Investigation of Enterogermina’s Protective and Restorative Mechanisms on the Gut Microbiota with PPI, Using SHIME Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Donor Pre-Screening
2.2. SHIME Reactor Setup
2.3. Adapted SHIME Setup in this Study
2.4. Microbial Community Composition
2.4.1. qPCR Analysis of Enterogermina Engraftment
2.4.2. Quantitative 16S rRNA Sequencing
2.4.3. Shifts in Microbial Community Composition
2.5. Microbial Community Activity and Fermentative Activity
2.6. Statistics
3. Results
3.1. Donor Pre-Screening
3.2. Stability of the Adapted SHIME Setup
3.3. Microbial Community Composition
3.3.1. B. clausii Was Successfully Established in the Three Regions of the SHIME Setup
3.3.2. B. clausii Treatment Altered the Microbial Community Composition
Changes in the Ileal Community
Changes in the Colonic Community: Alpha Diversity
Changes in the Colonic Community: Phylum-Level Shifts
Changes in the Colonic Community: Family-Level Shifts
Changes in the Colonic Community: OTU-Level Shifts
3.3.3. Overall Fermentative Activity
3.3.4. Microbial Community Activity
4. Discussion
Post Hoc Hypotheses Generated in this Study
- Increasing the microbial diversity of colonic environments.
- Countering the PPI-induced decrease in the levels of Coriobacteriaceae, Selenomonadaceae, and Akkermansiaceae in the lumen of the distal colon, especially by maintaining levels of G. formicilis and A. muciniphila.
- Countering the PPI-induced increase in levels of Streptococcaceae, specifically S. bovis, in the mucus of the proximal colon.
- Maintaining levels of P. denticola in the mucus of the proximal colon.
- Increasing butyrate levels in the colon through aiding cross-feeding interactions that convert acetate into butyrate (Figure 5) and increasing levels of butyrate producers (such as G. formicilis).
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jaynes, M.; Kumar, A.B. The risks of long-term use of proton pump inhibitors: A critical review. Ther. Adv. Drug Saf. 2018, 10, 2042098618809927. [Google Scholar] [CrossRef]
- Strand, D.S.; Kim, D.; Peura, D.A. 25 Years of Proton Pump Inhibitors: A Comprehensive Review. Gut Liver 2017, 11, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Haastrup, P.F.; Thompson, W.; Sondergaard, J.; Jarbol, D.E. Side Effects of Long-Term Proton Pump Inhibitor Use: A Review. Basic Clin. Pharmacol. Toxicol. 2018, 123, 114–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, W.K.; Chan, W.W. Proton Pump Inhibitor Use and the Risk of Small Intestinal Bacterial Overgrowth: A Meta-analysis. Clin. Gastroenterol. Hepatol. 2013, 11, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Naito, Y.; Kashiwagi, K.; Takagi, T.; Andoh, A.; Inoue, R. Intestinal Dysbiosis Secondary to Proton-Pump Inhibitor Use. Digestion 2018, 97, 195–204. [Google Scholar] [CrossRef]
