeate. J. Appl. Microbiol. 1999, 86, 399–406. [Google Scholar] [CrossRef]
- Liao, C.; Yousef, A.E.; Richter, E.R.; Chism, G.W. Pediococcus acidilactici PO2 Bacteriocin Production in Whey Permeate and Inhibition of Listeria monocyfogenes in Foods. J. Food Sci. 1993, 58, 430–434. [Google Scholar] [CrossRef]
- Somkuti, G.A.; Steinberg, D.H. Pediocin Production in Milk by Pediococcus acidilactici in Co-Culture with Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus. J. Ind. Microbiol. Biotechnol. 2010, 37, 65–69. [Google Scholar] [CrossRef]
- Halami, P.M.; Chandrashekar, A. Enhanced Production of Pediocin C20 by a Native Strain of Pediococcus acidilactici C20 in an Optimized Food-Grade Medium. Process Biochem. 2005, 40, 1835–1840. [Google Scholar] [CrossRef]
- Guerra, N.P.; Bernárdez, P.F.; Castro, L.P. Fed-Batch Pediocin Production on Whey Using Different Feeding Media. Enzyme Microb. Technol. 2007, 41, 397–406. [Google Scholar] [CrossRef]
- Guerra, N.P.; Bernárdez, P.F.; Agrasar, A.T.; López Macías, C.; Castro, L.P. Fed-Batch Pediocin Production by Pediococcus acidilactici NRRL B-5627 on Whey. Biotechnol. Appl. Biochem. 2005, 42, 17. [Google Scholar] [CrossRef]
- Biswas, S.R.; Ray, P.; Johnson, M.C.; Ray, B. Influence of Growth Conditions on the Production of a Bacteriocin, Pediocin AcH, by Pediococcus acidilactici H. Appl. Environ. Microbiol. 1991, 57, 1265–1267. [Google Scholar] [CrossRef] [PubMed]
- Naghmouchi, K.; Fliss, I.; Drider, D.; Lacroix, C. Pediocin PA-1 Production during Repeated-Cycle Batch Culture of Immobilized Pediococcus acidilactici UL5 Cells. J. Biosci. Bioeng. 2008, 105, 513–517. [Google Scholar] [CrossRef] [PubMed]
- Garsa, A.K.; Kumariya, R.; Kumar, A.; Lather, P.; Kapila, S.; Sood, S.K. Industrial Cheese Whey Utilization for Enhanced Production of Purified Pediocin PA-1. LWT—Food Sci. Technol. 2014, 59, 656–665. [Google Scholar] [CrossRef]
- Gutiérrez-Cortés, C.; Suarez, H.; Buitrago, G.; Nero, L.A.; Todorov, S.D. Enhanced Bacteriocin Production by Pediococcus pentosaceus 147 in Co-Culture With Lactobacillus plantarum LE27 on Cheese Whey Broth. Front. Microbiol. 2018, 9, 2952. [Google Scholar] [CrossRef]
- Shin, J.M.; Gwak, J.W.; Kamarajan, P.J.; Fenno, C.; Rickard, A.H.; Kapila, L.Y. Biomedical Applications of Nisin. J. Appl. Microbiol. 2016, 120, 145–166. [Google Scholar] [CrossRef]
- Porto, M.C.W.; Kuniyoshi, T.M.; Azevedo, P.O.S.; Vitolo, M.; Oliveira, R.P.S. Pediococcus spp.: An Important Genus of Lactic Acid Bacteria and Pediocin Producers. Biotechnol. Adv. 2017, 35, 361–374. [Google Scholar] [CrossRef]
- Rodríguez, J.M.; Martínez, M.I.; Kok, J. Pediocin PA-1, a Wide-Spectrum Bacteriocin from Lactic Acid Bacteria. Crit. Rev. Food Sci. Nutr. 2002, 42, 91–121. [Google Scholar] [CrossRef]
- Papagianni, M.; Anastasiadou, S. Pediocins: The Bacteriocins of Pediococci. Sources, Production, Properties and Applications. Microb. Cell Fact. 2009, 8, 3. [Google Scholar] [CrossRef]
- Yang, R.; Ray, B. Factors Influencing Production of Bacteriocins by Lactic Acid Bacteria. Food Microbiol. 1994, 11, 281–291. [Google Scholar] [CrossRef]
- Dobson, A.; Cotter, P.D.; Paul Ross, R.; Hill, C. Bacteriocin Production: A Probiotic Trait? Appl. Environ. Microbiol. 2012, 78, 1–6. [Google Scholar] [CrossRef]
- Dabour, N.; Zihler, A.; Kheadr, E.; Lacroix, C.; Fliss, I. In Vivo Study on the Effectiveness of Pediocin PA-1 and Pediococcus acidilactici UL5 at Inhibiting Listeria monocytogenes. Int. J. Food Microbiol. 2009, 133, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Millette, M.; Cornut, G.; Dupont, C.; Shareck, F.; Archambault, D.; Lacroix, M. Capacity of Human Nisin- and Pediocin-Producing Lactic Acid Bacteria to Reduce Intestinal Colonization by Vancomycin-Resistant Enterococci. Appl. Environ. Microbiol. 2008, 74, 1997–2003. [Google Scholar] [CrossRef] [PubMed]
- De Kwaadsteniet, M.; Doeschate, K.T.; Dicks, L.M.T. Nisin F in the Treatment of Respiratory Tract Infections Caused by Staphylococcus aureus. Lett. Appl. Microbiol. 2009, 48, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Blay, G.L.; Lacroix, C.; Zihler, A.; Fliss, I. In Vitro Inhibition Activity of Nisin A, Nisin Z, Pediocin PA-1 and Antibiotics against Common Intestinal Bacteria. Lett. Appl. Microbiol. 2007, 45, 252–257. [Google Scholar] [CrossRef]
- Kaur, S.; Kaur, S. Bacteriocins as Potential Anticancer Agents. Front. Pharmacol. 2015, 6, 272. [Google Scholar] [CrossRef] [PubMed]
- Joo, N.E.; Ritchie, K.; Kamarajan, P.; Miao, D.; Kapila, Y.L. Nisin, an Apoptogenic Bacteriocin and Food Preservative, Attenuates HNSCC Tumorigenesis via CHAC1. Cancer Med. 2012, 1, 295–305. [Google Scholar] [CrossRef]
- Kamarajan, P.; Hayami, T.; Matte, B.; Liu, Y.; Danciu, T.; Ramamoorthy, A.; Worden, F.; Kapila, S.; Kapila, Y. Nisin ZP, a Bacteriocin and Food Preservative, Inhibits Head and Neck Cancer Tumorigenesis and Prolongs Survival. PLoS ONE 2015, 10, e0131008. [Google Scholar] [CrossRef]
- Preet, S.; Bharati, S.; Panjeta, A.; Tewari, R.; Rishi, P. Effect of Nisin and Doxorubicin on DMBA-Induced Skin Carcinogenesis—A Possible Adjunct Therapy. Tumor Biol. 2015, 36, 8301–8308. [Google Scholar] [CrossRef]
- Villarante, K.I.; Elegado, F.B.; Iwatani, S.; Zendo, T.; Sonomoto, K.; de Guzman, E.E. Purification, Characterization and in Vitro Cytotoxicity of the Bacteriocin from Pediococcus acidilactici K2a2-3 against Human Colon Adenocarcinoma (HT29) and Human Cervical Carcinoma (HeLa) Cells. World J. Microbiol. Biotechnol. 2011, 27, 975–980. [Google Scholar] [CrossRef]
- Kumar, B.; Balgir, P.P.; Kaur, B.; Mittu, B.; Chauhan, A. In Vitro Cytotoxicity of Native and Rec-Pediocin CP2 Against Cancer Cell Lines: A Comparative Study. Pharm. Anal. Acta 2012, 3, 2–6. [Google Scholar] [CrossRef]
- Hancock, R.E.W.; Sahl, H.G. Antimicrobial and Host-Defense Peptides as New Anti-Infective Therapeutic Strategies. Nat. Biotechnol. 2006, 24, 1551–1557. [Google Scholar] [CrossRef]
- Kindrachuk, J.; Jenssen, H.; Elliott, M.; Nijnik, A.; Magrangeas-Janot, L.; Pasupuleti, M.; Thorson, L.; Ma, S.; Easton, D.M.; Bains, M.; et al. Manipulation of Innate Immunity by a Bacterial Secreted Peptide: Lantibiotic Nisin Z Is Selectively Immunomodulatory. Innate Immun. 2013, 19, 315–327. [Google Scholar] [CrossRef]
