Serum Metabolomics Reveals a Potential Benefit of Methionine in Type 1 Diabetes Patients with Poor Glycemic Control and High Glycemic Variability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Data Collection and Biochemical Measurements
2.3. Continuous Glucose Monitoring
2.4. Sample Preparation and Metabolomic Analysis
2.5. Statistical Analysis
3. Results
3.1. Comparison of Basic Characteristics and CGM Parameters of Study Subjects
3.2. Models Analysis in the Exploratory Set
3.3. Pathway Analysis in the Exploratory Set and Candidate GV Biomarkers
3.4. Candidate GV Biomarkers Validation
3.5. Performance of Final Selected Biomarkers for Predicting GV
3.6. Correlation between Selected Biomarkers and Glycemic Parameters for All Patients
3.7. Predictors for GV by Multiple Linear Regression Analysis for All Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bergenstal, R.M.; Klonoff, D.C.; Garg, S.K.; Bode, B.W.; Meredith, M.; Slover, R.H.; Ahmann, A.J.; Welsh, J.B.; Lee, S.W.; Kaufman, F.R.; et al. Threshold-based insulin-pump interruption for reduction of hypoglycemia. N. Engl. J. Med. 2013, 369, 224–232. [Google Scholar] [CrossRef] [Green Version]
- Diabetes, C.; Complications Trial/Epidemiology of Diabetes, I.; Complications Research, G.; Lachin, J.M.; Genuth, S.; Cleary, P.; Davis, M.D.; Nathan, D.M. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N. Engl. J. Med. 2000, 342, 381–389. [Google Scholar] [CrossRef] [Green Version]
- Holman, R.R.; Paul, S.K.; Bethel, M.A.; Matthews, D.R.; Neil, H.A. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 2008, 359, 1577–1589. [Google Scholar] [CrossRef] [Green Version]
- Lachin, J.M.; Orchard, T.J.; Nathan, D.M.; DCCT/EDIC Research Group. Update on cardiovascular outcomes at 30 years of the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care 2014, 37, 39–43. [Google Scholar] [CrossRef] [Green Version]
- Danne, T.; Nimri, R.; Battelino, T.; Bergenstal, R.M.; Close, K.L.; DeVries, J.H.; Garg, S.; Heinemann, L.; Hirsch, I.; Amiel, S.A.; et al. International Consensus on Use of Continuous Glucose Monitoring. Diabetes Care 2017, 40, 1631–1640. [Google Scholar] [CrossRef] [Green Version]
- Christensen, M.B.; Gaede, P.; Hommel, E.; Gotfredsen, A.; Norgaard, K. Glycaemic variability and hypoglycaemia are associated with C-peptide levels in insulin-treated type 2 diabetes. Diabetes Metab. 2020, 46, 61–65. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Y.; Jiang, X.; Wu, J.; Liu, F.; Fan, L.; Li, X.; Yin, G.; Yang, L. Impact of flash glucose monitoring on glycemic control varies with the age and residual beta-cell function of patients with type 1 diabetes mellitus. J. Diabetes Investig. 2022, 13, 552–559. [Google Scholar] [CrossRef]
- Lindon, J.C.; Holmes, E.; Nicholson, J.K. Metabonomics techniques and applications to pharmaceutical research & development. Pharm. Res. 2006, 23, 1075–1088. [Google Scholar] [CrossRef]
- Dutta, T.; Kudva, Y.C.; Persson, X.M.; Schenck, L.A.; Ford, G.C.; Singh, R.J.; Carter, R.; Nair, K.S. Impact of Long-Term Poor and Good Glycemic Control on Metabolomics Alterations in Type 1 Diabetic People. J. Clin. Endocrinol. Metab. 2016, 101, 1023–1033. [Google Scholar] [CrossRef]
