Synergistic Effect of Rhodiola rosea and Caffeine Supplementation on the Improvement of Muscle Strength and Muscular Endurance: A Pilot Study for Rats, Resistance Exercise-Untrained and -Trained Volunteers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Resistance Training Protocol for Rats
2.3. Forelimb Grip Strength Test
2.4. Analysis of EPO Gene Expression in Rat Kidney
2.5. Serum Erythropoietin (EPO) Analysis by ELISA
2.6. Striatal Dopamine Analysis by ELISA
2.7. Oxygen Consumption Rate Measurement of Muscle Fibers
2.8. Participants
2.9. Training Protocol for Humans
2.10. Daily Recordings of Dietary Intake
2.11. Bench Press/Deep Squat Max. Strength (Bench Press/Deep Squat 1RM)
2.12. MVIC (Maximum Voluntary Isometric Contraction) Test for the Quadriceps
2.13. Maximal Repetitions of 60% 1RM Bench Press
2.14. Statistics
3. Results
3.1. Synergistic Effects of Rhodiola rosea and Caffeine Supplementation on Rats
3.1.1. Forelimb Grip Strength
3.1.2. EPO Expression Levels in Serum and Rat Kidney
3.1.3. Striatal Dopamine Secretion Levels
3.1.4. Oxygen Consumption Rate Measurement of Muscle Fibers
3.2. Daily Recordings of Carbohydrate, Protein, Fat and Energy in Dietary Intake
3.3. Changes for Participants without Resistance Training Experience after Receiving Supplements with Concomitant Training
3.3.1. Bench Press 1RM and Deep Squat 1RM
3.3.2. MVIC and Maximal Repetitions of 60% 1RM Bench Press
3.4. Improvements following Supplement Treatment for Resistance Exercise-Trained Volunteers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, Y.; Deng, B.; Xu, L.; Liu, H.; Song, Y.; Lin, F. Corrigendum: Effects of Rhodiola Rosea Supplementation on Exercise and Sport: A Systematic Review. Front. Nutr. 2022, 9, 928909. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Pham, V.; Bui, M.; Song, L.; Wu, C.; Walia, A.; Uchio, E.; Smith-Liu, F.; Zi, X. Rhodiola rosea L.: An herb with anti-stress, anti-aging, and immunostimulating properties for cancer chemoprevention. Curr. Pharmacol. Rep. 2017, 3, 384–395. [Google Scholar] [CrossRef] [PubMed]
- Schönenberger, M.J.; Kovacs, W.J. Hypoxia signaling pathways: Modulators of oxygen-related organelles. Front. Cell Dev. Biol. 2015, 3, 42. [Google Scholar] [CrossRef]
- Zheng, K.Y.-Z.; Zhang, Z.-X.; Guo, A.J.-Y.; Bi, C.W.-C.; Zhu, K.Y.; Xu, S.L.; Zhan, J.Y.-X.; Lau, D.T.-W.; Dong, T.T.-X.; Choi, R.C.-Y. Salidroside stimulates the accumulation of HIF-1α protein resulted in the induction of EPO expression: A signaling via blocking the degradation pathway in kidney and liver cells. Eur. J. Pharmacol. 2012, 679, 34–39. [Google Scholar] [CrossRef]
- Li, J.; Wei, Q.; Zuo, G.-W.; Xia, J.; You, Z.-M.; Li, C.-L.; Chen, D.-L. Ginsenoside Rg1 induces apoptosis through inhibition of the EpoR-mediated JAK2/STAT5 signalling pathway in the TF-1/Epo human leukemia cell line. Asian Pac. J. Cancer Prev. 2014, 15, 2453–2459. [Google Scholar] [CrossRef] [Green Version]
- Watowich, S.S. The erythropoietin receptor: Molecular structure and hematopoietic signaling pathways. J. Investig. Med. 2011, 59, 1067–1072. [Google Scholar] [CrossRef] [PubMed]
- Williams, T.D.; Langley, H.N.; Roberson, C.C.; Rogers, R.R.; Ballmann, C.G. Effects of Short-Term Golden Root Extract (Rhodiola rosea) Supplementation on Resistance Exercise Performance. Int. J. Environ. Res. Public Health 2021, 18, 6953. [Google Scholar] [CrossRef] [PubMed]
