Association of Salt Intake with Muscle Strength and Physical Performance in Middle-Aged to Older Chinese: The Guangzhou Biobank Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Exposures
2.3. Outcomes
2.4. Potential Confounders
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McGrath, R.P.; Vincent, B.M.; Lee, I.M.; Kraemer, W.J.; Peterson, M.D. Handgrip Strength, Function, and Mortality in Older Adults: A Time-varying Approach. Med. Sci. Sports Exerc. 2018, 50, 2259–2266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Distefano, G.; Goodpaster, B.H. Effects of Exercise and Aging on Skeletal Muscle. Cold Spring Harb. Perspect. Med. 2018, 8, a029785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodpaster, B.H.; Chomentowski, P.; Ward, B.K.; Rossi, A.; Glynn, N.W.; Delmonico, M.J.; Kritchevsky, S.B.; Pahor, M.; Newman, A.B. Effects of physical activity on strength and skeletal muscle fat infiltration in older adults: A randomized controlled trial. J. Appl. Physiol. 2008, 105, 1498–1503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.L.; Poon, C.C.; Wong, M.S.; Li, W.X.; Guo, Y.X.; Zhang, Y. Vitamin D Supplementation Improves Handgrip Strength in Postmenopausal Women: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Endocrinol. 2022, 13, 863448. [Google Scholar] [CrossRef]
- Deer, R.R.; Volpi, E. Protein intake and muscle function in older adults. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 248–253. [Google Scholar] [CrossRef] [Green Version]
- Samadi, M.; Khosravy, T.; Azadbakht, L.; Rezaei, M.; Mosafaghadir, M.; Kamari, N.; Bagheri, A.; Pasdar, Y.; Najafi, F.; Hamze, B.; et al. Major dietary patterns in relation to muscle strength status among middle-aged people: A cross-sectional study within the RaNCD cohort. Food Sci. Nutr. 2021, 9, 6672–6682. [Google Scholar] [CrossRef]
- Hipgrave, D.B.; Chang, S.; Li, X.; Wu, Y. Salt and Sodium Intake in China. JAMA 2016, 315, 703–705. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Sodium Intake for Adults and Children Guideline. Available online: http://apps.who.int/iris/bitstream/handle/10665/77985/9789241504836_eng.pdf;jsessionid=C7317D0AFB32E5B2FDA1F5CF5C413D51?sequence=1 (accessed on 1 October 2022).
- Aburto, N.J.; Ziolkovska, A.; Hooper, L.; Elliott, P.; Cappuccio, F.P.; Meerpohl, J.J. Effect of lower sodium intake on health: Systematic review and meta-analyses. BMJ 2013, 346, f1326. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Huang, Z.; Jin, C.; Xing, A.; Liu, Y.; Huangfu, C.; Lichtenstein, A.H.; Tucker, K.L.; Wu, S.; Gao, X. Longitudinal Change of Perceived Salt Intake and Stroke Risk in a Chinese Population. Stroke 2018, 49, 1332–1339. [Google Scholar] [CrossRef]