- Knebel, B.; Strassburger, K.; Szendroedi, J.; Kotzka, J.; Scheer, M.; Nowotny, B.; Mussig, K.; Lehr, S.; Pacini, G.; Finner, H.; et al. Specific Metabolic Profiles and Their Relationship to Insulin Resistance in Recent-Onset Type 1 and Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2016, 101, 2130–2140. [Google Scholar] [CrossRef]
- Monnier, L.; Colette, C.; Wojtusciszyn, A.; Dejager, S.; Renard, E.; Molinari, N.; Owens, D.R. Toward Defining the Threshold between Low and High Glucose Variability in Diabetes. Diabetes Care 2017, 40, 832–838. [Google Scholar] [CrossRef] [Green Version]
- Consensus, C. Consensus statement on the worldwide standardization of the hemoglobin A1C measurement: The American Diabetes Association, European Association for the Study of Diabetes, International Federation of Clinical Chemistry and Laboratory Medicine, and the International Diabetes Federation. Diabetes Care 2007, 30, 2399–2400. [Google Scholar] [CrossRef] [Green Version]
- Want, E.J.; Masson, P.; Michopoulos, F.; Wilson, I.D.; Theodoridis, G.; Plumb, R.S.; Shockcor, J.; Loftus, N.; Holmes, E.; Nicholson, J.K. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat. Protoc. 2013, 8, 17–32. [Google Scholar] [CrossRef]
- Zelena, E.; Dunn, W.B.; Broadhurst, D.; Francis-McIntyre, S.; Carroll, K.M.; Begley, P.; O’Hagan, S.; Knowles, J.D.; Halsall, A.; Consortium, H.; et al. Development of a robust and repeatable UPLC-MS method for the long-term metabolomic study of human serum. Anal. Chem. 2009, 81, 1357–1364. [Google Scholar] [CrossRef]
- Dunn, W.B.; Broadhurst, D.; Begley, P.; Zelena, E.; Francis-McIntyre, S.; Anderson, N.; Brown, M.; Knowles, J.D.; Halsall, A.; Haselden, J.N.; et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2011, 6, 1060–1083. [Google Scholar] [CrossRef]
- Gentleman, R.C.; Carey, V.J.; Bates, D.M.; Bolstad, B.; Dettling, M.; Dudoit, S.; Ellis, B.; Gautier, L.; Ge, Y.; Gentry, J.; et al. Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol. 2004, 5, R80. [Google Scholar] [CrossRef] [Green Version]
- Jun, J.E.; Lee, S.E.; Lee, Y.B.; Ahn, J.Y.; Kim, G.; Hur, K.Y.; Lee, M.K.; Jin, S.M.; Kim, J.H. Continuous glucose monitoring defined glucose variability is associated with cardiovascular autonomic neuropathy in type 1 diabetes. Diabetes Metab. Res. Rev. 2019, 35, e3092. [Google Scholar] [CrossRef]
- Picconi, F.; Parravano, M.; Ylli, D.; Pasqualetti, P.; Coluzzi, S.; Giordani, I.; Malandrucco, I.; Lauro, D.; Scarinci, F.; Giorno, P.; et al. Retinal neurodegeneration in patients with type 1 diabetes mellitus: The role of glycemic variability. Acta Diabetol. 2017, 54, 489–497. [Google Scholar] [CrossRef]
- Yapanis, M.; James, S.; Craig, M.E.; O’Neal, D.; Ekinci, E.I. Complications of Diabetes and Metrics of Glycemic Management Derived From Continuous Glucose Monitoring. J. Clin. Endocrinol. Metab. 2022, 107, e2221–e2236. [Google Scholar] [CrossRef]
- Korolev, S.; Ikeguchi, Y.; Skarina, T.; Beasley, S.; Arrowsmith, C.; Edwards, A.; Joachimiak, A.; Pegg, A.E.; Savchenko, A. The crystal structure of spermidine synthase with a multisubstrate adduct inhibitor. Nat. Struct. Biol. 2002, 9, 27–31. [Google Scholar] [CrossRef]