- Macke, L.; Schulz, C.; Koletzko, L.; Malfertheiner, P. Systematic review: The effects of proton pump inhibitors on the microbiome of the digestive tract-evidence from next-generation sequencing studies. Aliment. Pharmacol. Ther. 2020, 51, 505–526. [Google Scholar] [CrossRef] [Green Version]
- Fujimori, S. What are the effects of proton pump inhibitors on the small intestine? World J. Gastroenterol. 2015, 21, 6817–6819. [Google Scholar] [CrossRef]
- Wallace, J.L.; Syer, S.; Denou, E.; de Palma, G.; Vong, L.; McKnight, W.; Jury, J.; Bolla, M.; Bercik, P.; Collins, S.M.; et al. Proton pump inhibitors exacerbate NSAID-induced small intestinal injury by inducing dysbiosis. Gastroenterology 2011, 141, 1314–1322. [Google Scholar] [CrossRef]
- Bruno, G.; Zaccari, P.; Rocco, G.; Scalese, G.; Panetta, C.; Porowska, B.; Pontone, S.; Severi, C. Proton pump inhibitors and dysbiosis: Current knowledge and aspects to be clarified. World J. Gastroenterol. 2019, 25, 2706–2719. [Google Scholar] [CrossRef]
- Hafiz, R.A.; Wong, C.; Paynter, S.; David, M.; Peeters, G. The Risk of Community-Acquired Enteric Infection in Proton Pump Inhibitor Therapy: Systematic Review and Meta-analysis. Ann. Pharmacother. 2018, 52, 613–622. [Google Scholar] [CrossRef]
- Nista, E.C.; Candelli, M.; Cremonini, F.; Cazzato, I.A.; Zocco, M.A.; Franceschi, F.; Gammarota, G.; Gasbaririni, G.; Gasbarrini, A. Bacillus clausii therapy to reduce side-effects of anti-Helicobacter pylori treatment: Randomized, double-blind, placebo controlled trial. Aliment. Pharmacol. Ther. 2004, 20, 1181–1188. [Google Scholar] [CrossRef]
- Plomer, M.; Iii Perez, M.; Greifenberg, D.M. Effect of Bacillus clausii Capsules in Reducing Adverse Effects Associated with Helicobacter pylori Eradication Therapy: A Randomized, Double-Blind, Controlled Trial. Infect. Dis. Ther. 2020, 9, 867–878. [Google Scholar] [CrossRef]
- Paparo, L.; Tripodi, L.; Bruno, C.; Pisapia, L.; Damiano, C.; Pastore, L.; Berni Canani, R. Protective action of Bacillus clausii probiotic strains in an in vitro model of Rotavirus infection. Sci. Rep. 2020, 10, 12636. [Google Scholar] [CrossRef]
- Urdaci, M.C.; Bressollier, P.; Pinchuk, I. Bacillus clausii probiotic strains: Antimicrobial and immunomodulatory activities. J. Clin. Gastroenterol. 2004, 38, S86–S90. [Google Scholar] [CrossRef] [Green Version]
- Wong-Chew, R.M.; de Castro, J.A.; Morelli, L.; Perez, M.; Ozen, M. Gut immune homeostasis: The immunomodulatory role of Bacillus clausii, from basic to clinical evidence. Expert Rev. Clin. Immunol. 2022, 18, 717–729. [Google Scholar] [CrossRef]