- Kreipke Ph, D.V.; Moffatt Ph, D.R.; Tanner Ma, C.J.; Ormsbee Ph, D.M. Effects of Concurrent Training and a Multi-Ingredient Performance Supplement Containing Rhodiola rosea and Cordyceps sinensis on Body Composition, Performance, and Health in Active Men. J. Diet. Suppl. 2021, 18, 597–613. [Google Scholar] [CrossRef]
- De Bock, K.; Eijnde, B.O.; Ramaekers, M.; Hespel, P. Acute Rhodiola rosea intake can improve endurance exercise performance. Int. J. Sport Nutr. Exerc. Metab. 2004, 14, 298–307. [Google Scholar] [CrossRef] [Green Version]
- Grgic, J.; Grgic, I.; Pickering, C.; Schoenfeld, B.J.; Bishop, D.J.; Pedisic, Z. Wake up and smell the coffee: Caffeine supplementation and exercise performance-an umbrella review of 21 published meta-analyses. Br. J. Sport. Med. 2020, 54, 681–688. [Google Scholar] [CrossRef]
- Southward, K.; Rutherfurd-Markwick, K.J.; Ali, A. The Effect of Acute Caffeine Ingestion on Endurance Performance: A Systematic Review and Meta-Analysis. Sport. Med. 2018, 48, 1913–1928. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J. Effects of Caffeine on Resistance Exercise: A Review of Recent Research. Sport. Med. 2021, 51, 2281–2298. [Google Scholar] [CrossRef] [PubMed]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T. International society of sports nutrition position stand: Caffeine and exercise performance. J. Int. Soc. Sport. Nutr. 2021, 18, 1–37. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.; Green, J.M. Caffeine and anaerobic performance. Sport. Med. 2009, 39, 813–832. [Google Scholar] [CrossRef] [PubMed]
- Wilk, M.; Krzysztofik, M.; Filip, A.; Zajac, A.; Del Coso, J. The effects of high doses of caffeine on maximal strength and muscular endurance in athletes habituated to caffeine. Nutrients 2019, 11, 1912. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Oliver, M.; Díaz-Ríos, M. Using caffeine and other adenosine receptor antagonists and agonists as therapeutic tools against neurodegenerative diseases: A review. Life Sci. 2014, 101, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Karayigit, R.; Forbes, S.C.; Osmanov, Z.; Yilmaz, C.; Yasli, B.C.; Naderi, A.; Buyukcelebi, H.; Benesova, D.; Gabrys, T.; Esen, O. Low and Moderate Doses of Caffeinated Coffee Improve Repeated Sprint Performance in Female Team Sport Athletes. Biology 2022, 11, 1498. [Google Scholar] [CrossRef]
- Cappelletti, S.; Daria, P.; Sani, G.; Aromatario, M. Caffeine: Cognitive and physical performance enhancer or psychoactive drug? Curr. Neuropharmacol. 2015, 13, 71–88. [Google Scholar] [CrossRef] [Green Version]
- McLellan, T.M.; Caldwell, J.A.; Lieberman, H.R. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci. Biobehav. Rev. 2016, 71, 294–312. [Google Scholar] [CrossRef] [Green Version]
- Diel, P. Caffeine and Doping—What Have We Learned since 2004. Nutrients 2020, 12, 2167. [Google Scholar] [CrossRef]