- Munder, M. Arginase: An emerging key player in the mammalian immune system. Br. J. Pharmacol. 2009, 158, 638–651. [Google Scholar] [CrossRef] [Green Version]
- LØVaas, E. Antioxidative and Metal-Chelating Effects of Polyamines. Adv. Pharmacol. 1996, 38, 119–149. [Google Scholar] [CrossRef]
- Kulkarni, A.; Anderson, C.M.; Mirmira, R.G.; Tersey, S.A. Role of Polyamines and Hypusine in beta Cells and Diabetes Pathogenesis. Metabolites 2022, 12, 344. [Google Scholar] [CrossRef]
- Marselli, L.; Bosi, E.; De Luca, C.; Del Guerra, S.; Tesi, M.; Suleiman, M.; Marchetti, P. Arginase 2 and Polyamines in Human Pancreatic Beta Cells: Possible Role in the Pathogenesis of Type 2 Diabetes. Int. J. Mol. Sci. 2021, 22, 12099. [Google Scholar] [CrossRef]
- Hesterberg, R.S.; Cleveland, J.L.; Epling-Burnette, P.K. Role of Polyamines in Immune Cell Functions. Med. Sci. 2018, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Tersey, S.A.; Colvin, S.C.; Maier, B.; Mirmira, R.G. Protective effects of polyamine depletion in mouse models of type 1 diabetes: Implications for therapy. Amino Acids 2014, 46, 633–642. [Google Scholar] [CrossRef] [Green Version]
- Sjoholm, A.; Honkanen, R.E. Polyamines regulate serine/threonine protein phosphatases in insulin-secreting cells. Pancreas 2000, 20, 32–37. [Google Scholar] [CrossRef]
- Mendez, J.D.; Balderas, F.L. Inhibition by L-arginine and spermidine of hemoglobin glycation and lipid peroxidation in rats with induced diabetes. Biomed. Pharmacother. 2006, 60, 26–31. [Google Scholar] [CrossRef]
- Karacay, C.; Prietl, B.; Harer, C.; Ehall, B.; Haudum, C.W.; Bounab, K.; Franz, J.; Eisenberg, T.; Madeo, F.; Kolb, D.; et al. The effect of spermidine on autoimmunity and beta cell function in NOD mice. Sci. Rep. 2022, 12, 4502. [Google Scholar] [CrossRef]
- Nicoletti, R.; Venza, I.; Ceci, G.; Visalli, M.; Teti, D.; Reibaldi, A. Vitreous polyamines spermidine, putrescine, and spermine in human proliferative disorders of the retina. Br. J. Ophthalmol. 2003, 87, 1038–1042. [Google Scholar] [CrossRef]
- Seghieri, G.; Gironi, A.; Mammini, P.; Alviggi, L.; De Giorgio, L.A.; Bartolomei, G.; Ignesti, G.; Franconi, F. Erythrocyte spermidine levels in IDDM patients. Diabetes Care 1992, 15, 543–545. [Google Scholar] [CrossRef] [PubMed]
- Bjelakovic, G.; Beninati, S.; Bjelakovic, B.; Sokolovic, D.; Jevtovic, T.; Stojanovic, I.; Rossi, S.; Tabolacci, C.; Kocic, G.; Pavlovic, D.; et al. Does polyamine oxidase activity influence the oxidative metabolism of children who suffer of diabetes mellitus? Mol. Cell. Biochem. 2010, 341, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Seghieri, G.; Gironi, A.; Niccolai, M.; Mammini, P.; Alviggi, L.; De Giorgio, L.A.; Caselli, P.; Bartolomei, G. Serum spermidine oxidase activity in patients with insulin-dependent diabetes mellitus and microvascular complications. Acta Diabetol. Lat. 1990, 27, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Fang, W.; Liu, Y.; Liang, H.; Chen, W.; Wang, H. Acute glucose fluctuation promotes RAGE expression via reactive oxygen species-mediated NFκB activation in rat podocytes. Mol. Med. Rep. 2021, 23, 330. [Google Scholar] [CrossRef] [PubMed]