- Kim, S.; Kim, M.; Min, J.; Yoo, J.; Kim, M.; Kang, J.; Won, C.W. How Much Intake of Sodium Is Good for Frailty?: The Korean Frailty and Aging Cohort Study (KFACS). J. Nutr. Health Aging 2019, 23, 503–508. [Google Scholar] [CrossRef]
- Kopp, C.; Linz, P.; Dahlmann, A.; Hammon, M.; Jantsch, J.; Müller, D.N.; Schmieder, R.E.; Cavallaro, A.; Eckardt, K.U.; Uder, M.; et al. 23Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients. Hypertension 2013, 61, 635–640. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.X.; Arcand, J.; Campbell, N.R.C.; Johnson, C.; Malta, D.; Petersen, K.; Rae, S.; Santos, J.A.; Sivakumar, B.; Thout, S.R.; et al. The World Hypertension League Science of Salt: A regularly updated systematic review of salt and health outcomes studies (Sept 2019 to Dec 2020). J. Hum. Hypertens. 2022, 36, 1048–1058. [Google Scholar] [CrossRef]
- Lana, A.; Struijk, E.A.; Ortolá, R.; Rodríguez-Artalejo, F.; Lopez-Garcia, E. Longitudinal Association Between Sodium and Potassium Intake and Physical Performance in Older Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, 2379–2386. [Google Scholar] [CrossRef]
- Porto, J.M.; Nakaishi, A.P.M.; Cangussu-Oliveira, L.M.; Freire Júnior, R.C.; Spilla, S.B.; Abreu, D.C.C. Relationship between grip strength and global muscle strength in community-dwelling older people. Arch. Gerontol. Geriatr. 2019, 82, 273–278. [Google Scholar] [CrossRef]
- Bohannon, R.W. Muscle strength: Clinical and prognostic value of hand-grip dynamometry. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 465–470. [Google Scholar] [CrossRef]
- Yoshida, Y.; Kosaki, K.; Sugasawa, T.; Matsui, M.; Yoshioka, M.; Aoki, K.; Kuji, T.; Mizuno, R.; Kuro, O.M.; Yamagata, K.; et al. High Salt Diet Impacts the Risk of Sarcopenia Associated with Reduction of Skeletal Muscle Performance in the Japanese Population. Nutrients 2020, 12, 3474. [Google Scholar] [CrossRef]
- Noh, H.M.; Park, Y.S.; Lee, H.J.; Roh, Y.K.; Song, H.J. Association Between Sodium Density and Grip Strength Among Older Korean Adults: A Nationwide Cross-Sectional Study. Clin. Interv. Aging 2019, 14, 2163–2171. [Google Scholar] [CrossRef] [Green Version]
- McInnes, L.; Gibbons, E.; Chandler-Oatts, J. Clinical practice guideline for the assessment and prevention of falls in older people. Worldviews Evid. Based Nurs. 2005, 2, 33–36. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The timed "Up & Go": A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef]
- Jiang, C.; Thomas, G.N.; Lam, T.H.; Schooling, C.M.; Zhang, W.; Lao, X.; Adab, P.; Liu, B.; Leung, G.M.; Cheng, K.K. Cohort profile: The Guangzhou Biobank Cohort Study, a Guangzhou-Hong Kong-Birmingham collaboration. Int. J. Epidemiol. 2006, 35, 844–852. [Google Scholar] [CrossRef]
- Tan, M.; Wang, C.; Song, J.; He, F.J.; MacGregor, G.A. Spot urinary sodium to monitor relative changes in population salt intake during the UK salt reduction programme. J. Hypertens. 2022, 40, 1406–1410. [Google Scholar] [CrossRef] [PubMed]