- De Pablo, M.A.; Gaforio, J.J.; Gallego, A.M.; Ortega, E.; Gálvez, A.M.; Alvarez De Cienfuegos López, G. Evaluation of Immunomodulatory Effects of Nisin-Containing Diets on Mice. FEMS Immunol. Med. Microbiol. 1999, 24, 35–42. [Google Scholar] [CrossRef]
- Villamil, L.; Figueras, A.; Novoa, B. Immunomodulatory Effects of Nisin in Turbot (Scophthalmus maximus L.). Fish Shellfish Immunol. 2003, 14, 157–169. [Google Scholar] [CrossRef]
- Begde, D.; Bundale, S.; Mashitha, P.; Rudra, J.; Nashikkar, N.; Upadhyay, A. Immunomodulatory Efficacy of Nisin-a Bacterial Lantibiotic Peptide. J. Pept. Sci. 2011, 17, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Udenigwe, C.C.; Aluko, R.E. Food Protein-Derived Bioactive Peptides: Production, Processing, and Potential Health Benefits. J. Food Sci. 2012, 77, R11–R24. [Google Scholar] [CrossRef]
- Korhonen, H.; Pihlanto, A. Bioactive Peptides: Production and Functionality. Int. Dairy J. 2006, 16, 945–960. [Google Scholar] [CrossRef]
- Hernández-Ledesma, B.; Del Mar Contreras, M.; Recio, I. Antihypertensive Peptides: Production, Bioavailability and Incorporation into Foods. Adv. Colloid Interface Sci. 2011, 165, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Daliri, E.B.; Lee, B.H.; Park, B.; Kim, S.; Oh, D.-H. Antihypertensive Peptides from Whey Proteins Fermented by Lactic Acid Bacteria. Food Sci. Biotechnol. 2018, 27, 1781–1789. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.E.; Park, S.Y.; Atwal, A.; Gibbs, B.F.; Lee, B.H. Angiotensin I-converting Enzyme (Ace) Inhibitory Peptides from Whey Fermented by Lactobacillus Species. J. Food Biochem. 2009, 33, 587–602. [Google Scholar] [CrossRef]
- Fuglsang, A.; Rattray, F.P.; Nilsson, D.; Nyborg, N.C.B. Lactic Acid Bacteria: Inhibition of Angiotensin Converting Enzyme in Vitro and in Vivo. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2003, 83, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Ledesma, B.; Miralles, B.; Amigo, L.; Ramos, M.; Recio, I. Identification of Antioxidant and ACE-Inhibitory Peptides in Fermented Milk. J. Sci. Food Agric. 2005, 85, 1041–1048. [Google Scholar] [CrossRef]
- Yamamoto, N.; Akino, A.; Takano, T. Antihypertensive Effects of Different Kinds of Fermented Milk in Spontaneously Hypertensive Rats. Biosci. Biotechnol. Biochem. 1994, 58, 776–778. [Google Scholar] [CrossRef]
- Seppo, L.; Jauhiainen, T.; Poussa, T.; Korpela, R. A Fermented Milk High in Bioactive Peptides Has a Blood Pressure-Lowering Effect in Hypertensive Subjects. Am. J. Clin. Nutr. 2003, 77, 326–330. [Google Scholar] [CrossRef]
- Nejati, F.; Rizzello, C.G.; Di Cagno, R.; Sheikh-Zeinoddin, M.; Diviccaro, A.; Minervini, F.; Gobbetti, M. Manufacture of a Functional Fermented Milk Enriched of Angiotensin-I Converting Enzyme (ACE)-Inhibitory Peptides and γ-Amino Butyric Acid (GABA). LWT—Food Sci. Technol. 2013, 51, 183–189. [Google Scholar] [CrossRef]
- Gómez-Ruiz, J.Á.; Ramos, M.; Recio, I. Angiotensin-Converting Enzyme-Inhibitory Peptides in Manchego Cheeses Manufactured with Different Starter Cultures. Int. Dairy J. 2002, 12, 697–706. [Google Scholar] [CrossRef]
- Ryhänen, E.L.; Pihlanto-Leppälä, A.; Pahkala, E. A New Type of Ripened, Low-Fat Cheese with Bioactive Properties. Int. Dairy J. 2001, 11, 441–447. [Google Scholar] [CrossRef]
- Korhonen, H. Milk-Derived Bioactive Peptides: From Science to Applications. J. Funct. Foods 2009, 1, 177–187. [Google Scholar] [CrossRef]
- Wang, H.K.; Dong, C.; Chen, Y.F.; Cui, L.M.; Zhang, H.P. A New Probiotic Cheddar Cheese with High ACE-Inhibitory Activity and γ-Aminobutyric Acid Content Produced with Koumiss-Derived Lactobacillus casei Zhang. Food Technol. Biotechnol. 2010, 48, 62–70. [Google Scholar]
- Minervini, F.; Bilancia, M.T.; Siragusa, S.; Gobbetti, M.; Caponio, F. Fermented Goats’ Milk Produced with Selected Multiple Starters as a Potentially Functional Food. Food Microbiol. 2009, 26, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Zhao, S.; Wang, H.; Cai, C.; Chen, Y.; Zhang, H. ACE-Inhibitory Activity and Gamma-Aminobutyric Acid Content of Fermented Skim Milk by Lactobacillus helveticus Isolated from Xinjiang Koumiss in China. Eur. Food Res. Technol. 2009, 228, 607–612. [Google Scholar] [CrossRef]
- Loghman, S.; Moayedi, A.; Mahmoudi, M.; Khomeiri, M.; Gómez-Mascaraque, L.G.; Garavand, F. Single and Co-Cultures of Proteolytic Lactic Acid Bacteria in the Manufacture of Fermented Milk with High ACE Inhibitory and Antioxidant Activities. Fermentation 2022, 8, 448. [Google Scholar] [CrossRef]
- Mazorra-Manzano, M.A.; Robles-Porchas, G.R.; González-Velázquez, D.A.; Torres-Llanez, M.J.; Martínez-Porchas, M.; García-Sifuentes, C.O.; González-Córdova, A.F.; Vallejo-Córdoba, B. Cheese Whey Fermentation by Its Native Microbiota: Proteolysis and Bioactive Peptides Release with ACE-Inhibitory Activity. Fermentation 2020, 6, 19. [Google Scholar] [CrossRef]
- Hayes, M.; Stanton, C.; Slattery, H.; O’Sullivan, O.; Hill, C.; Fitzgerald, G.F.; Ross, R.P. Casein Fermentate of Lactobacillus animalis DPC6134 Contains a Range of Novel Propeptide Angiotensin-Converting Enzyme Inhibitors. Appl. Environ. Microbiol. 2007, 73, 4658–4667. [Google Scholar] [CrossRef]
- Raveschot, C.; Deracinois, B.; Bertrand, E.; Flahaut, C.; Frémont, M.; Drider, D.; Dhulster, P.; Cudennec, B.; Coutte, F. Integrated Continuous Bioprocess Development for ACE-Inhibitory Peptide Production by Lactobacillus helveticus Strains in Membrane Bioreactor. Front. Bioeng. Biotechnol. 2020, 8, 585815. [Google Scholar] [CrossRef]
- Pessione, E.; Cirrincione, S. Bioactive Molecules Released in Food by Lactic Acid Bacteria: Encrypted Peptides and Biogenic Amines. Front. Microbiol. 2016, 7, 876. [Google Scholar] [CrossRef]
- Aihara, K.; Nakamura, Y.; Kajimoto, O.; Hirata, H.; Takahashi, R. Effect of Powdered Fermented Milk with Lactobacillus helveticus on Subjects with High-Normal Blood Pressure or Mild Hypertension. J. Am. Coll. Nutr. 2005, 24, 257–265. [Google Scholar] [CrossRef]