- Papachristoforou, E.; Lambadiari, V.; Maratou, E.; Makrilakis, K. Association of Glycemic Indices (Hyperglycemia, Glucose Variability, and Hypoglycemia) with Oxidative Stress and Diabetic Complications. J. Diabetes Res. 2020, 2020, 7489795. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Xu, Y.; Dai, Z.; Sun, Y. Intermittent high glucose stimulate MCP-l, IL-18, and PAI-1, but inhibit adiponectin expression and secretion in adipocytes dependent of ROS. Cell Biochem. Biophys. 2009, 55, 173–180. [Google Scholar] [CrossRef]
- Sun, J.; Xu, Y.; Sun, S.; Sun, Y.; Wang, X. Intermittent high glucose enhances cell proliferation and VEGF expression in retinal endothelial cells: The role of mitochondrial reactive oxygen species. Mol. Cell. Biochem. 2010, 343, 27–35. [Google Scholar] [CrossRef]
- Sun, L.Q.; Chen, Y.Y.; Wang, X.; Li, X.J.; Xue, B.; Qu, L.; Zhang, T.T.; Mu, Y.M.; Lu, J.M. The protective effect of alpha lipoic acid on Schwann cells exposed to constant or intermittent high glucose. Biochem. Pharmacol. 2012, 84, 961–973. [Google Scholar] [CrossRef]
- Wang, J.; Yin, H.; Huang, Y.; Guo, C.; Xia, C.; Liu, Q.; Zhang, L. Panax Quinquefolius Saponin of Stem and Leaf Attenuates Intermittent High Glucose-Induced Oxidative Stress Injury in Cultured Human Umbilical Vein Endothelial Cells via PI3K/Akt/GSK-3 beta Pathway. Evid. Based Complement. Altern. Med. 2013, 2013, 196283. [Google Scholar] [CrossRef] [Green Version]
- Chopra, S.; Wallace, H.M. Induction of spermidine/spermine N1-acetyltransferase in human cancer cells in response to increased production of reactive oxygen species. Biochem. Pharmacol. 1998, 55, 1119–1123. [Google Scholar] [CrossRef]
- Rider, J.E.; Hacker, A.; Mackintosh, C.A.; Pegg, A.E.; Woster, P.M.; Casero, R.A., Jr. Spermine and spermidine mediate protection against oxidative damage caused by hydrogen peroxide. Amino Acids 2007, 33, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Willke, T. Methionine production--a critical review. Appl. Microbiol. Biotechnol. 2014, 98, 9893–9914. [Google Scholar] [CrossRef]
- Tavares, C.D.; Sharabi, K.; Dominy, J.E.; Lee, Y.; Isasa, M.; Orozco, J.M.; Jedrychowski, M.P.; Kamenecka, T.M.; Griffin, P.R.; Gygi, S.P.; et al. The Methionine Transamination Pathway Controls Hepatic Glucose Metabolism through Regulation of the GCN5 Acetyltransferase and the PGC-1alpha Transcriptional Coactivator. J. Biol. Chem. 2016, 291, 10635–10645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, F.; Yan, X.; Yu, Y.; Zhu, X.; Ma, Y.; Yue, Z.; Ou, H.; Yan, Z. Protective effects of maternal methyl donor supplementation on adult offspring of high fat diet-fed dams. J. Nutr. Biochem. 2016, 34, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Navik, U.; Sheth, V.G.; Kabeer, S.W.; Tikoo, K. Dietary Supplementation of Methyl Donor l-Methionine Alters Epigenetic Modification in Type 2 Diabetes. Mol. Nutr. Food Res. 2019, 63, e1801401. [Google Scholar] [CrossRef]