- Hoefman, S.; Pommerening-Röser, A.; Samyn, E.; De Vos, P.; Heylen, K. Efficient cryopreservation protocol enables accessibility of a broad range of ammonia-oxidizing bacteria for the scientific community. Res. Microbiol. 2013, 164, 288–292. [Google Scholar] [CrossRef]
- Nakano, S.; Kobayashi, T.; Funabiki, K.; Matsumura, A.; Nagao, Y.; Yamada, T. Development of a PCR assay for detection of Enterobacteriaceae in foods. J. Food Prot. 2003, 66, 1798–1804. [Google Scholar] [CrossRef]
- Molly, K.; Vande Woestyne, M.; Verstraete, W. Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl. Microbiol. Biotechnol. 1993, 39, 254–258. [Google Scholar] [CrossRef]
- Van den Abbeele, P.; Roos, S.; Eeckhaut, V.; MacKenzie, D.A.; Derde, M.; Verstraete, W.; Marzorati, M.; Possemiers, S.; Vanhoecke, B.; Van Immerseel, F.; et al. Incorporating a mucosal environment in a dynamic gut model results in a more representative colonization by lactobacilli. Microb. Biotechnol. 2012, 5, 106–115. [Google Scholar] [CrossRef] [Green Version]
- Freedberg, D.E.; Lebwohl, B.; Abrams, J.A. The impact of proton pump inhibitors on the human gastrointestinal microbiome. Clin. Lab. Med. 2014, 34, 771–785. [Google Scholar] [CrossRef]
- Possemiers, S.; Verthe, K.; Uyttendaele, S.; Verstraete, W. PCR-DGGE-based quantification of stability of the microbial community in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol. Ecol. 2004, 49, 495–507. [Google Scholar] [CrossRef] [PubMed]
- Perotti, M.; Mancini, N.; Cavallero, A.; Carletti, S.; Canducci, F.; Burioni, R.; Clementi, M. Quantitation of Bacillus clausii in biological samples by real-time polymerase chain reaction. J. Microbiol. Methods 2006, 65, 632–636. [Google Scholar] [CrossRef] [PubMed]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef] [PubMed]
- Van den Abbeele, P.; Verstrepen, L.; Ghyselinck, J.; Albers, R.; Marzorati, M.; Mercenier, A. A Novel Non-Digestible, Carrot-Derived Polysaccharide (cRG-I) Selectively Modulates the Human Gut Microbiota while Promoting Gut Barrier Integrity: An Integrated In Vitro Approach. Nutrients 2020, 12, 1917. [Google Scholar] [CrossRef] [PubMed]
- Vandeputte, D.; Kathagen, G.; D’hoe, K.; Vieira-Silva, S.; Valles-Colomer, M.; Sabino, J. Quantitative microbiome profiling links gut community variation to microbial load. Nature 2017, 551, 507–511. [Google Scholar] [CrossRef]
- De Weirdt, R.; Possemiers, S.; Vermeulen, G.; Moerdijk-Poortvliet, T.C.; Boschker, H.T.; Verstraete, W.; Van de Wiele, T. Human faecal microbiota display variable patterns of glycerol metabolism. FEMS Microbiol. Ecol. 2010, 74, 601–611. [Google Scholar] [CrossRef] [Green Version]
- Bent, S.J.; Forney, L.J. The tragedy of the uncommon: Understanding limitations in the analysis of microbial diversity. ISME J. 2008, 2, 689–695. [Google Scholar] [CrossRef] [Green Version]