- Mathiowetz, V.; Weber, K.; Volland, G.; Kashman, N. Reliability and validity of grip and pinch strength evaluations. J. Hand Surg. Am. 1984, 9, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Peolsson, A.; Hedlund, R.; Oberg, B. Intra- and inter-tester reliability and reference values for hand strength. J. Rehabil. Med. 2001, 33, 36–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choquette, S.; Bouchard, D.R.; Doyon, C.Y.; Sénéchal, M.; Brochu, M.; Dionne, I.J. Relative strength as a determinant of mobility in elders 67–84 years of age. a nuage study: Nutrition as a determinant of successful aging. J. Nutr. Health Aging 2010, 14, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Jiang, C.Q.; Zhang, W.S.; Zhu, F.; Jin, Y.L.; Cheng, K.K.; Lam, T.H.; Xu, L. Glycaemia and hand grip strength in aging people: Guangzhou biobank cohort study. BMC Geriatr. 2020, 20, 399. [Google Scholar] [CrossRef]
- Liang, X.; Jiang, C.Q.; Zhang, W.S.; Zhu, F.; Jin, Y.L.; Cheng, K.K.; Lam, T.H.; Xu, L. Association of a composite score of relative grip strength and timed up and go test with incident type 2 diabetes mellitus: Guangzhou Biobank Cohort Study. Aging 2021, 13, 18376–18391. [Google Scholar] [CrossRef]
- Jin, Y.L.; Xu, L.; Jiang, C.Q.; Zhang, W.S.; Pan, J.; Zhu, F.; Zhu, T.; Thomas, G.N.; Lam, T.H. Association of Hand Grip Strength with Mild Cognitive Impairment in Middle-Aged and Older People in Guangzhou Biobank Cohort Study. Int. J. Environ. Res. Public Health 2022, 19, 6464. [Google Scholar] [CrossRef]
- Xu, S.J.; Jiang, C.Q.; Zhang, W.S.; Cheng, K.K.; Schooling, C.M.; Xu, L.; Liu, B.; Jin, Y.L.; Hubert Lam, K.B.; Lam, T.H. Alcohol sensitivity, alcohol use and high-sensitivity C-reactive protein in older Chinese men: The Guangzhou Biobank Cohort Study. Alcohol 2016, 57, 41–48. [Google Scholar] [CrossRef]
- Deng, H.B.; Macfarlane, D.J.; Thomas, G.N.; Lao, X.Q.; Jiang, C.Q.; Cheng, K.K.; Lam, T.H. Reliability and validity of the IPAQ-Chinese: The Guangzhou Biobank Cohort study. Med. Sci. Sports Exerc. 2008, 40, 303–307. [Google Scholar] [CrossRef]
- Bohannon, R.W. Grip Strength: An Indispensable Biomarker for Older Adults. Clin. Interv. Aging 2019, 14, 1681–1691. [Google Scholar] [CrossRef]
- Sayer, A.A.; Kirkwood, T.B. Grip strength and mortality: A biomarker of ageing? Lancet 2015, 386, 226–227. [Google Scholar] [CrossRef]
- Li, D.; Guo, G.; Xia, L.; Yang, X.; Zhang, B.; Liu, F.; Ma, J.; Hu, Z.; Li, Y.; Li, W.; et al. Relative Handgrip Strength Is Inversely Associated with Metabolic Profile and Metabolic Disease in the General Population in China. Front. Physiol. 2018, 9, 59. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Zhu, H.; Kang, H.; Gore, J.C. R(1ρ) dispersion and sodium imaging in human calf muscle. Magn. Reson. Imaging 2017, 42, 139–143. [Google Scholar] [CrossRef]