- Aguilar-Navarro, M.; Muñoz, G.; Salinero, J.J.; Muñoz-Guerra, J.; Fernández-Álvarez, M.; Plata, M.d.M.; Del Coso, J. Urine caffeine concentration in doping control samples from 2004 to 2015. Nutrients 2019, 11, 286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filip-Stachnik, A.; Krzysztofik, M.; Del Coso, J.; Wilk, M. Acute effects of two caffeine doses on bar velocity during the bench press exercise among women habituated to caffeine: A randomized, crossover, double-blind study involving control and placebo conditions. Eur. J. Nutr. 2021, 61, 947–955. [Google Scholar] [CrossRef] [PubMed]
- Baltazar-Martins, J.G.; Brito de Souza, D.; Aguilar, M.; Grgic, J.; Del Coso, J. Infographic. The road to the ergogenic effect of caffeine on exercise performance. Br. J. Sport. Med. 2020, 54, 618–619. [Google Scholar] [CrossRef] [PubMed]
- Zbinden-Foncea, H.; Rada, I.; Gomez, J.; Kokaly, M.; Stellingwerff, T.; Deldicque, L.; Peñailillo, L. Effects of caffeine on countermovement-jump performance variables in elite male volleyball players. Int. J. Sport. Physiol. Perform. 2018, 13, 145–150. [Google Scholar] [CrossRef]
- Pallares, J.G.; Fernandez-Elias, V.E.; Ortega, J.F.; Munoz, G.; Munoz-Guerra, J.; Mora-Rodriguez, R. Neuromuscular responses to incremental caffeine doses: Performance and side effects. Med. Sci. Sport. Exerc. 2013, 45, 2184–2192. [Google Scholar] [CrossRef]
- Salinero, J.J.; Lara, B.; Abian-Vicen, J.; Gonzalez-Millan, C.; Areces, F.; Gallo-Salazar, C.; Ruiz-Vicente, D.; Del Coso, J. The use of energy drinks in sport: Perceived ergogenicity and side effects in male and female athletes. Br. J. Nutr. 2014, 112, 1494–1502. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.-F.; Eltzschig, H.K.; Fredholm, B.B. Adenosine receptors as drug targets—What are the challenges? Nat. Rev. Drug Discov. 2013, 12, 265–286. [Google Scholar] [CrossRef] [Green Version]
- Varani, K.; Portaluppi, F.; Gessi, S.; Merighi, S.; Ongini, E.; Belardinelli, L.; Borea, P.A. Dose and time effects of caffeine intake on human platelet adenosine A2A receptors: Functional and biochemical aspects. Circulation 2000, 102, 285–289. [Google Scholar] [CrossRef] [Green Version]
- Lara, B.; Ruiz-Moreno, C.; Salinero, J.J.; Del Coso, J. Time course of tolerance to the performance benefits of caffeine. PLoS One 2019, 14, e0210275. [Google Scholar] [CrossRef] [Green Version]
- Beaumont, R.; Cordery, P.; Funnell, M.; Mears, S.; James, L.; Watson, P. Chronic ingestion of a low dose of caffeine induces tolerance to the performance benefits of caffeine. J. Sport. Sci. 2017, 35, 1920–1927. [Google Scholar] [CrossRef]
- Belbis, M.D.; Camic, C.L.; Howell, S.M.; Zhang, S.; Chomentowski, P.J., 3rd. The Effects of Acute Caffeine Supplementation on Repeated-Sprint Ability in Healthy Young Non-Athletes. Int. J. Exerc. Sci. 2022, 15, 846–860. [Google Scholar] [PubMed]
- Nair, A.B.; Jacob, S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 2016, 7, 27. [Google Scholar] [CrossRef] [Green Version]
- Ahtiainen, J.P.; Lensu, S.; Ruotsalainen, I.; Schumann, M.; Ihalainen, J.K.; Fachada, V.; Mendias, C.L.; Brook, M.S.; Smith, K.; Atherton, P.J. Physiological adaptations to resistance training in rats selectively bred for low and high response to aerobic exercise training. Exp. Physiol. 2018, 103, 1513–1523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zainul Azlan, N.; Mohd Yusof, Y.A.; Makpol, S. Chlorella vulgaris ameliorates oxidative stress and improves the muscle regenerative capacity of young and old Sprague-Dawley rats. Nutrients 2020, 12, 3752. [Google Scholar] [CrossRef]