- Yang, G.; Jiang, Y.; Yang, W.; Du, F.; Yao, Y.; Shi, C.; Wang, C. Effective Treatment of Hypertension by Recombinant Lactobacillus plantarum Expressing Angiotensin Converting Enzyme Inhibitory Peptide. Microb. Cell Fact. 2015, 14, 202. [Google Scholar] [CrossRef]
- Hata, Y.; Yamamoto, M.; Ohni, M.; Nakajima, K.; Nakamura, Y.; Takano, T. A Placebo-Controlled Study of the Effect of Sour Milk on Blood Pressure in Hypertensive Subjects. Am. J. Clin. Nutr. 1996, 64, 767–771. [Google Scholar] [CrossRef] [PubMed]
- Jauhiainen, T.; Rönnback, M.; Vapaatalo, H.; Wuolle, K.; Kautiainen, H.; Groop, P.H.; Korpela, R. Long-Term Intervention with Lactobacillus helveticus Fermented Milk Reduces Augmentation Index in Hypertensive Subjects. Eur. J. Clin. Nutr. 2010, 64, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Hirota, T.; Nonaka, A.; Matsushita, A.; Uchida, N.; Ohki, K.; Asakura, M.; Kitakaze, M. Milk Casein-Derived Tripeptides, VPP and IPP Induced NO Production in Cultured Endothelial Cells and Endothelium-Dependent Relaxation of Isolated Aortic Rings. Heart Vessels 2011, 26, 549–556. [Google Scholar] [CrossRef]
- Kullisaar, T.; Zilmer, M.; Mikelsaar, M.; Vihalemm, T.; Annuk, H.; Kairane, C.; Kilk, A. Two Antioxidative Lactobacilli Strains as Promising Probiotics. Int. J. Food Microbiol. 2002, 72, 215–224. [Google Scholar] [CrossRef]
- Lin, M.Y.; Yen, C.L. Reactive Oxygen Species and Lipid Peroxidation Product-Scavenging Ability of Yogurt Organisms. J. Dairy Sci. 1999, 82, 1629–1634. [Google Scholar] [CrossRef]
- Sah, B.N.P.; Vasiljevic, T.; McKechnie, S.; Donkor, O.N. Effect of Probiotics on Antioxidant and Antimutagenic Activities of Crude Peptide Extract from Yogurt. Food Chem. 2014, 156, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Shu, G.; Shi, X.; Chen, L.; Kou, J.; Meng, J.; Chen, H. Antioxidant Peptides from Goat Milk Fermented by Lactobacillus casei L61: Preparation, Optimization, and Stability Evaluation in Simulated Gastrointestinal Fluid. Nutrients 2018, 10, 797. [Google Scholar] [CrossRef]
- Virtanen, T.; Pihlanto, A.; Akkanen, S.; Korhonen, H. Development of Antioxidant Activity in Milk Whey during Fermentation with Lactic Acid Bacteria. J. Appl. Microbiol. 2007, 102, 106–115. [Google Scholar] [CrossRef]
- Leclerc, P.L.; Gauthier, S.F.; Bachelard, H.; Santure, M.; Roy, D. Antihypertensive Activity of Casein-Enriched Milk Fermented by Lactobacillus helveticus. Int. Dairy J. 2002, 12, 995–1004. [Google Scholar] [CrossRef]
- Fardet, A.; Rock, E. In Vitro and in Vivo Antioxidant Potential of Milks, Yoghurts, Fermented Milks and Cheeses: A Narrative Review of Evidence. Nutr. Res. Rev. 2018, 31, 52–70. [Google Scholar] [CrossRef]
- Sharma, R.; Kapila, R.; Kapasiya, M.; Saliganti, V.; Dass, G.; Kapila, S. Dietary Supplementation of Milk Fermented with Probiotic Lactobacillus fermentum Enhances Systemic Immune Response and Antioxidant Capacity in Aging Mice. Nutr. Res. 2014, 34, 968–981. [Google Scholar] [CrossRef]
- Bay, B.H.; Lee, Y.K.; Tan, B.K.H.; Ling, E.A. Lipid Peroxidative Stress and Antioxidative Enzymes in Brains of Milk-Supplemented Rats. Neurosci. Lett. 1999, 277, 127–130. [Google Scholar] [CrossRef]
- Zommara, M.; Tachibana, N.; Sakono, M.; Suzuki, Y.; Oda, T.; Hashiba, H.; Imaizumi, K. Whey from Cultured Skim Milk Decreases Serum Cholesterol and Increases Antioxidant Enzymes in Liver and Red Blood Cells in Rats. Nutr. Res. 1996, 16, 293–302. [Google Scholar] [CrossRef]
- Diana, M.; Quílez, J.; Rafecas, M. Gamma-Aminobutyric Acid as a Bioactive Compound in Foods: A Review. J. Funct. Foods 2014, 10, 407–420. [Google Scholar] [CrossRef]
- Ram, S.; Mitra, M.; Shah, F.; Rani, S.; Mishra, S. Bacteria as an Alternate Biofactory for Carotenoid Production: A Review of Its Applications, Opportunities and Challenges. J. Funct. Foods 2020, 67, 103867. [Google Scholar] [CrossRef]
- Yoto, A.; Murao, S.; Motoki, M.; Yokoyama, Y.; Horie, N.; Takeshima, K.; Masuda, K.; Kim, M.; Yokogoshi, H. Oral Intake of γ-Aminobutyric Acid Affects Mood and Activities of Central Nervous System during Stressed Condition Induced by Mental Tasks. Amino Acids 2012, 43, 1331–1337. [Google Scholar] [CrossRef] [PubMed]
- Fiedor, J.; Burda, K. Potential Role of Carotenoids as Antioxidants in Human Health and Disease. Nutrients 2014, 6, 466–488. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K.; Shirai, T.; Ochiai, H.; Kasao, M.; Hayakawa, K.; Kimura, M.; Sansawa, H. Blood-Pressure-Lowering Effect of a Novel Fermented Milk Containing γ-Aminobutyric Acid (GABA) in Mild Hypertensives. Eur. J. Clin. Nutr. 2003, 57, 490–495. [Google Scholar] [CrossRef]
- Thaker, P.H.; Yokoi, K.; Jennings, N.B.; Li, Y.; Rebhun, R.B.; Rousseau, D.L.; Fan, D.; Sood, A.K. Inhibition of Experimental Colon Cancer Metastasis by the GABA-Receptor Agonist Nembutal. Cancer Biol. Ther. 2005, 4, 753–758. [Google Scholar] [CrossRef] [PubMed]
- Hepsomali, P.; Groeger, J.A.; Nishihira, J.; Scholey, A. Effects of Oral Gamma-Aminobutyric Acid (GABA) Administration on Stress and Sleep in Humans: A Systematic Review. Front. Neurosci. 2020, 14, 923. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Mei, L.H.; Wu, H.; Lin, D.Q. Biosynthesis of γ-Aminobutyric Acid (GABA) Using Immobilized Whole Cells of Lactobacillus brevis. World J. Microbiol. Biotechnol. 2007, 23, 865–871. [Google Scholar] [CrossRef]
- Binh, T.T.T.; Ju, W.T.; Jung, W.J.; Park, R.D. Optimization of γ-Amino Butyric Acid Production in a Newly Isolated Lactobacillus brevis. Biotechnol. Lett. 2014, 36, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Qiu, T.; Huang, G.; Cao, Y. Production of Gamma-Aminobutyric Acid by Lactobacillus brevis NCL912 Using Fed-Batch Fermentation. Microb. Cell Fact. 2010, 9, 85. [Google Scholar] [CrossRef]
- Peng, C.; Huang, J.; Hu, S.; Zhao, W.; Yao, S.; Mei, L. A Two-Stage PH and Temperature Control with Substrate Feeding Strategy for Production of Gamma-Aminobutyric Acid by Lactobacillus brevis CGMCC 1306. Chin. J. Chem. Eng. 2013, 21, 1190–1194. [Google Scholar] [CrossRef]