- Bohannon, R.W. Reference values for the timed up and go test: A descriptive meta-analysis. J. Geriatr. Phys. Ther. 2006, 29, 64–68. [Google Scholar] [CrossRef] [Green Version]
- American Geriatrics Society, British Geriatrics Society, and American Academy of Orthopaedic Surgeons Panel on Falls Prevention. Guideline for the prevention of falls in older persons. J. Am. Geriatr. Soc. 2001, 49, 664–672. [Google Scholar] [CrossRef]
- Muehlbauer, T.; Gollhofer, A.; Granacher, U. Associations Between Measures of Balance and Lower-Extremity Muscle Strength/Power in Healthy Individuals Across the Lifespan: A Systematic Review and Meta-Analysis. Sports Med. 2015, 45, 1671–1692. [Google Scholar] [CrossRef] [Green Version]
- Cohn, J.N.; Kowey, P.R.; Whelton, P.K.; Prisant, L.M. New guidelines for potassium replacement in clinical practice: A contemporary review by the National Council on Potassium in Clinical Practice. Arch. Intern. Med. 2000, 160, 2429–2436. [Google Scholar] [CrossRef]
- Dai, W.S.; Kuller, L.H.; Miller, G. Arterial blood pressure and urinary electrolytes. J. Chronic Dis. 1984, 37, 75–84. [Google Scholar] [CrossRef]
- Parganlija, D.; Gehlert, S.; Herrera, F.; Rittweger, J.; Bloch, W.; Zange, J. Enhanced Blood Supply Through Lower Body Negative Pressure During Slow-Paced, High Load Leg Press Exercise Alters the Response of Muscle AMPK and Circulating Angiogenic Factors. Front. Physiol. 2020, 11, 781. [Google Scholar] [CrossRef]
- McKenna, M.J. Effects of training on potassium homeostasis during exercise. J. Mol. Cell. Cardiol. 1995, 27, 941–949. [Google Scholar] [CrossRef]
- Park, S.M.; Joung, J.Y.; Cho, Y.Y.; Sohn, S.Y.; Hur, K.Y.; Kim, J.H.; Kim, S.W.; Chung, J.H.; Lee, M.K.; Min, Y.K. Effect of high dietary sodium on bone turnover markers and urinary calcium excretion in Korean postmenopausal women with low bone mass. Eur. J. Clin. Nutr. 2015, 69, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Shikata, K.; Kiyohara, Y.; Kubo, M.; Yonemoto, K.; Ninomiya, T.; Shirota, T.; Tanizaki, Y.; Doi, Y.; Tanaka, K.; Oishi, Y.; et al. A prospective study of dietary salt intake and gastric cancer incidence in a defined Japanese population: The Hisayama study. Int. J. Cancer 2006, 119, 196–201. [Google Scholar] [CrossRef] [PubMed]
- McCullough, L.E.; Byrd, D.A. Total Energy Intake: Implications for Epidemiologic Analyses. Am. J. Epidemiol. 2022, kwac071. [Google Scholar] [CrossRef] [PubMed]
All | Salt Intake | P Value | |||
---|---|---|---|---|---|
Light | Moderate | Salty | |||
Number of participants, N (%) | 4867 (100.0) | 1925 (39.6) | 1789 (36.8) | 1153 (23.6) | - |
Men, % | 27.8 | 21.7 | 30.0 | 34.4 | <0.01 |
Age, years, mean (SD) | 60.4 (7.7) | 60.2 (7.6) | 60.6 (7.7) | 60.5 (7.8) | 0.31 |