- Park, K.-T.; Han, J.-K.; Kim, S.J.; Lim, Y.-H. Gamma-Aminobutyric Acid Increases Erythropoietin by Activation of Citrate Cycle and Stimulation of Hypoxia-Inducible Factors Expression in Rats. Biomolecules 2020, 10, 595. [Google Scholar] [CrossRef] [Green Version]
- Venkatesan, N.; Uchino, K.; Amagase, K.; Ito, Y.; Shibata, N.; Takada, K. Gastro-intestinal patch system for the delivery of erythropoietin. J. Control. Release 2006, 111, 19–26. [Google Scholar] [CrossRef]
- Jijun, L.; Zaiwang, L.; Anyuan, L.; Shuzhen, W.; Fanghua, Q.; Lin, Z.; Hong, L. Abnormal expression of dopamine and serotonin transporters associated with the pathophysiologic mechanism of Tourette syndrome. Neurol. India 2010, 58, 523. [Google Scholar] [CrossRef] [PubMed]
- Schuh, R.A.; Jackson, K.C.; Khairallah, R.J.; Ward, C.W.; Spangenburg, E.E. Measuring mitochondrial respiration in intact single muscle fibers. Am. J. Physiol. -Regul. Integr. Comp. Physiol. 2012, 302, R712–R719. [Google Scholar] [CrossRef] [Green Version]
- Yonutas, H.M.; Hubbard, W.B.; Pandya, J.D.; Vekaria, H.J.; Geldenhuys, W.J.; Sullivan, P.G. Bioenergetic restoration and neuroprotection after therapeutic targeting of mitoNEET: New mechanism of pioglitazone following traumatic brain injury. Exp. Neurol. 2020, 327, 113243. [Google Scholar] [CrossRef]
- Schuh, R.A.; Jackson, K.C.; Schlappal, A.E.; Spangenburg, E.E.; Ward, C.W.; Park, J.H.; Dugger, N.; Shi, G.L.; Fishman, P.S. Mitochondrial oxygen consumption deficits in skeletal muscle isolated from an Alzheimer’s disease-relevant murine model. BMC Neurosci. 2014, 15, 24. [Google Scholar] [CrossRef]
- Del Coso, J.; Salinero, J.J.; González-Millán, C.; Abián-Vicén, J.; Pérez-González, B. Dose response effects of a caffeine-containing energy drink on muscle performance: A repeated measures design. J. Int. Soc. Sport. Nutr. 2012, 9, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khanum, F.; Bawa, A.S.; Singh, B. Rhodiola rosea: A versatile adaptogen. Compr. Rev. Food Sci. Food Saf. 2005, 4, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Ballou, S.; Kaptchuk, T.J.; Hirsch, W.; Nee, J.; Iturrino, J.; Hall, K.T.; Kelley, J.M.; Cheng, V.; Kirsch, I.; Jacobson, E. Open-label versus double-blind placebo treatment in irritable bowel syndrome: Study protocol for a randomized controlled trial. Trials 2017, 18, 234. [Google Scholar] [CrossRef] [Green Version]
- Giráldez-Costas, V.; Ruíz-Moreno, C.; González-García, J.; Lara, B.; Del Coso, J.; Salinero, J.J. Pre-exercise caffeine intake enhances bench press strength training adaptations. Front. Nutr. 2021, 8, 622564. [Google Scholar] [CrossRef] [PubMed]
- Rossato, S.L.; Fuchs, S.C. Diet Data Collected Using 48-h Dietary Recall: Within—And Between-Person Variation. Front. Nutr. 2021, 8, 361. [Google Scholar] [CrossRef] [PubMed]
- Correa, M.; SanMiguel, N.; López-Cruz, L.; Carratalá-Ros, C.; Olivares-García, R.; Salamone, J.D. Caffeine modulates food intake depending on the context that gives access to food: Comparison with dopamine depletion. Front. Psychiatry 2018, 9, 411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattioli, L.; Perfumi, M. Rhodiola rosea L. extract reduces stress-and CRF-induced anorexia in rats. J. Psychopharm. 2007, 21, 742–750. [Google Scholar] [CrossRef]