- Donaldson, G.P.; Lee, S.M.; Mazmanian, S.K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 2015, 14, 20–32. [Google Scholar] [CrossRef] [Green Version]
- Dethlefsen, L.; Relman, D.A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl. Acad. Sci. USA 2010, 108, 4554–4561. [Google Scholar] [CrossRef] [Green Version]
- Clooney, A.G.; Bernstein, C.N.; Leslie, W.D.; Vagianos, K.; Sargent, M.; Laserna-Mendieta, E.J.; Claesson, M.J.; Targownik, L.E. A comparison of the gut microbiome between long-term users and non-users of proton pump inhibitors. Aliment. Pharmacol. Ther. 2016, 43, 974–984. [Google Scholar] [CrossRef]
- Deng, Q.; Wang, C.; Yu, K.; Wang, Y.; Yang, Q.; Zhang, J.; Xu, X. Streptococcus bovis Contributes to the Development of Colorectal Cancer via Recruiting CD11b⁺TLR-4⁺ Cells. Med. Sci. Monit. 2020, 26, e921886-1. [Google Scholar] [CrossRef]
- Dekker, J.P.; Lau, A.F.; Kraft, C.S. An Update on the Streptococcus bovis Group: Classification, Identification, and Disease Associations. J. Clin. Microbiol. 2016, 54, 1694–1699. [Google Scholar] [CrossRef] [Green Version]
- Martin-Gallausiaux, C.; Marinelli, L.; Blottière, H.M.; Larraufie, P.; Lapaque, N. SCFA: Mechanisms and functional importance in the gut. Proc. Nutr. Soc. 2020, 80, 37–49. [Google Scholar] [CrossRef]
- Markowiak-Kopeć, P.; Śliżewska, K. The Effect of Probiotics on the Production of Short-Chain Fatty Acids by Human Intestinal Microbiome. Nutrients 2020, 12, 1107. [Google Scholar] [CrossRef] [Green Version]
- Molly, K.; Woestyne, M.V.; Smet, I.D.; Verstraete, W. Validation of the Simulator of the Human Intestinal Microbial Ecosystem (SHIME) Reactor Using Microorganism-associated Activities. Microb. Ecol. Health Dis. 1994, 7, 191–200. [Google Scholar] [CrossRef]
Primer | Sequence |
---|---|
erm34 forward primer | AATTTTYACCGCCCCTCAAG |
erm34 reverse primer | AYTTTTGGAACATGCCGAAC |
16S forward primer | CCTACGGGNGGCWGCAG |
16S reverse primer | GACTACHVGGGTATCTAAKCC |
PPI Control | Preventive | Curative | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
OTU | Closely-Related Species | C | TR | WO | C | TR | WO | C | TR | WO |
OTU00031 | Bacillus clausii | <LOQ | <LOQ | <LOQ | <LOQ | 7.07 | 6.3 | <LOQ | <LOQ | 7.54 |
OTU00043 | Clostridium nexile | 6.62 | 6.95 | 7.03 | 6.69 | 6.88 | 7.26 | 6.64 | 6.78 | 7.41 |
OTU00003 | Enterococcus faecalis | 7.28 | 8.46 | 8.55 | 7.2 | 8.51 | 8.7 | 6.73 | 8.27 | 8.73 |
OTU00008 | Enterococcus faecium | 8.31 | 8.1 | 8.18 | 8.1 | 8.2 | 8.31 | 8.02 | 8.02 | 8.56 |
OTU00020 | Lactobacillus reuteri | 6.43 | 7.12 | 7.37 | 6.41 | 7.64 | 7.89 | 6.27 | 6.9 | 7.98 |
OTU00058 | Lactobacillus salivarius | 6.88 | 6.8 | 6.76 | 6.51 | 6.6 | 6.7 | 5.76 | 6.03 | 6.63 |
OTU00005 | Faecalibacterium prausnitzii | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