- Villegas, J.M.; Brown, L.; Savoy de Giori, G.; Hebert, E.M. Optimization of Batch Culture Conditions for GABA Production by Lactobacillus brevis CRL 1942, Isolated from Quinoa Sourdough. LWT—Food Sci. Technol. 2016, 67, 22–26. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, X.; Fu, J.; Wang, S.; Chen, Y.; Chang, K.; Li, H. Substrate Sustained Release-Based High Efficacy Biosynthesis of GABA by Lactobacillus brevis NCL912. Microb. Cell Fact. 2018, 17, 80. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Hsuesh, Y.-H.; Kuo, J.-M.; Liu, S.-J. Characterization of a Potential Probiotic Lactobacillus brevis RK03 and Efficient Production of γ-Aminobutyric Acid in Batch Fermentation. Mol. Sci. 2018, 19, 143. [Google Scholar] [CrossRef]
- Cataldo, P.G.; Villegas, M.; Savoy, G.; Giori, D.; Saavedra, L.; Hebert, E.M. Enhancement of γ-Aminobutyric Acid (GABA) Production by Lactobacillus brevis CRL 2013 Based on Carbohydrate Fermentation. Int. J. Food Microbiol. 2020, 333, 108792. [Google Scholar] [CrossRef]
- Choi, S.-I.; Lee, J.-W.; Park, S.; Lee, M.-Y.; Ji, G.-E.; Park, M.-S.; Heo, T.-R. Improvement of Gamma-Aminobutyric Acid Production Using Cell Entrapment of Lactobacillus brevis GABA 057. J. Microbiol. Biotechnol. 2005, 16, 562–568. [Google Scholar]
- Alizadeh Behbahani, B.; Jooyandeh, H.; Falah, F.; Vasiee, A. Gamma-Aminobutyric Acid Production by Lactobacillus brevis A3: Optimization of Production, Antioxidant Potential, Cell Toxicity, and Antimicrobial Activity. Food Sci. Nutr. 2020, 8, 5330–5339. [Google Scholar] [CrossRef]
- Park, K.B.; Oh, S.H. Production of Yogurt with Enhanced Levels of Gamma-Aminobutyric Acid and Valuable Nutrients Using Lactic Acid Bacteria and Germinated Soybean Extract. Bioresour. Technol. 2007, 98, 1675–1679. [Google Scholar] [CrossRef] [PubMed]
- Seo, M.J.; Nam, Y.D.; Park, S.L.; Lee, S.Y.; Yi, S.H.; Lim, S., II. γ-Aminobutyric Acid Production in Skim Milk Co-Fermented with Lactobacillus brevis 877G and Lactobacillus sakei 795. Food Sci. Biotechnol. 2013, 22, 751–755. [Google Scholar] [CrossRef]
- Cho, Y.R.; Chang, J.Y.; Chang, H.C. Production of Gamma Amino-Bytyric Acid by Lactobacillus buchneri Isolated from Kimchi and Its Neuroprotective Effect on Neuronal Cells. J. Microbiol. Biotechnol. 2007, 17, 104–109. [Google Scholar]
- Park, K.-B.; Oh, S.-H. Isolation and Characterization of Lactobacillus buchneri Strains with High GABA Producing Capacity from Naturally Aged Cheese. Food Sci. Biotechnol. 2006, 15, 86–90. [Google Scholar]
- Siragusa, S.; De Angelis, M.; Di Cagno, R.; Rizzello, C.G.; Coda, R.; Gobbetti, M. Synthesis of γ-Aminobutyric Acid by Lactic Acid Bacteria Isolated from a Variety of Italian Cheeses. Appl. Environ. Microbiol. 2007, 73, 7283–7290. [Google Scholar] [CrossRef] [PubMed]
- Komatsuzaki, N.; Shima, J.; Kawamoto, S.; Momose, H.; Kimura, T. Production of γ-Aminobutyric Acid (GABA) by Lactobacillus paracasei Isolated from Traditional Fermented Foods. Food Microbiol. 2005, 22, 497–504. [Google Scholar] [CrossRef]
- Servili, M.; Rizzello, C.G.; Taticchi, A.; Esposto, S.; Urbani, S.; Mazzacane, F.; Di Maio, I.; Selvaggini, R.; Gobbetti, M.; Di Cagno, R. Functional Milk Beverage Fortified with Phenolic Compounds Extracted from Olive Vegetation Water, and Fermented with Functional Lactic Acid Bacteria. Int. J. Food Microbiol. 2011, 147, 45–52. [Google Scholar] [CrossRef]
- Tung, Y.T.; Lee, B.H.; Liu, C.F.; Pan, T.M. Optimization of Culture Condition for ACEI and GABA Production by Lactic Acid Bacteria. J. Food Sci. 2011, 76, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Kim, D.H.; Kang, H.J.; Shin, M.; Yang, S.Y.; Yang, J.; Jung, Y.H. Enhanced Production of γ-Aminobutyric Acid (GABA) Using Lactobacillus plantarum EJ2014 with Simple Medium Composition. LWT 2021, 137, 110443. [Google Scholar] [CrossRef]
- Ratanaburee, A.; Kantachote, D. Enhancement of γ-Aminobutyric Acid in a Fermented Red Seaweed Beverage by Starter Culture Lactobacillus plantarum DW12. Electron. J. Biotechnol. 2011, 14, 1. [Google Scholar] [CrossRef]
- Park, S.; Kim, K.; Lee, M.; Lim, S. Physiological Characteristics and GABA Production of Lactobacillus plantarum K255 Isolated from Kimchi. Korean J. Food Sci. Anim. Resour. 2013, 33, 595–602. [Google Scholar] [CrossRef]
- Shan, Y.; Man, C.X.; Han, X.; Li, L.; Guo, Y.; Deng, Y.; Li, T.; Zhang, L.W.; Jiang, Y.J. Evaluation of Improved γ-Aminobutyric Acid Production in Yogurt Using Lactobacillus plantarum NDC75017. J. Dairy Sci. 2015, 98, 2138–2149. [Google Scholar] [CrossRef]
- Tajabadi, N.; Ebrahimpour, A.; Baradaran, A.; Rahim, R.A.; Mahyudin, N.A.; Yazid, M.; Manap, A.; Bakar, F.A.; Saari, N. Optimization of γ-Aminobutyric Acid Production by Lactobacillus plantarum Taj-Apis362 from Honeybees. Molecules 2015, 20, 6654–6669. [Google Scholar] [CrossRef]
- Cagno, R.D.; Mazzacane, F.; Rizzello, C.G.; De Angelis, M.; Giuliani, G.; Meloni, M.; De Servi, B.; Gobbetti, M. Synthesis of γ-Aminobutyric Acid (GABA) by Lactobacillus plantarum DSM19463: Functional Grape Must Beverage and Dermatological Applications. Appl. Microb. Cell Physiol. 2010, 86, 731–741. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lee, J.; Lim, S. The Probiotic Characteristics and GABA Production of Lactobacillus plantarum K154 Isolated from Kimchi. Food Sci. Biotechnol. 2014, 23, 1951–1957. [Google Scholar] [CrossRef]
- Karimian, E.; Moayedi, A.; Khomeiri, M.; Aalami, M.; Mahoonak, A.S. Application of High-GABA Producing Lactobacillus plantarum Isolated from Traditional Cabbage Pickle in the Production of Functional Fermented Whey-Based Formulate. J. Food Meas. Charact. 2020, 14, 3408–3416. [Google Scholar] [CrossRef]
- Lin, Q. Submerged Fermentation of Lactobacillus rhamnosus YS9 for γ-Aminobutyric Acid (GABA) Production. Braz. J. Microbiol. 2013, 44, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Kook, M.C.; Seo, M.J.; Cheigh, C.I.; Lee, S.J.; Pyun, Y.R.; Park, H. Enhancement of γ-Amminobutyric Acid Production by Lactobacillus sakei B2-16 Expressing Glutamate Decarboxylase from Lactobacillus plantarum ATCC 14917. J. Appl. Biol. Chem. 2010, 53, 816–820. [Google Scholar] [CrossRef]
- Yang, S.Y.; Lü, F.X.; Lu, Z.X.; Bie, X.M.; Jiao, Y.; Sun, L.J.; Yu, B. Production of γ-Aminobutyric Acid by Streptococcus salivarius subsp. thermophilus Y2 under Submerged Fermentation. Amino Acids 2008, 34, 473–478. [Google Scholar] [CrossRef]