Family income, CNY/year, % | 0.15 | ||||
<10,000 | 4.6 | 4.1 | 4.8 | 5.2 | |
10,000–29,999 | 31.6 | 32.6 | 31.3 | 30.7 | |
30,000–49,999 | 27.1 | 26.9 | 27.3 | 27.1 | |
≥50,000 | 21.9 | 22.4 | 20.2 | 23.4 | |
Don’t know | 14.8 | 14.0 | 16.4 | 13.6 | |
Education, % | <0.01 | ||||
Primary or below | 36.1 | 32.7 | 38.0 | 38.8 | |
Secondary | 54.8 | 56.5 | 53.7 | 53.6 | |
College or above | 9.1 | 10.8 | 8.3 | 7.6 | |
Occupation, % | 0.29 | ||||
Manual | 61.3 | 59.5 | 62.8 | 61.7 | |
Non-manual | 20.7 | 22.0 | 19.7 | 20.0 | |
Others | 18.0 | 18.5 | 17.5 | 18.3 | |
Smoking status, % | <0.01 | ||||
Never | 80.4 | 85.9 | 78.8 | 74.0 | |
Former | 8.3 | 6.7 | 8.6 | 10.8 | |
Current | 11.3 | 7.4 | 12.6 | 15.2 | |
Alcohol use, % | 0.01 | ||||
Never | 35.2 | 37.8 | 34.0 | 32.6 | |
Former | 3.7 | 3.8 | 4.0 | 3.1 | |
Current | 61.1 | 58.4 | 62.0 | 64.3 | |
Physical activity, % | 0.07 | ||||
Inactive | 5.4 | 5.4 | 4.5 | 6.9 | |
Moderate | 30.5 | 29.7 | 31.5 | 30.2 | |
Active | 64.1 | 64.9 | 64.0 | 62.9 | |
Self-rated health, % | 0.39 | ||||
Good | 81.0 | 81.6 | 81.3 | 79.6 | |
Poor | 19.0 | 18.4 | 18.7 | 20.4 | |
Self-reported hypertension, % | 0.02 | ||||
No | 75.6 | 73.7 | 77.6 | 75.7 | |
Yes | 24.4 | 26.3 | 22.4 | 24.3 | |
Antihypertensive drugs use, % | |||||
No | 80.4 | 77.8 | 82.5 | 81.7 | <0.01 |
Yes | 19.6 | 22.2 | 17.5 | 18.3 | |
Falls in the past 6 months, % | 6.3 | 6.1 | 5.8 | 7.3 | 0.25 |
BMI, kg/m2, mean (SD) | 23.9 (3.3) | 23.7 (3.2) | 23.9 (3.3) | 24.2 (3.4) | <0.01 |
AGSmax, kg, mean (SD) | 25.2 (8.4) | 24.4 (7.9) | 25.7 (8.6) | 25.6 (8.6) | <0.01 |
RGSmax, kg per kg/m2, mean (SD) | 1.07 (0.38) | 1.05 (0.36) | 1.09 (0.39) | 1.08 (0.39) | <0.01 |
RGSmean, kg per kg/m2, mean (SD) | 1.04 (0.37) | 1.02 (0.35) | 1.06 (0.38) | 1.05 (0.39) | <0.01 |
RGSleft, kg per kg/m2, mean (SD) | 1.05 (0.38) | 1.03 (0.36) | 1.07 (0.39) | 1.05 (0.39) | <0.01 |
RGSright, kg per kg/m2, mean (SD) | 1.03 (0.37) | 1.00 (0.35) | 1.05 (0.38) | 1.04 (0.39) | <0.01 |
TUGT score, second, median (IQR) | 5.00 (0.95) | 4.97 (0.93) | 5.02 (0.97) | 5.06 (1.02) | 0.02 |
Serum sodium concentration, mmol/L, median (IQR) | 145.0 (4.0) | 145.0 (4.0) | 145.0 (4.0) | 145.0 (4.0) | 0.56 |
Urinary sodium concentration, mmol/L, median (IQR) | 136.0 (92.0) | 134.0 (93.0) | 139.0 (92.0) | 144.0 (88.0) | 0.02 |
Men | Women | P for Interaction | |||||
---|---|---|---|---|---|---|---|
Light | Moderate | Salty | Light | Moderate | Salty | ||
AGSmax, kg | 0.68 | ||||||
Crude β (95% CI) | 0.00 | 0.52 (−0.52, 1.57) | −0.71 (−1.84, 0.41) | 0.00 | 0.18 (−0.24, 0.60) | −0.17 (−0.66, 0.32) | |
Adjusted β (95% CI) ξ | 0.00 | 0.28 (−0.68, 1.23) | −0.61 (−1.64, 0.41) | 0.00 | 0.18 (−0.22, 0.59) | −0.40 (−0.87, 0.08) | |
RGSmax, kg per kg/m2 | 0.85 | ||||||
Crude β (95% CI) | 0.00 | 0.02 (−0.03, 0.07) | −0.03 (−0.08, 0.02) | 0.00 | −0.01 (−0.03, 0.01) | −0.04 (−0.06, −0.02) ** | |