- Sánchez-Medina, L.; Pallarés, J.G.; Pérez, C.E.; Morán-Navarro, R.; González-Badillo, J.J. Estimation of relative load from bar velocity in the full back squat exercise. Sport. Med. Int. Open 2017, 1, E80–E88. [Google Scholar] [CrossRef]
- Seo, D.-i.; Kim, E.; Fahs, C.A.; Rossow, L.; Young, K.; Ferguson, S.L.; Thiebaud, R.; Sherk, V.D.; Loenneke, J.P.; Kim, D. Reliability of the one-repetition maximum test based on muscle group and gender. J. Sport. Sci. Med. 2012, 11, 221. [Google Scholar] [CrossRef]
- Alonso-Aubin, D.A.; Chulvi-Medrano, I.; Cortell-Tormo, J.M.; Picón-Martínez, M.; Rebullido, T.R.; Faigenbaum, A.D. Squat and bench press force-velocity profiling in male and female adolescent rugby players. J. Strength Cond. Res. 2021, 35, S44–S50. [Google Scholar] [CrossRef]
- Fuzari, H.K.; Dornelas de Andrade, A.; A Rodrigues, M.; I Medeiros, A.; F Pessoa, M.; Lima, A.M.; Cerqueira, M.S.; Marinho, P.E. Whole body vibration improves maximum voluntary isometric contraction of knee extensors in patients with chronic kidney disease: A randomized controlled trial. Physiother. Theory Pract. 2019, 35, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, R.; Kothe, G.; Bottaro, M.; Cadore, E.L.; Kruel, L.F.M. Muscle mass and training status do not affect the maximum number of repetitions in different upper-body resistance exercises. Open Sport. Sci. J. 2017, 10. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Liu, X.-N.; Wang, G.-L.; Hei, Y.; Meng, S.; Yang, L.-F.; Yuan, L.; Xie, Y. A dual-mediated liposomal drug delivery system targeting the brain: Rational construction, integrity evaluation across the blood–brain barrier, and the transporting mechanism to glioma cells. Int. J. Nanomed. 2017, 12, 2407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cordeiro, L.; Rabelo, P.; Moraes, M.; Teixeira-Coelho, F.; Coimbra, C.; Wanner, S.; Soares, D. Physical exercise-induced fatigue: The role of serotonergic and dopaminergic systems. Braz. J. Med. Biol. Res. 2017, 50, 6432. [Google Scholar] [CrossRef] [PubMed]
- Filip-Stachnik, A.; Wilk, M.; Krzysztofik, M.; Lulinska, E.; Tufano, J.J.; Zajac, A.; Stastny, P.; Del Coso, J. The effects of different doses of caffeine on maximal strength and strength-endurance in women habituated to caffeine. J. Int. Soc. Sport. Nutr. 2021, 18, 25. [Google Scholar] [CrossRef]
- Qian, E.W.; Ge, D.T.; Kong, S.K. Salidroside promotes erythropoiesis and protects erythroblasts against oxidative stress by up-regulating glutathione peroxidase and thioredoxin. J. Ethnopharmacol. 2011, 133, 308–314. [Google Scholar] [CrossRef]
- Wei, Y.; Hong, H.; Zhang, X.; Lai, W.; Wang, Y.; Chu, K.; Brown, J.; Hong, G.; Chen, L. Salidroside Inhibits Inflammation Through PI3K/Akt/HIF Signaling After Focal Cerebral Ischemia in Rats. Inflammation 2017, 40, 1297–1309. [Google Scholar] [CrossRef]
- Pickering, C.; Grgic, J. Caffeine and Exercise: What Next? Sport. Med. 2019, 49, 1007–1030. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Hasegawa, H. Central dopaminergic neurotransmission plays an important role in thermoregulation and performance during endurance exercise. Eur. J. Sport Sci. 2016, 16, 818–828. [Google Scholar] [CrossRef]