- Linares, D.M.; O’Callaghan, T.F.; O’Connor, P.M.; Ross, R.P.; Stanton, C. Streptococcus thermophilus APC151 Strain Is Suitable for the Manufacture of Naturally Gaba-Enriched Bioactive Yogurt. Front. Microbiol. 2016, 7, 1876. [Google Scholar] [CrossRef]
- Wu, Q.; Law, Y.S.; Shah, N.P. Dairy Streptococcus thermophilus Improves Cell Viability of Lactobacillus brevis NPS-QW-145 and Its γ-Aminobutyric Acid Biosynthesis Ability in Milk. Sci. Rep. 2015, 5, 12885. [Google Scholar] [CrossRef]
- Kook, M.C.; Cho, S.C. Production of GABA (Gamma Amino Butyric Acid) by Lactic Acid Bacteria. Korean J. Food Sci. Anim. Resour. 2013, 33, 377–389. [Google Scholar] [CrossRef]
- Zhuang, K.; Jiang, Y.; Feng, X.; Li, L.; Dang, F.; Zhang, W.; Man, C. Transcriptomic Response to GABA-Producing Lactobacillus plantarum CGMCC 1.2437T Induced by L-MSG. PLoS ONE 2018, 13, e0199021. [Google Scholar] [CrossRef]
- Sanchart, C.; Watthanasakphuban, N.; Boonseng, O.; Nguyen, T.H.; Haltrich, D.; Maneerat, S. Tuna Condensate as a Promising Low-Cost Substrate for Glutamic Acid and GABA Formation Using Candida rugosa and Lactobacillus futsaii. Process Biochem. 2018, 70, 29–35. [Google Scholar] [CrossRef]
- Lee, E.J.; Lee, S.P. Novel Bioconversion of Sodium Glutamate to γ-Amino Butyric Acid by Co-Culture of Lactobacillus plantarum K154 in Ceriporia Lacerata Culture Broth. Food Sci. Biotechnol. 2014, 23, 1997–2005. [Google Scholar] [CrossRef]
- Diez-Gutiérrez, L.; San Vicente, L.; Luis, L.J.; Villarán, M.D.C.; Chávarri, M. Gamma-Aminobutyric Acid and Probiotics: Multiple Health Benefits and Their Future in the Global Functional Food and Nutraceuticals Market. J. Funct. Foods 2020, 64, 103669. [Google Scholar] [CrossRef]
- Hayakawa, K.; Kimura, M.; Kamata, K. Mechanism Underlying γ-Aminobutyric Acid-Induced Antihypertensive Effect in Spontaneously Hypertensive Rats. Eur. J. Pharmacol. 2002, 438, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, K.; Kimura, M.; Kasaha, K.; Matsumoto, K.; Sansawa, H.; Yamori, Y. Effect of a γ-Aminobutyric Acid-Enriched Dairy Product on the Blood Pressure of Spontaneously Hypertensive and Normotensive Wistar–Kyoto Rats. Br. J. Nutr. 2004, 92, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Kalueff, A.V.; Nutt, D.J. Role of GABA in Anxiety and Depression. Depress. Anxiety 2007, 24, 495–517. [Google Scholar] [CrossRef]
- Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus Strain Regulates Emotional Behavior and Central GABA Receptor Expression in a Mouse via the Vagus Nerve. Proc. Natl. Acad. Sci. USA 2011, 108, 16050–16055. [Google Scholar] [CrossRef]
- Abdou, A.M.; Higashiguchi, S.; Horie, K.; Kim, M.; Hatta, H.; Yokogoshi, H. Relaxation and Immunity Enhancement Effects of γ-Aminobutyric Acid (GABA) Administration in Humans. BioFactors 2006, 26, 201–208. [Google Scholar] [CrossRef]
- Nakamura, H.; Takishima, T.; Kometani, T.; Yokogoshi, H. Psychological Stress-Reducing Effect of Chocolate Enriched with γ-Aminobutyric Acid (GABA) in Humans: Assessment of Stress Using Heart Rate Variability and Salivary Chromogranin A. Int. J. Food Sci. Nutr. 2009, 60, 106–113. [Google Scholar] [CrossRef]
- Yamatsu, A.; Yamashita, Y.; Pandharipande, T.; Maru, I.; Kim, M. Effect of Oral γ-Aminobutyric Acid (GABA) Administration on Sleep and Its Absorption in Humans. Food Sci. Biotechnol. 2016, 25, 547–551. [Google Scholar] [CrossRef]
- Kanehira, T.; Nakamura, Y.; Nakamura, K.; Horie, K.; Horie, N.; Furugori, K.; Sauchi, Y.; Yokogoshi, H. Relieving Occupational Fatigue by Consumption of a Beverage Containing γ-Amino Butyric Acid. J. Nutr. Sci. Vitaminol. 2011, 57, 9–15. [Google Scholar] [CrossRef]
- Xie, Z.; Xia, S.; Le, G. Gamma-Aminobutyric Acid Improves Oxidative Stress and Function of the Thyroid in High-Fat Diet. J. Funct. Foods 2014, 8, 76–86. [Google Scholar] [CrossRef]
- Adeghate, E.; Ponery, A.S. GABA in the Endocrine Pancreas: Cellular Localization and Function in Normal and Diabetic Rats. Tissue Cell 2002, 34, 1–6. [Google Scholar] [CrossRef]
- Soltani, N.; Qiu, H.; Aleksic, M.; Glinka, Y.; Zhao, F.; Liu, R.; Li, Y.; Zhang, N.; Chakrabarti, R.; Ng, T.; et al. GABA Exerts Protective and Regenerative Effects on Islet Beta Cells and Reverses Diabetes. Proc. Natl. Acad. Sci. USA 2011, 108, 4–9. [Google Scholar] [CrossRef]
- Schuller, H.M.; Al-wadei, H.A.N.; Majidi, M. Gamma-Aminobutyric Acid, a Potential Tumor Suppressor for Small Airway-Derived Lung Adenocarcinoma. Carcinogenesis 2008, 29, 1979–1985. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Du, A.; Xiong, Y.; Jiang, J.; Zhang, Y.; Tian, Z. γ-Aminobutyric Acid Inhibits the Proliferation and Increases Oxaliplatin Sensitivity in Human Colon Cancer Cells. Tumor Biol. 2016, 37, 14885–14894. [Google Scholar] [CrossRef]
- Oh, C.; Oh, S. Effects of Germinated Brown Rice Extracts with Enhanced Levels of GABA on Cancer Cell Proliferation and Apoptosis. J. Med. Food 2004, 7, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Eggersdorfer, M.; Wyss, A. Carotenoids in Human Nutrition and Health. Arch. Biochem. Biophys. 2018, 652, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Sowmya, R.; Sachindra, N.M. Carotenoid Production by Formosa Sp. KMW, a Marine Bacteria of Flavobacteriaceae Family: Influence of Culture Conditions and Nutrient Composition. Biocatal. Agric. Biotechnol. 2015, 4, 559–567. [Google Scholar] [CrossRef]
- Giuffrida, D.; Sutthiwong, N.; Dugo, P.; Donato, P.; Cacciola, F.; Girard-Valenciennes, E.; Le Mao, Y.; Monnet, C.; Fouillaud, M.; Caro, Y.; et al. Characterisation of the C50 Carotenoids Produced by Strains of the Cheese-Ripening Bacterium Arthrobacter arilaitensis. Int. Dairy J. 2016, 55, 10–16. [Google Scholar] [CrossRef]
- López, G.D.; Álvarez-Rivera, G.; Carazzone, C.; Ibáñez, E.; Leidy, C.; Cifuentes, A. Bacterial Carotenoids: Extraction, Characterization, and Applications. Crit. Rev. Anal. Chem. 2023, 53, 1239–1262. [Google Scholar] [CrossRef]
- Turpin, W.; Renaud, C.; Avallone, S.; Hammoumi, A.; Guyot, J.P.; Humblot, C. PCR of CrtNM Combined with Analytical Biochemistry: An Efficient Way to Identify Carotenoid Producing Lactic Acid Bacteria. Syst. Appl. Microbiol. 2016, 39, 115–121. [Google Scholar] [CrossRef]