Adjusted β (95% CI) ξ | 0.00 | 0.002 (−0.04, 0.05) | −0.03 (−0.08, 0.02) | 0.00 | −0.01 (−0.02, 0.01) | −0.04 (−0.06, −0.02) *** | |
RGSmean, kg per kg/m2 | 0.90 | ||||||
Crude β (95% CI) | 0.00 | 0.02 (−0.03, 0.06) | −0.03 (−0.08, 0.02) | 0.00 | −0.01 (−0.03, 0.01) | −0.04 (−0.06, −0.01) ** | |
Adjusted β (95% CI) ξ | 0.00 | −0.0001 (−0.04, 0.04) | −0.03 (−0.08, 0.02) | 0.00 | −0.005 (−0.02, 0.01) | −0.04 (−0.06, −0.02) *** | |
RGSleft, kg per kg/m2 | 0.76 | ||||||
Crude β (95% CI) | 0.00 | 0.02 (−0.03, 0.07) | −0.04 (−0.09, 0.01) | 0.00 | −0.01 (−0.03, 0.01) | −0.04 (−0.06, −0.02) ** | |
Adjusted β (95% CI) ξ | 0.00 | 0.002 (−0.04, 0.05) | −0.04 (−0.09, 0.01) | 0.00 | −0.01 (−0.03, 0.01) | −0.04 (−0.06, −0.02) *** | |
RGSright, kg per kg/m2 | 0.82 | ||||||
Crude β (95% CI) | 0.00 | 0.02 (−0.03, 0.06) | −0.02 (−0.07, 0.03) | 0.00 | −0.01 (−0.02, 0.01) | −0.03 (−0.06, −0.01) ** | |
Adjusted β (95% CI) ξ | 0.00 | −0.002 (−0.05, 0.04) | −0.02 (−0.07, 0.03) | 0.00 | −0.002 (−0.02, 0.02) | −0.04 (−0.06, −0.02) ** | |
TUGT score, second | 0.84 | ||||||
Crude β (95% CI) | 0.00 | −0.01 (−0.14, 0.12) | 0.12 (−0.02, 0.26) | 0.00 | 0.08 (0.01, 0.16) * | 0.10 (0.01, 0.19) * | |
Adjusted β (95% CI) ξ | 0.00 | 0.01 (−0.11, 0.12) | 0.09 (−0.03, 0.22) | 0.00 | 0.03 (−0.04, 0.09) | 0.07 (−0.002, 0.15) | |
Falls in the past 6 months | 0.79 | ||||||
Crude OR (95% CI) | 1.00 | 0.87 (0.44, 1.69) | 1.38 (0.72, 2.65) | 1.00 | 1.02 (0.76, 1.38) | 1.26 (0.90, 1.75) | |
Adjusted OR (95% CI) ξ | 1.00 | 0.79 (0.40, 1.56) | 1.26 (0.65, 2.47) | 1.00 | 1.03 (0.76, 1.39) | 1.27 (0.91, 1.78) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, T.; Zhang, W.; Jiang, C.; Jin, Y.; Zhu, T.; Zhu, F.; Xu, L. Association of Salt Intake with Muscle Strength and Physical Performance in Middle-Aged to Older Chinese: The Guangzhou Biobank Cohort Study. Nutrients 2023, 15, 516. https://doi.org/10.3390/nu15030516
Lu T, Zhang W, Jiang C, Jin Y, Zhu T, Zhu F, Xu L. Association of Salt Intake with Muscle Strength and Physical Performance in Middle-Aged to Older Chinese: The Guangzhou Biobank Cohort Study. Nutrients. 2023; 15(3):516. https://doi.org/10.3390/nu15030516
Chicago/Turabian StyleLu, Tingyu, Weisen Zhang, Chaoqiang Jiang, Yali Jin, Tong Zhu, Feng Zhu, and Lin Xu. 2023. "Association of Salt Intake with Muscle Strength and Physical Performance in Middle-Aged to Older Chinese: The Guangzhou Biobank Cohort Study" Nutrients 15, no. 3: 516. https://doi.org/10.3390/nu15030516
APA StyleLu, T., Zhang, W., Jiang, C., Jin, Y., Zhu, T., Zhu, F., & Xu, L. (2023). Association of Salt Intake with Muscle Strength and Physical Performance in Middle-Aged to Older Chinese: The Guangzhou Biobank Cohort Study. Nutrients, 15(3), 516. https://doi.org/10.3390/nu15030516