- Meeusen, R.; Roelands, B.; Spriet, L.L. Caffeine, exercise and the brain. Nestle Nutr. Inst. Workshop Ser. 2013, 76, 1–12. [Google Scholar] [CrossRef]
- Heden, T.D.; Johnson, J.M.; Ferrara, P.J.; Eshima, H.; Verkerke, A.R.; Wentzler, E.J.; Siripoksup, P.; Narowski, T.M.; Coleman, C.B.; Lin, C.-T. Mitochondrial PE potentiates respiratory enzymes to amplify skeletal muscle aerobic capacity. Sci. Adv. 2019, 5, eaax8352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stadheim, H.K.; Stensrud, T.; Brage, S.; Jensen, J. Caffeine Increases Exercise Performance, Maximal Oxygen Uptake, and Oxygen Deficit in Elite Male Endurance Athletes. Med. Sci. Sport. Exerc. 2021, 53, 2264–2273. [Google Scholar] [CrossRef] [PubMed]
- Earnest, C.P.; Morss, G.M.; Wyatt, F.; Jordan, A.N.; Colson, S.; Church, T.S.; Fitzgerald, Y.; Autrey, L.; Jurca, R.; Lucia, A. Effects of a commercial herbal-based formula on exercise performance in cyclists. Med. Sci. Sport. Exerc. 2004, 36, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Mairbäurl, H. Red blood cells in sports: Effects of exercise and training on oxygen supply by red blood cells. Front. Physiol. 2013, 4, 332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Wang, H.; Zhao, X. Effects of Rhodiola on production, health and gut development of broilers reared at high altitude in Tibet. Sci. Rep. 2014, 4, 7116. [Google Scholar] [CrossRef] [Green Version]
- Richardson, D.L.; Clarke, N.D. Effect of Coffee and Caffeine Ingestion on Resistance Exercise Performance. J. Strength Cond. Res. 2016, 30, 2892–2900. [Google Scholar] [CrossRef] [PubMed]
- Burke, B.I.; Travis, S.K.; Gentles, J.A.; Sato, K.; Lang, H.M.; Bazyler, C.D. The Effects of Caffeine on Jumping Performance and Maximal Strength in Female Collegiate Athletes. Nutrients 2021, 13, 2496. [Google Scholar] [CrossRef]
- Parisi, A.; Tranchita, E.; Duranti, G.; Ciminelli, E.; Quaranta, F.; Ceci, R.; Cerulli, C.; Borrione, P.; Sabatini, S. Effects of chronic Rhodiola Rosea supplementation on sport performance and antioxidant capacity in trained male: Preliminary results. J. Sport. Med. Phys. Fit. 2010, 50, 57–63. [Google Scholar]
- Grgic, J.; Trexler, E.T.; Lazinica, B.; Pedisic, Z. Effects of caffeine intake on muscle strength and power: A systematic review and meta-analysis. J. Int. Soc. Sport. Nutr. 2018, 15, 11. [Google Scholar] [CrossRef] [Green Version]
- Duncan, M.J.; Eyre, E.; Grgic, J.; Tallis, J. The effect of acute caffeine ingestion on upper and lower body anaerobic exercise performance. Eur. J. Sport Sci. 2019, 19, 1359–1366. [Google Scholar] [CrossRef]
- Chen, H.Y.; Chen, Y.C.; Tung, K.; Chao, H.H.; Wang, H.S. Effects of caffeine and sex on muscle performance and delayed-onset muscle soreness after exercise-induced muscle damage: A double-blind randomized trial. J. Appl. Physiol. 2019, 127, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Santana, O.; Vieira-Cavalcante, V.; Caetano Paulo, A.; Rodacki, C.; Bertuzzi, R.; Lima-Silva, A.E.; Cristina-Souza, G. Caffeine reverts loss of muscular performance during the early-follicular phase in resistance-trained naturally menstruating women. J. Sport. Sci. 2022, 40, 1592–1601. [Google Scholar] [CrossRef] [PubMed]