- Garrido-Fernández, J.; Maldonado-Barragán, A.; Caballero-Guerrero, B.; Hornero-Méndez, D.; Ruiz-Barba, J.L. Carotenoid Production in Lactobacillus plantarum. Int. J. Food Microbiol. 2010, 140, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Elsanhoty, R.M.; Al-Turki, I.A.; Ramadan, M.F. Screening of Medium Components by Plackett-Burman Design for Carotenoid Production Using Date (Phoenix Dactylifera) Wastes. Ind. Crops Prod. 2012, 36, 313–320. [Google Scholar] [CrossRef]
- Hagi, T.; Kobayashi, M.; Nomura, M. Aerobic Conditions Increase Isoprenoid Biosynthesis Pathway Gene Expression Levels for Carotenoid Production in Enterococcus Gilvus. FEMS Microbiol. Lett. 2015, 362, fnv075. [Google Scholar] [CrossRef]
- Simova, E.D.; Frengova, G.I.; Beshkova, D.M. Effect of Aeration on the Production of Carotenoid Pigments by Rhodotorula Rubra-Lactobacillus casei subsp. Casei Co-Cultures in Whey Ultrafiltrate. Z. Für Naturforsch. C 2003, 58, 225–229. [Google Scholar] [CrossRef]
- Simova, E.D.; Frengova, G.I.; Beshkova, D.M. Synthesis of Carotenoids by Rhodotorula Rubra GED8 Co-Cultured with Yogurt Starter Cultures in Whey Ultrafiltrate. J. Ind. Microbiol. Biotechnol. 2004, 31, 115–121. [Google Scholar] [CrossRef]
- Frengova, G.I.; Simova, E.D.; Beshkova, D.M. β-Carotene-Rich Carotenoid-Protein Preparation and Exopolysaccharide Production by Rhodotorula Rubra GED8 Grown with a Yogurt Starter Culture. Z. Für Naturforsch. C 2006, 61, 571–577. [Google Scholar] [CrossRef]
- Frengova, G.I.; Simova, E.D.; Beshkova, D.M. Effect of Temperature Changes in the Production of Yeast Pigments Co-Cultivated with Lacto-Acid Bacteria in Whey Ultrafiltrate. Biotechnol. Lett. 1995, 17, 1001–1006. [Google Scholar] [CrossRef]
- Rodriguez-concepcion, M.; Avalos, J.; Bonet, M.L.; Boronat, A.; Gomez-gomez, L.; Hornero-mendez, D.; Limon, M.C.; Meléndez-martínez, A.J.; Olmedilla-alonso, B.; Palou, A.; et al. A Global Perspective on Carotenoids: Metabolism, Biotechnology, and Benefits for Nutrition and Health. Prog. Lipid Res. 2018, 70, 62–93. [Google Scholar] [CrossRef]
- WHO. The World Health Report 2002: Reducing Risks, Promoting Healthy Life; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Hirano, R.; Iwamoto, T.; Hosodad, K.; Kurata, H.; Matsumoto, A.; Miki, W.; Kamiyama, M.; Itakura, H.; Yamamoto, S.; Kondo, K. Inhibition of Low-Density Lipoprotein Oxidation by Astaxanthin Tamami of Medicine Introduction Oxidative Modification of Low-Density Lipoprotein (LDL) Has Been Implicated in the Pathogenesis of Atheroscle-Rosis (1, 2). The Rapid Uptake of Oxidative. J. Atheroscler. Thromb. 2000, 7, 216–222. [Google Scholar]
- Yoshida, H.; Yanai, H.; Ito, K.; Tomono, Y.; Koikeda, T.; Tsukahara, H.; Tada, N. Administration of Natural Astaxanthin Increases Serum HDL-Cholesterol and Adiponectin in Subjects with Mild Hyperlipidemia. Atherosclerosis 2010, 209, 520–523. [Google Scholar] [CrossRef] [PubMed]
- Hennekens, C.H.; Buring, J.E.; Manson, J.E.; Stampfer, M.; Rosner, B.; Cook, N.R.; Belanger, C.; LaMotte, F.; Gaziano, J.M.; Ridker, P.M.; et al. Lack of Effect of Long-Term Supplementation with Beta Carotene on the Incidence of Malignant Neoplasms and Cardiovascular Disease. N. Engl. J. Med. 1996, 334, 1145–1149. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, E.R.; Baron, J.A.; Karagas, M.R.; Stukel, T.A.; Nierenberg, D.W.; Stevens, M.M.; Mandel, J.S.; Haile, R.W. Mortality Associated with Low Plasma Concentration of Beta Carotene and the Effect of Oral Supplementation. J. Am. Med. Assoc. 1996, 275, 699–703. [Google Scholar] [CrossRef] [PubMed]
- Mounien, L.; Tourniaire, F. Anti-Obesity Effect of Carotenoids: Direct Impact on Adipose Tissue and Adipose Tissue-Driven Indirect Effect. Nutrients 2019, 11, 1562. [Google Scholar] [CrossRef]
- Canas, J.A.; Lochrie, A.; McGowan, A.G.; Hossain, J.; Schettino, C.; Balagopal, P.B. Effects of Mixed Carotenoids on Adipokines and Abdominal Adiposity in Children: A Pilot Study. J. Clin. Endocrinol. Metab. 2017, 102, 1983–1990. [Google Scholar] [CrossRef] [PubMed]
- Kakutani, R.; Hokari, S.; Nishino, A.; Ichihara, T.; Sugimoto, K.; Takaha, T.; Kuriki, T.; Maoka, T. Effect of Oral Paprika Xanthophyll Intake on Abdominal Fat in Healthy Overweight Humans: A Randomized, Double-Blind, Placebo-Controlled Study. J. Oleo Sci. 2018, 67, 1149–1162. [Google Scholar] [CrossRef]
- Yamaguchi, M. β-Cryptoxanthin Stimulates Bone Formation and Inhibits Bone Resorption in Tissue Culture in Vitro. Mol. Cell. Biochem. 2004, 258, 137–144. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Uchiyama, S. Effect of Carotenoid on Calcium Content and Alkaline Phosphatase Activity in Rat Femoral Tissues in Vitro: The Unique Anabolic Effect of β-Cryptoxanthin. Biol. Pharm. Bull. 2003, 26, 1188–1191. [Google Scholar] [CrossRef]
- Uchiyama, S.; Sumida, T.; Yamaguchi, M. Oral Administration of β-Cryptoxanthin Induces Anabolic Effects on Bone Components in the Femoral Tissues of Rats in Vivo. Biol. Pharm. Bull. 2004, 27, 232–235. [Google Scholar] [CrossRef] [PubMed]
- Kim, L.; Rao, A.V.; Rao, L.G. Lycopene II—Effect on Osteoblasts: The Carotenoid Lycopene Stimulates Cell Proliferation and Alkaline Phosphatase Activity of SaOS-2 Cells. J. Med. Food 2003, 6, 79–86. [Google Scholar] [CrossRef]
- Sahni, S.; Hannan, M.T.; Blumberg, J.; Cupples, L.A.; Kiel, D.P.; Tucker, K.L. Inverse Association of Carotenoid Intakes with 4-y Change in Bone Mineral Density in Elderly Men and Women: The Framingham Osteoporosis Study. Am. J. Clin. Nutr. 2009, 89, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Otaegui-Arrazola, A.; Amiano, P.; Elbusto, A.; Urdaneta, E.; Martínez-Lage, P. Diet, Cognition, and Alzheimer’s Disease: Food for Thought. Eur. J. Nutr. 2014, 53, 1–23. [Google Scholar] [CrossRef]
- Devore, E.E.; Grodstein, F.; Van Rooij, F.J.A.; Hofman, A.; Stampfer, M.J.; Witteman, J.C.M.; Breteler, M.M.B. Dietary Antioxidants and Long-Term Risk of Dementia. Arch. Neurol. 2010, 67, 819–825. [Google Scholar] [CrossRef]