- Navik, U.; Rawat, K.; Tikoo, K. L-Methionine prevents beta-cell damage by modulating the expression of Arx, MafA and regulation of FOXO1 in type 1 diabetic rats. Acta Histochem. 2022, 124, 151820. [Google Scholar] [CrossRef]
- Pflueger, M.; Seppanen-Laakso, T.; Suortti, T.; Hyotylainen, T.; Achenbach, P.; Bonifacio, E.; Oresic, M.; Ziegler, A.G. Age- and islet autoimmunity-associated differences in amino acid and lipid metabolites in children at risk for type 1 diabetes. Diabetes 2011, 60, 2740–2747. [Google Scholar] [CrossRef] [Green Version]
- Jorgenrud, B.; Stene, L.C.; Tapia, G.; Boas, H.; Pepaj, M.; Berg, J.P.; Thorsby, P.M.; Oresic, M.; Hyotylainen, T.; Ronningen, K.S. Longitudinal plasma metabolic profiles, infant feeding, and islet autoimmunity in the MIDIA study. Pediatr. Diabetes 2017, 18, 111–119. [Google Scholar] [CrossRef]
- Overgaard, A.J.; Weir, J.M.; De Souza, D.P.; Tull, D.; Haase, C.; Meikle, P.J.; Pociot, F. Lipidomic and metabolomic characterization of a genetically modified mouse model of the early stages of human type 1 diabetes pathogenesis. Metabolomics 2016, 12, 13. [Google Scholar] [CrossRef] [Green Version]
- Fahrmann, J.; Grapov, D.; Yang, J.; Hammock, B.; Fiehn, O.; Bell, G.I.; Hara, M. Systemic alterations in the metabolome of diabetic NOD mice delineate increased oxidative stress accompanied by reduced inflammation and hypertriglyceremia. Am. J. Physiol. Endocrinol. Metab. 2015, 308, E978–E989. [Google Scholar] [CrossRef]
- Abu-Lebdeh, H.S.; Barazzoni, R.; Meek, S.E.; Bigelow, M.L.; Persson, X.M.; Nair, K.S. Effects of insulin deprivation and treatment on homocysteine metabolism in people with type 1 diabetes. J. Clin. Endocrinol. Metab. 2006, 91, 3344–3348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darmaun, D.; Smith, S.D.; Sweeten, S.; Sager, B.K.; Welch, S.; Mauras, N. Evidence for accelerated rates of glutathione utilization and glutathione depletion in adolescents with poorly controlled type 1 diabetes. Diabetes 2005, 54, 190–196. [Google Scholar] [CrossRef] [Green Version]
- Mizunoe, Y.; Kobayashi, M.; Sudo, Y.; Watanabe, S.; Yasukawa, H.; Natori, D.; Hoshino, A.; Negishi, A.; Okita, N.; Komatsu, M.; et al. Trehalose protects against oxidative stress by regulating the Keap1-Nrf2 and autophagy pathways. Redox Biol. 2018, 15, 115–124. [Google Scholar] [CrossRef]
- Tang, Q.; Zheng, G.; Feng, Z.; Chen, Y.; Lou, Y.; Wang, C.; Zhang, X.; Zhang, Y.; Xu, H.; Shang, P.; et al. Trehalose ameliorates oxidative stress-mediated mitochondrial dysfunction and ER stress via selective autophagy stimulation and autophagic flux restoration in osteoarthritis development. Cell Death Dis. 2017, 8, e3081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.F.; Kuo, Y.T.; Chen, T.Y.; Chien, C.T. Quercetin-Rich Guava (Psidium guajava) Juice in Combination with Trehalose Reduces Autophagy, Apoptosis and Pyroptosis Formation in the Kidney and Pancreas of Type II Diabetic Rats. Molecules 2016, 21, 334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshizane, C.; Mizote, A.; Yamada, M.; Arai, N.; Arai, S.; Maruta, K.; Mitsuzumi, H.; Ariyasu, T.; Ushio, S.; Fukuda, S. Glycemic, insulinemic and incretin responses after oral trehalose ingestion in healthy subjects. Nutr. J. 2017, 16, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stachowicz, A.; Wisniewska, A.; Kus, K.; Kiepura, A.; Gebska, A.; Gajda, M.; Bialas, M.; Toton-Zuranska, J.; Stachyra, K.; Suski, M.; et al. The Influence of Trehalose on Atherosclerosis and Hepatic Steatosis in Apolipoprotein E Knockout Mice. Int. J. Mol. Sci. 2019, 20, 1552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaribeygi, H.; Yaribeygi, A.; Sathyapalan, T.; Sahebkar, A. Molecular mechanisms of trehalose in modulating glucose homeostasis in diabetes. Diabetes Metab. Syndr. 2019, 13, 2214–2218. [Google Scholar] [CrossRef]
- Shimokawa, C.; Kato, T.; Takeuchi, T.; Ohshima, N.; Furuki, T.; Ohtsu, Y.; Suzue, K.; Imai, T.; Obi, S.; Olia, A.; et al. CD8(+) regulatory T cells are critical in prevention of autoimmune-mediated diabetes. Nat. Commun. 2020, 11, 1922. [Google Scholar] [CrossRef] [Green Version]
- Morze, J.; Wittenbecher, C.; Schwingshackl, L.; Danielewicz, A.; Rynkiewicz, A.; Hu, F.B.; Guasch-Ferre, M. Metabolomics and Type 2 Diabetes Risk: An Updated Systematic Review and Meta-analysis of Prospective Cohort Studies. Diabetes Care 2022, 45, 1013–1024. [Google Scholar] [CrossRef]
- Rebholz, C.M.; Yu, B.; Zheng, Z.; Chang, P.; Tin, A.; Kottgen, A.; Wagenknecht, L.E.; Coresh, J.; Boerwinkle, E.; Selvin, E. Serum metabolomic profile of incident diabetes. Diabetologia 2018, 61, 1046–1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, C.; Jiang, D.; Xu, Y.; Peng, F.; Zhao, S.; Li, H.; Jin, D.; Xu, X.; Xia, Z.; Che, M.; et al. High-Coverage Serum Metabolomics Reveals Metabolic Pathway Dysregulation in Diabetic Retinopathy: A Propensity Score-Matched Study. Front. Mol. Biosci. 2022, 9, 822647. [Google Scholar] [CrossRef] [PubMed]
Characteristics | GV-H Group (n = 17) | GV-L Group (n = 16) | p Value |
---|---|---|---|
Age, years, median [Q1, Q3] | 18.0 (12.0, 28.0) | 18.0 (14.0, 32.5) | 0.691 |
Sex, M/F, n | 10/7 | 9/7 | 0.883 |
BMI, kg/m2, mean (SD) | 18.8 ± 3.2 | 20.1 ± 2.5 | 0.182 |
Duration, years, median [Q1, Q3] | 1.8 (1.0, 3.7) | 1.5 (0.7, 5.4) | 0.732 |
Insulin, U/kg·day, median [Q1, Q3] | 0.67 (0.56, 0.82) | 0.63 (0.45, 0.74) | 0.165 |
FBG, mmol/L, median [Q1, Q3] | 8.4 (7.5, 9.1) | 7.7 (6.3, 11.3) | 0.634 |
2hBG, mmol/L, median [Q1, Q3] | 17.3 (15.7, 19.6) | 16.2 (13.4, 17.8) | 0.239 |
HbA1c, %, mean (SD) | 8.4 ± 1.8 | 8.4 ± 2.1 | 1.000 |
FCP, pmol/L, median [Q1, Q3] | 59.8 (20.9, 91.2) | 42.9 (21.8, 130.2) | 0.600 |
2hCP, pmol/L, median [Q1, Q3] | 129.3 (63.9, 176.0) | 66.1 (30.6, 227.7) | 0.704 |
TC, mmol/L, mean (SD) | 4.1 ± 0.7 | 4.2 ± 0.8 | 0.704 |
TG, mmol/L, median [Q1, Q3] | 0.55 (0.49, 0.72) | 0.70 (0.63, 1.01) | 0.118 |
HDL, mmol/L, mean (SD) | 1.5 ± 0.3 | 1.4 ± 0.5 | 0.903 |
LDL, mmol/L, mean (SD) | 2.3 ± 0.6 | 2.5 ± 0.6 | 0.613 |
Glucose SD, mmol/L, median [Q1, Q3] | 3.6 (3.4, 4.5) | 2.6 (2.0, 3.1) | <0.001 |
MAGE, mmol/L, median [Q1, Q3] | 8.5 (7.6, 9.6) | 5.4 (4.2, 7.0) | <0.001 |
Glucose CV, %, mean (SD) | 46.3 ± 5.7 | 26.8 ± 3.7 | <0.001 |
LBGI, median [Q1, Q3] | 5.2 (4.2, 6.9) | 1.3 (0.4, 1.9) | <0.001 |
Metabolites | KEGG | FC | p Value | VIP | Trend |
---|---|---|---|---|---|