OTU00001 | Streptococcus bovis | 9.29 | 9.17 | 8.9 | 9.23 | 9.1 | 8.89 | 9.15 | 9.3 | 8.68 |
OTU00064 | Streptococcus intermedius | 7.38 | 6.05 | 6.43 | 6.02 | 5.69 | 6.23 | 5.64 | 5.98 | 5.6 |
OTU00002 | Veillonella parvula | 8.1 | 8.22 | 8.52 | 8.21 | 8.5 | 8.64 | 8.14 | 8.5 | 8.79 |
OTU00182 | Veillonella dispar | <LOQ | <LOQ | <LOQ | <LOQ | 5.41 | <LOQ | <LOQ | 5.47 | <LOQ |
Lower levels of the OTU | Higher levels of the OTU |
PPI Control | Preventive | Curative | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
OTU | Closely-Related Species | C | TR | WO | C | TR | WO | C | TR | WO |
OTU00031 | Bacillus clausii | 0 | 0.08 | 0 | 0 | 0.59 | 0.19 | 0 | 0 | 5.15 |
OTU00043 | Clostridium nexile | 0.17 | 0.73 | 0.29 | 0.09 | 0.18 | 0.18 | 0.12 | 0.48 | 1.05 |
OTU00003 | Enterococcus faecalis | 0.45 | 6.38 | 18.97 | 0.34 | 7.65 | 29.18 | 0.16 | 11.34 | 20.84 |
OTU00008 | Enterococcus faecium | 3.63 | 9.69 | 10.87 | 3.52 | 10.18 | 7.95 | 2.59 | 7.27 | 18.05 |
OTU00020 | Lactobacillus reuteri | 0.13 | 1.04 | 2.33 | 0.18 | 1.25 | 3.09 | 0.14 | 0.86 | 2.11 |
OTU00058 | Lactobacillus salivarius | 0.17 | 0.35 | 0.25 | 0.03 | 0.06 | 0.07 | 0.01 | 0.07 | 0.09 |
OTU00005 | Faecalibacterium prausnitzii | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0.01 | 0 |
OTU00001 | Streptococcus bovis | 91.65 | 60.63 | 34.22 | 93.93 | 46.67 | 31.74 | 92.92 | 65.79 | 10.52 |
OTU00064 | Streptococcus intermedius | 0.71 | 0.24 | 0.24 | 0.02 | 0.05 | 0.07 | 0.01 | 0.05 | 0.02 |
OTU00002 | Veillonella parvula | 3.08 | 20.82 | 27.05 | 1.82 | 33.3 | 24.17 | 4.04 | 14.1 | 28.65 |
OTU00183 | Veillonella dispar | 0 | 0.01 | 0.01 | 0 | 0 | 0 | 0.01 | 0 | 0 |
Lower levels of the OTU | Higher levels of the OTU |
PPI Control | Preventive | Curative | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | TR | WO | C | TR | WO | C | TR | WO | ||
Lumen | PC | 5.3 | 4.1 | 12.6 | 4.7 | 7.1 | 12.7 | 5.6 | 5.4 | 8.4 |
DC | 4.7 | 3.1 | 15.4 | 3.6 | 7 | 14.2 | 3.6 | 4.2 | 13.3 | |
Mucus | PC | 9.7 | 7.3 | 7.3 | 9.1 | 11.2 | 10.6 | 7.9 | 7.9 | 9.1 |
DC | 7.8 | 8.6 | 18.3 | 10.1 | 19.3 | 22.6 | 7.3 | 9.1 | 26.5 | |
Lower diversity | Higher diversity |
PPI Control | Preventive | Curative | |||||||
---|---|---|---|---|---|---|---|---|---|
C | TR | WO | C | TR | WO | C | TR | WO | |
Actinobacteria | 8.91 | 8.84 | 9.05 | 8.81 | 8.72 | 8.97 | 8.96 | 8.89 | 8.78 |
Bacteroidetes | 8.87 | 8.52 | 8.83 | 8.91 | 9.13 | 9 | 8.65 | 8.65 | 9.36 |
Desulfobacteria | <LOQ | <LOQ | 6.05 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Firmicutes | 9.48 | 9.53 | 9.61 | 9.58 | 9.6 | 9.62 | 9.49 | 9.62 | 9.73 |
Proteobacteria | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 5.89 | <LOQ | <LOQ | 6.21 |
Synergistetes | <LOQ | <LOQ | 6.54 | <LOQ | <LOQ | 6.91 | <LOQ | 6.38 | 6.33 |