- Qiao, Y.L.; Dawsey, S.M.; Kamangar, F.; Fan, J.H.; Abnet, C.C.; Sun, X.D.; Johnson, L.L.; Gail, M.H.; Dong, Z.W.; Yu, B.; et al. Total and Cancer Mortality after Supplementation with Vitamins and Minerals: Follow-up of the Linxian General Population Nutrition Intervention Trial. J. Natl. Cancer Inst. 2009, 101, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Cook, N.R.; Lee, I.; Manson, J.E.; Buring, J.E.; Hennekens, C.H. Effects of Beta-Carotene Supplementation on Cancer Incidence by Baseline Characteristics in the Physicians’ Health Study (United States). Cancer Causes Control 2000, 11, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Albanes, D.; Heinonen, O.P.; Huttunen, J.K.; Taylor, P.R.; Virtamo, J.; Edwards, B.K.; Haapakoski, J.; Rautalahti, M.; Hartman, A.M.; Palmgren, J.; et al. Effects Cancer Cancer of A-Tocopherol and n-Carotene Incidence in the Alpha-Tocopherol Prevention Study13 Supplements On. Am. Soc. Clin. Nutr. 1995, 62, 1–4. [Google Scholar]
- Li, J.Y.; Taylor, P.R.; Li, B.; Dawsey, S.; Wang, G.Q.; Ershow, A.G.; Guo, W.; Liu, S.F.; Yang, C.S.; Shen, Q.; et al. Nutrition Intervention Trials in Linxian, China: Multiple Vitamin/Mineral Supplementation, Cancer Incidence, and Disease-Specific Mortality among Adults with Esophageal Dysplasia. J. Natl. Cancer Inst. 1993, 85, 1492–1498. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, H.M.; Cunningham, D.; Balakrishnan, R.; Maye, S.; MacLeod, G.; Brabazon, D.; Loscher, C.; Freeland, B. Steps toward a Digital Twin for Functional Food Production with Increased Health Benefits. Curr. Res. Food Sci. 2023, 7, 100593. [Google Scholar] [CrossRef] [PubMed]
Microorganism (s) | Fermentation | Medium | Yield | Ref. |
---|---|---|---|---|
L. acidophilus | Flask | MRS | 37.2 µg/L | [47] |
L. amylovorus | Flask | MRS | 81.2 µg/L | [47] |
L. amylovorus S. thermophilus L. delbrueckii subsp. bulgaricus | Flask | Milk | 263 µg/L | [47] |
L. brevis | Flask | Supplemented whey permeate | 131 µg/L | [48] |
L. casei | Flask | MRS | 1.5 µg/L | [47] |
L. coryniformis | Flask | MRS | 81 µg/L | [49] |
L. delbrueckii subsp. bulgaricus | Flask | MRS | 54 µg/L | [50] |
L. delbrueckii subsp. bulgaricus S. thermophilus | Flask | Non-fat milk | 180 µg/L | [51] |
L. fermentum | Flask | MRS | 6.9 µg/L | [47] |
L. fermentum | Flask | Supplemented whey permeate | 84 µg/L | [48] |
L. helveticus | Flask | MRS | 89 µg/L | [50] |
L. lactis | Flask | MRS | 45 µg/L | [50] |
L. lactis subsp. cremoris | 5 L batch bioreactor | Skim milk powder | 187 µg/L | [40] |
L. lactis subsp. lactis | Flask | M17 | 291 µg/L | [50] |
L. lactis subsp. lactis biovar diacetylactis | Flask | M17 | 100 µg/L | [50] |
L. paracasei subsp. paracasei | Flask | MRS | 38.7 µg/L | [47] |
L. plantarum | Flask | MRS | 57.2 µg/L | [47] |
L. plantarum | Flask | Supplemented whey permeate | 397 µg/L | [48] |
L. plantarum | Flask | MRS | 108 µg/L | [49] |
L. plantarum P. freudenreichii | 1 L bioreactor | Supplemented whey permeate | 8399 µg/L | [52] |
L. reuteri | Flask | Supplemented whey permeate | 125 µg/L | [48] |
L. sakei | Flask | MRS | 107 µg/L | [49] |
S. thermophilus | Flask | M17 | 202 µg/L | [50] |
S. thermophilus | 2 L batch bioreactor | Modified M17 | 54.53 µg/L | [53] |
Microorganism (s) | Fermentation | Media | Yield | Ref. |
---|---|---|---|---|
P. acidipropionici | 1 L batch | Complex media | 3.3 mg/L | [70] |
P. denitrificans | 120 L Batch | Complex media | 177.49 µg/L | [71] |
P. denitrificans | 120 L Batch | Complex media | 214.3 µg/mL | [72] |
P. freudenreichii | 5 L batch | Defined media | 9.45 µg/mL | [73] |
P. freudenreichii | Cell recycle system | Complex media | 24.93 µg/mL | [74] |
P. shermanii | Flask | Whey based medium | 8.43 µg/L | [75] |
P. shermanii | Flask | Whey based medium | 2.97 µg/L | [76] |
P. shermanii | Flask | Whey based medium | 4.51 µg/L | [77] |
Microorganism (s) | Fermentation | Medium | Yield | Ref. |
---|---|---|---|---|
L. acidophilus | Flask | Whey-based medium | 2.93 mg/L | [93] |
L. fermentum | Flask | CDM | 1.2 mg/L | [94] |
L. fermentum | Flask | CDM | 3.49 mg/L | [95] |
L. lactis | Flask | Whey-based medium | 2.61 mg/L | [93] |
L. plantarum | Flask | MRS | 3.33 mg/L | [96] |
L. plantarum | Flask | Supplemented MRS | 3.33 mg/L | [97] |
L. plantarum | Flask | Optimized MRS | 12.33 mg/L | [98] |
L. plantarum | Flask | CDM | 5.72 mg/L | [99] |
Microorganism (s) | Fermentation | Media | Yield | Ref. |
---|---|---|---|---|
L. fermentum | Flask | Rogosa medium Skim milk | 184 µg/L 63.93 µg/L | [118] |
L. lactis subsp. cremoris | Flask | Milk-based media | 534 nmol/g of cells | [119] |
L. lactis subsp. lactis | Flask | Milk-based media | 717 nmol/g of cells | [119] |
Leu. lactis | Flask | Milk-based media | 173 nmol/g of cells | [119] |
P. freudenreichii | 3 L fermenter | Milk-based media | 0.3 mM | [120] |
Microorganism (s) | Fermentation | Media | ACEI Ability | IC50 | Ref. |
---|---|---|---|---|---|
L. acidophilus | Flask | Skim-milk-based media | - | 730 µg/mL | [195] |
L. brevis | Flask | MRS | 79.03 | 1280 µg/mL | [189] |
L. brevis | Flask | Whey-based media | 64.7 | 1130 µg/mL | [190] |
L. casei | Flask | Skim-milk-based media | - | 250 µg/mL | [195] |
L. casei | Flask | Skim-milk-based media | 100 | [199] | |
L. casei | Flask | Goats-milk-based media | 34.3 | - | [200] |
L. delbruckii subsp. bulgaricus | Flask | Skim-milk-based media | - | 780 µg/mL | [195] |
L. helveticus | Flask | Whey-based media | 84.2 | 860 µg/mL | |
L. helveticus | Flask | Skim-milk-based media | - | 1460 µg/mL | [195] |
L. helveticus | Flask | Skim-milk-based media | 67.18 | - | [201] |
L. helveticus | Flask | Goats-milk-based media | 51.3 | - | [200] |
L. paracasei | Flask | Whey-based media | 63.9 | 1130 µg/mL | [190] |
L. plantarum | Flask | MRS | 84.0 | 65.53 µg/mL | [189] |
L. plantarum | Flask | Skim-milk-based media | - | 910 µg/mL | [195] |
L. plantarum | Flask | Goats-milk-based media | 37.7 | - | [200] |
L. rhamnosus | Flask | Skim-milk-based media | - | 700 µg/mL | [195] |
L. rhamnosus | Flask | MRS | 52.4 | 2130 µg/mL | [189] |
L. sakei | Flask | Skim-milk-based media | - | 1220 µg/mL | [195] |
Lc. lactis | Flask | Skim-milk-based media | - | 220 µg/mL | [195] |
E. durans | Flask | Skim-milk-based media | - | 450 µg/mL | [195] |
E. faecium | Flask | MRS | 55.4 | 70.5 µg/mL | [189] |
P. acidilactici | Flask | MRS | 84.7 | 19.78 µg/mL | [189] |
P. pentosaceus | Flask | MRS | 72.9 | 2070 µg/mL | [189] |