Phosphatidylcholine | C00157 | 119.49 | 1.71 × 10−9 | 1.30 | Increased |
Trehalose | C01083 | 3.33 | 0.000056 | 1.66 | Increased |
Mannitol | C00392 | 2.92 | 4.62 × 10−6 | 1.80 | Increased |
D-Xylitol | C00379 | 2.55 | 0.005381 | 1.13 | Increased |
Oxoglutaric acid | C00026 | 1.56 | 0.013587 | 1.27 | Increased |
L-Methionine | C00073 | 1.44 | 0.015133 | 1.33 | Increased |
D-Phenylalanine | C02265 | 1.31 | 0.033795 | 1.05 | Increased |
L-Valine | C00183 | 1.3 | 0.002162 | 1.41 | Increased |
L-Histidine | C00135 | 1.29 | 0.003685 | 1.32 | Increased |
L-Glutamic acid | C00025 | 1.28 | 0.022906 | 1.11 | Increased |
2-Ketobutyric acid | C00109 | 1.28 | 0.040674 | 1.08 | Increased |
N-Acetyl-L-aspartic acid | C01042 | 1.21 | 0.037103 | 1.11 | Increased |
Spermidine | C00315 | 0.56 | 0.000083 | 1.49 | Decreased |
13S-hydroxyoctadecadienoic acid | C14762 | 0.53 | 0.007721 | 1.34 | Decreased |
Hydrocinnamic acid | C05629 | 0.53 | 0.013587 | 1.32 | Decreased |
Riboflavin | C00255 | 0.51 | 1.71 × 10−9 | 1.31 | Decreased |
Phenyllactate | C05607 | 0.48 | 0.001224 | 1.29 | Decreased |
3-(2-Hydroxyphenyl)propanoic acid | C01198 | 0.47 | 6.39 × 10−7 | 1.05 | Decreased |
3-Methylthiopropionic acid | C08276 | 0.43 | 0.033795 | 1.01 | Decreased |
L-Cysteine | C00097 | 0.23 | 0.000208 | 1.67 | Decreased |
9,10-DHOME | C14828 | 0.22 | 1.17 × 10−6 | 2.06 | Decreased |
Cysteine-S-sulfate | C05824 | 0.16 | 0.000012 | 1.84 | Decreased |
Phthalic acid | C01606 | 0.12 | 1.71 × 10−9 | 1.18 | Decreased |
Phenylethylamine | C05332 | 0.02 | 1.71 × 10−9 | 2.56 | Decreased |
12,13-DHOME | C14829 | 0.02 | 1.71 × 10−9 | 2.36 | Decreased |
Spermidine | L-Methionine | Trehalose | |
---|---|---|---|
HbA1c | 0.105 | −0.427 ** | 0.197 |
FBG | −0.076 | −0.329 * | 0.155 |
Glucose SD | 0.361 ** | −0.473 ** | −0.117 |
MAGE | 0.351 ** | −0.385 ** | −0.102 |
Glucose CV | 0.438 ** | −0.472 ** | −0.261 |
LBGI | 0.367 ** | −0.279 * | −0.419 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Guo, K.; Tian, Q.; Ye, J.; Ding, Z.; Zhou, Q.; Li, X.; Zhou, Z.; Yang, L. Serum Metabolomics Reveals a Potential Benefit of Methionine in Type 1 Diabetes Patients with Poor Glycemic Control and High Glycemic Variability. Nutrients 2023, 15, 518. https://doi.org/10.3390/nu15030518
Zhang L, Guo K, Tian Q, Ye J, Ding Z, Zhou Q, Li X, Zhou Z, Yang L. Serum Metabolomics Reveals a Potential Benefit of Methionine in Type 1 Diabetes Patients with Poor Glycemic Control and High Glycemic Variability. Nutrients. 2023; 15(3):518. https://doi.org/10.3390/nu15030518
Chicago/Turabian StyleZhang, Liyin, Keyu Guo, Qi Tian, Jianan Ye, Zhiyi Ding, Qin Zhou, Xia Li, Zhiguang Zhou, and Lin Yang. 2023. "Serum Metabolomics Reveals a Potential Benefit of Methionine in Type 1 Diabetes Patients with Poor Glycemic Control and High Glycemic Variability" Nutrients 15, no. 3: 518. https://doi.org/10.3390/nu15030518
APA StyleZhang, L., Guo, K., Tian, Q., Ye, J., Ding, Z., Zhou, Q., Li, X., Zhou, Z., & Yang, L. (2023). Serum Metabolomics Reveals a Potential Benefit of Methionine in Type 1 Diabetes Patients with Poor Glycemic Control and High Glycemic Variability. Nutrients, 15(3), 518. https://doi.org/10.3390/nu15030518