Lower levels of the phylum | Higher levels of the phylum |
PPI Control | Preventive | Curative | |||||||
---|---|---|---|---|---|---|---|---|---|
C | TR | WO | C | TR | WO | C | TR | WO | |
Actinobacteria | 9.09 | 8.83 | 9.19 | 8.84 | 8.82 | 9.01 | 9.33 | 8.95 | 8.8 |
Bacteroidetes | 8.79 | 8.59 | 9.15 | 8.94 | 8.93 | 9.16 | 9.11 | 8.69 | 9.36 |
Desulfobacteria | 7.17 | 7.22 | 7.44 | 7 | 7.4 | 7.36 | 7.21 | 7.15 | 7.85 |
Firmicutes | 9.46 | 9.58 | 9.58 | 9.52 | 9.51 | 9.49 | 9.7 | 9.63 | 9.65 |
Proteobacteria | 7.14 | 6.88 | 7.29 | 6.88 | 7.16 | 7.18 | 6.96 | 7.09 | 7.5 |
Synergistetes | 5.92 | <LOQ | 7.12 | 5.94 | 6.53 | 6.82 | <LOQ | 6.62 | 6.85 |
Verrucomicrobia | 7.71 | 7.09 | 7.97 | 7.85 | 7.33 | 7.6 | 7.78 | 7.08 | 8.19 |
Lower levels of the phylum | Higher levels of the phylum |
PPI Control | Preventive | Curative | |||||||
---|---|---|---|---|---|---|---|---|---|
C | TR | WO | C | TR | WO | C | TR | WO | |
Actinobacteria | 22.7% | 27.5% | 24.9% | 17.8% | 20.8% | 20.1% | 19.0% | 21.1% | 16.8% |
Bacteroidetes | 10.0% | 5.3% | 8.6% | 9.3% | 10.6% | 10.3% | 9.1% | 7.3% | 11.2% |
Desulfobacteria | 0.0% | 0.1% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
Firmicutes | 67.3% | 67.1% | 66.2% | 72.9% | 68.6% | 69.1% | 72.0% | 71.4% | 71.8% |
Synergistetes | 0.0% | 0.0% | 0.3% | 0.0% | 0.0% | 0.4% | 0.0% | 0.3% | 0.2% |
Lower levels of the phylum | Higher levels of the phylum |
PPI Control | Preventive | Curative | |||||||
---|---|---|---|---|---|---|---|---|---|
C | TR | WO | C | TR | WO | C | TR | WO | |
Actinobacteria | 16.4% | 19.0% | 25.5% | 12.4% | 15.9% | 18.0% | 21.2% | 18.8% | 18.6% |
Bacteroidetes | 9.5% | 11.5% | 15.0% | 13.8% | 14.1% | 18.6% | 10.2% | 11.6% | 19.8% |
Desulfobacteria | 1.3% | 1.2% | 1.0% | 1.0% | 1.3% | 1.2% | 0.7% | 0.9% | 1.8% |
Firmicutes | 71.3% | 66.7% | 56.3% | 71.5% | 66.6% | 60.1% | 66.9% | 67.3% | 56.2% |
Proteobacteria | 0.4% | 0.8% | 0.9% | 0.2% | 0.9% | 0.8% | 0.4% | 0.5% | 1.8% |
Synergistetes | 0.1% | 0.2% | 0.5% | 0.1% | 0.5% | 1.0% | 0.1% | 0.5% | 0.6% |
Verrucomicrobia | 1.0% | 0.5% | 0.7% | 1.0% | 0.6% | 0.5% | 0.5% | 0.3% | 1.1% |
Lower levels of the phylum | Higher levels of the phylum |
PPI Control | Preventive | Curative | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Phylum | Family | C | TR | WO | C | TR | WO | C | TR | WO | ||
Proximal colon lumen | Bacteroidetes | Bacteroidaceae | 8.1 | 7.42 | 8.35 | 8.15 | 7.25 | 8.47 | 8.2 | 8.09 | 7.57 | |
Firmicutes | Bacillaceae | <LOQ | <LOQ | 6.27 | <LOQ | 7.01 | 6.52 | <LOQ | <LOQ | 7.08 | ||
Ruminococcaceae | 8.64 | 8.84 | 9.21 | 8.75 | 9 | 9.25 | 8.7 | 8.91 | 9.33 | |||
Distal colon lumen | Actinobacteria | Coriobacteriaceae | 6.6 | 6.28 | 6.8 | 6.65 | 6.49 | 6.59 | 6.46 | 6.6 | 6.44 | |
Firmicutes | Christensenellaceae | 6.43 | 6.37 | 7.06 | 6.27 | 7.04 | 6.84 | 6.03 | 6.75 | 7.4 | ||