P. pentosaceus | Flask | Skim-milk-based media | - | 780 µg/mL | [195] |
S. thermophilus | Flask | Skim-milk-based media | - | 820 µg/mL | [195] |
L. delbrueckii subsp. bulgaricus L. reuteri Lc. lactic supsp. lactis | Flask | Skim-milk-based media | 610 µg/mL | [202] | |
S. thermophilus | Flask | Goats-milk-based media | 40 | - | [200] |
S. thermophilus, L.casei, L. helveticus | Flask | Goats-milk-based media | 82 | - | [200] |
S. thermophilus, L. casei, L. plantarum | Flask | Goats-milk-based media | 43.3 | - | [200] |
Microorganism(s) | Fermentation | Media | DPPH (mg/mL) or % | ABTS (mg/mL) | HFRSR (%) | Antimutagenic Activity (% Inhibition) | Ref. |
---|---|---|---|---|---|---|---|
S. thermophilus L. bulgaricus | Cups | Skim-milk-based media | 2.23 mg/mL | 2.43 mg/ml | - | 15.87 | [214] |
S. thermophilus L. bulgaricus L. acidophilus | Cups | Skim-milk-based media | 2.05 mg/mL | 2.28 mg/ml | - | 18.35 | [214] |
S. thermophilus L. bulgaricus L. casei | Cups | Skim-milk-based media | 1.83 mg/mL | 1.91 mg/ml | - | 18.83 | [214] |
S. thermophilus L. bulgaricus L. paracasei | Cups | Skim-milk-based media | 1.82 mg/mL | 1.98 mg/ml | - | 18.48 | [214] |
S. thermophilus L. bulgaricus L. acidophilus L. casei | Cups | Skim-milk-based media | 1.8 mg/mL | 1.73 mg/ml | - | 20.25 | [214] |
Cups | Skim-milk-based media | 1.77 mg/mL | 1.8 mg/ml | - | 23.06 | [214] | |
L. casei | Flask | Goats-milk-based media | 63.48% | - | 88.01 | - | [215] |
L. mesenteroides subsp. cremoris | Flask | Skim-milk-based media | - | 0.7 nmol−1/mmol−1 | - | - | [216] |
L. lactis subsp. lactis | Flask | Skim-milk-based media | 0.15 nmol−1/mmol−1 | - | - | [216] | |
L. acidophilus | Flask | Skim-milk-based media | - | 0.6 nmol−1/mmol−1 | [216] | ||
L. jensenii | Flask | Skim-milk-based media | - | 0.6 nmol−1/mmol−1 | - | - | [216] |
L. helveticus | Flask | Skim-milk-based media | - | 0.4 nmol−1/mmol−1 | - | - | [216] |
Microorganism (s) | Fermentation | Media | Yield | Ref. |
---|---|---|---|---|
L. acidophilus | Flask | Goats-milk-based media | 1.92 mg/kg | [200] |
L. brevis | Packed bed reactor | Defined media | 55 mM | [229] |
L. brevis | Batch | Modified MRS | 44.4 mg/mL | [230] |
L. brevis | Fed-batch | Defined media | 1005.81 mM | [231] |
L. brevis | Fed-batch | Complex | 526.33 mmol/L | [232] |
L. brevis | Flask | MRS + MSG | 255 mM | [233] |
L. brevis | Batch | Defined media | 205.8 g/L | [234] |
L. brevis | Batch | Defined media | 62.5 g/L | [235] |
L. brevis | Flask | Supplemented MRS | 265 mM | [236] |
L. brevis | Entrapped cell | Defined media + MSG, | 223 mM | [237] |
L. brevis | Flask | Whey-permeate-based media + MSG | 553.5 mg/L | [238] |
L. brevis | Flask | MRS + MSG | 2.5 g/L | [239] |
L. brevis L. sakei | Flask | Skim-milk-based media + MSG | 22.41 mM | [240] |
L. buchneri | Flask | Modified MRS | 251 mM | [241] |
L. buchneri | Flask | MRS + MSG | 4.4 g/L | [242] |
L. casei | Flask | Skim-milk-based media | 677.35 mg/kg | [199] |
L. casei | Flask | Goats-milk-based media | 1.65 mg/kg | [200] |
L. delbrueckii subsp. bulgaricus | Flask | Skim-milk-based media | 9 mg/kg | [243] |
L. helveticus | Flask | Skim-milk-based media | 165.11 mg/L | [201] |
L. helveticus | Flask | Goats-milk-based media | 0.06 mg/kg | [200] |
L. paracasei | Flask | Modified MRS | 302 mM | [244] |
L. paracasei | Flask | Skim-milk-based media | 20 mg/kg | [243] |
L. paracasei and L. plantarum | Flask | Skim-milk-based media | 6.7 mg/100 mL | [245] |
L. plantarum | Flask | Skim milk + MSG | 629 mg/mL | [246] |
L. plantarum | Flask | Defined media + MSG | 19.8 g/L | [247] |
L. plantarum | Flask | MRS | 4.156 mg/L | [248] |
L. plantarum | Flask | MRS + MSG | 821.24 mg/L | [249] |
L. plantarum | Flask | Skim-milk-based media + MSG | 314 mg/100 g | [250] |
L. plantarum | Flask | MRS + MSG | 7.15 mM | [251] |
L. plantarum | Flask | Grape must | 4.85 mM | [252] |
L. plantarum | Flask | MRS + MSG | 201.78 mg/L | [253] |
L. plantarum | Flask | Skim-milk-based media | 6 mg/kg | [243] |
L. plantarum | Flask | Skim milk + yeast extract | 77.4 mg/kg | [195] |
L. plantarum | Flask | Goats milk | 12.84 mg/kg | [200] |
L. plantarum and L. sakei | Flask | Whey-based media | 365.6 mg/100 mL | [254] |
L. rhamnosus | Flask | Complex media + MSG + PLP | 187 mM | [255] |
L. sakei | Batch | MRS + MSG | 265.3 mM | [256] |
L. sakei | Batch | MRS + MSG | 217 mM | [256] |
S. salivarius subsp. thermophilus | Flask | Complex media | 7984.75 mg/L | [257] |
S. thermophilus | Flask | Skim-milk-based media + MSG | 2.2 mg/mL | [258] |
S. thermophilus | Flask | Goats-milk-based media | 1.59 mg/kg | [200] |
S. thermophilus L. brevis | Flask | Skim milk + MSG | 314.97 mg/kg | [259] |
S. thermophilus, L. casei, L. helveticus | Flask | Goats-milk-based media | 5.79 mg/kg | [200] |
S. thermophilus, L. casei, L. plantarum | Flask | Goats-milk-based media | 30.86 mg/kg | [200] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sørensen, H.M.; Rochfort, K.D.; Maye, S.; MacLeod, G.; Loscher, C.; Brabazon, D.; Freeland, B. Bioactive Ingredients from Dairy-Based Lactic Acid Bacterial Fermentations for Functional Food Production and Their Health Effects. Nutrients 2023, 15, 4754. https://doi.org/10.3390/nu15224754
Sørensen HM, Rochfort KD, Maye S, MacLeod G, Loscher C, Brabazon D, Freeland B. Bioactive Ingredients from Dairy-Based Lactic Acid Bacterial Fermentations for Functional Food Production and Their Health Effects. Nutrients. 2023; 15(22):4754. https://doi.org/10.3390/nu15224754
Chicago/Turabian StyleSørensen, Helena Mylise, Keith D. Rochfort, Susan Maye, George MacLeod, Christine Loscher, Dermot Brabazon, and Brian Freeland. 2023. "Bioactive Ingredients from Dairy-Based Lactic Acid Bacterial Fermentations for Functional Food Production and Their Health Effects" Nutrients 15, no. 22: 4754. https://doi.org/10.3390/nu15224754
APA StyleSørensen, H. M., Rochfort, K. D., Maye, S., MacLeod, G., Loscher, C., Brabazon, D., & Freeland, B. (2023). Bioactive Ingredients from Dairy-Based Lactic Acid Bacterial Fermentations for Functional Food Production and Their Health Effects. Nutrients, 15(22), 4754. https://doi.org/10.3390/nu15224754