- Maridakis, V.; O’Connor, P.J.; Dudley, G.A.; McCully, K.K. Caffeine attenuates delayed-onset muscle pain and force loss following eccentric exercise. J. Pain 2007, 8, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Duncan, M.J.; Tallis, J.; Wilson, S.; Clarke, N.D. The effect of caffeine and rhodiola rosea, alone or in combination, on 5-km running performance in men. J. Caffeine Res. 2016, 6, 40–48. [Google Scholar] [CrossRef]
- Berjisian, E.; Naderi, A.; Mojtahedi, S.; Grgic, J.; Ghahramani, M.H.; Karayigit, R.; Forbes, J.L.; Amaro-Gahete, F.J.; Forbes, S.C. Are Caffeine’s Effects on Resistance Exercise and Jumping Performance Moderated by Training Status? Nutrients 2022, 14, 4840. [Google Scholar] [CrossRef] [PubMed]
Resistance Exercise-Untrained Volunteers (n = 48) | Resistance Exercise-Trained Volunteers (n = 24) | |
---|---|---|
Age/year | 20.5 ± 2.6 | 23.6 ± 2.2 |
Body height/cm | 175.2 ± 5.1 | 178.5 ± 4.2 |
Body weight/kg | 75.1 ± 7.0 | 87.5 ± 5.9 |
BMI/kg·m−2 | 24.37 ± 1.72 | 27.42 ± 1.12 |
Wrist diameter/cm | 6.26 ± 0.82 | 6.79 ± 0.67 |
Elbow diameter/cm | 7.01 ± 0.94 | 7.70 ± 0.81 |
Knee diameter/cm | 9.12 ± 1.02 | 9.18 ± 0.54 |
Ankle diameter/cm | 7.26 ± 1.04 | 7.48 ± 0.75 |
Circumference of thigh/cm | 53.7 ± 3.31 | 62.5 ± 4.83 |
Circumference of calf/cm | 39.4 ± 2.67 | 42.5 ± 2.84 |
Circumference of forearm/cm | 33.5 ± 2.47 | 33.9± 2.31 |
Circumference of relaxed upper arm/cm | 34.7 ± 3.10 | 38.6 ± 3.30 |
Skinfold thickness of thigh-ventral/mm | 7.75 ± 2.55 | 7.14 ± 3.06 |
Skinfold thickness of calf/mm | 5.22 ± 1.93 | 5.19 ± 2.27 |
Skinfold thickness of biceps brachii/mm | 3.65 ± 1.28 | 3.06 ± 1.34 |
Skinfold thickness of triceps brachii/mm | 5.77 ± 2.09 | 4.32 ± 1.46 |
Skinfold thickness of forearm-volar/mm | 3.80 ± 1.46 | 3.64 ± 1.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Zhao, H.; Yan, Y.; Yang, W.; Chen, S.; Song, G.; Li, X.; Gu, Y.; Yun, H.; Li, Y. Synergistic Effect of Rhodiola rosea and Caffeine Supplementation on the Improvement of Muscle Strength and Muscular Endurance: A Pilot Study for Rats, Resistance Exercise-Untrained and -Trained Volunteers. Nutrients 2023, 15, 582. https://doi.org/10.3390/nu15030582
Liu C, Zhao H, Yan Y, Yang W, Chen S, Song G, Li X, Gu Y, Yun H, Li Y. Synergistic Effect of Rhodiola rosea and Caffeine Supplementation on the Improvement of Muscle Strength and Muscular Endurance: A Pilot Study for Rats, Resistance Exercise-Untrained and -Trained Volunteers. Nutrients. 2023; 15(3):582. https://doi.org/10.3390/nu15030582
Chicago/Turabian StyleLiu, Chang, Haotian Zhao, Yi Yan, Weijun Yang, Songyue Chen, Ge Song, Xuehan Li, Yujia Gu, Hezhang Yun, and Yi Li. 2023. "Synergistic Effect of Rhodiola rosea and Caffeine Supplementation on the Improvement of Muscle Strength and Muscular Endurance: A Pilot Study for Rats, Resistance Exercise-Untrained and -Trained Volunteers" Nutrients 15, no. 3: 582. https://doi.org/10.3390/nu15030582
APA StyleLiu, C., Zhao, H., Yan, Y., Yang, W., Chen, S., Song, G., Li, X., Gu, Y., Yun, H., & Li, Y. (2023). Synergistic Effect of Rhodiola rosea and Caffeine Supplementation on the Improvement of Muscle Strength and Muscular Endurance: A Pilot Study for Rats, Resistance Exercise-Untrained and -Trained Volunteers. Nutrients, 15(3), 582. https://doi.org/10.3390/nu15030582