Enterococcaceae | 7.68 | 7.82 | 8.43 | 7.58 | 7.98 | 8.65 | 7.52 | 7.94 | 8.61 | |||
Selenomonadaceae | 7.3 | 6.89 | 7.42 | 7.5 | 7.15 | 7.3 | 7.46 | 7.14 | 7.11 | |||
Verrucomicrobia | Akkermansiaceae | 7.71 | 7.09 | 7.97 | 7.85 | 7.33 | 7.6 | 7.78 | 7.08 | 8.19 | ||
Proximal colon mucus | Bacteroidetes | Prevotellaceae | 8.60% | 3.60% | 6.00% | 7.90% | 9.70% | 6.30% | 8.10% | 5.10% | 9.00% | |
Streptococcaceae | 17.60% | 28.70% | 6.30% | 21.10% | 14.50% | 3.30% | 21.40% | 25.80% | 3.10% | |||
Distal colon mucus | Bacteroidetes | Streptococcaceae | 33.10% | 30.80% | 13.20% | 28.50% | 16.30% | 11.40% | 34.00% | 29.50% | 3.50% | |
Lower levels of the family | Higher levels of the family |
PPI Control | Preventive | Curative | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Stage | OTU | Closely-Related Species | C | TR | WO | C | TR | WO | C | TR | WO | |
Proximal colon lumen | OTU00017 | Bifidobacterium adolescentis | 8.12 | 7.72 | 8.19 | 8.24 | 7.41 | 7.73 | 7.67 | 7.64 | 7.83 | |
OTU00003 | Enterococcus faecalis | 6.99 | 7.98 | 8.4 | 7.04 | 8.24 | 8.65 | 6.46 | 7.95 | 8.53 | ||
OTU00018 | Anaerostipes hadrus | <LOQ | 6.44 | 6.38 | <LOQ | 8.38 | 6.52 | 6.16 | <LOQ | 8.83 | ||
OTU00013 | Blautia obeum | 6.67 | 7.5 | 7.83 | 6.94 | 8.31 | 7.66 | 6.9 | 7.78 | 8.69 | ||
Distal colon lumen | OTU00003 | Enterococcus faecalis | 6.6 | 7.56 | 8.35 | 6.64 | 7.75 | 8.61 | 6.16 | 7.66 | 8.49 | |
OTU00018 | Anaerostipes hadrus | <LOQ | 6.6 | 6.09 | <LOQ | 8.45 | 6.15 | <LOQ | <LOQ | 8.77 | ||
OTU00013 | Blautia obeum | 6.29 | 7.35 | 7.85 | 6.66 | 7.88 | 7.57 | 6.57 | 7.66 | 8.74 | ||
OTU00012 | Gemmiger formicilis | 7.84 | 7.47 | 8.44 | 7.72 | 8.01 | 8.54 | 7.7 | 7.5 | 8.71 | ||
OTU00036 | Akkermansia muciniphila | 7.71 | 7.09 | 7.97 | 7.85 | 7.33 | 7.6 | 7.78 | 7.08 | 8.19 | ||
Proximal colon mucus | OTU00004 | Bifidobacterium dentium | 10.10% | 14.70% | 13.40% | 2.70% | 11.80% | 10.30% | 10.20% | 14% | 5.20% | |
OTU00007 | Prevotella denticola | 8.30% | 3.10% | 5.30% | 7.70% | 7.60% | 5.70% | 8% | 4.50% | 7.70% | ||
OTU00018 | Anaerostipes hadrus | 0 | 0.10% | 0 | 0 | 2.90% | 0.10% | 0 | 0 | 5.40% | ||
OTU00013 | Blautia obeum | 0.20% | 1.60% | 1.20% | 0.50% | 9.90% | 2.20% | 0.30% | 1.50% | 7.70% | ||
OTU00012 | Gemmiger formicilis | 0.60% | 0.60% | 2.20% | 0.50% | 1.60% | 5.30% | 0.30% | 0.70% | 3.70% | ||
OTU00001 | Streptococcus bovis | 17.40% | 28.60% | 6.30% | 21% | 14.40% | 3.30% | 21.30% | 25.80% | 3.10% | ||
Distal colon mucus | OTU00017 | Bifidobacterium adolescentis | 1.20% | 0.20% | 0.60% | 0.70% | 0.10% | 0.20% | 0.50% | 0.20% | 0.40% | |
OTU00008 | Enterococcus faecium | 1.40% | 0.70% | 0.40% | 1.40% | 0.80% | 0.20% | 0.80% | 0.80% | 0.60% | ||
OTU00013 | Blautia obeum | 0.10% | 1.80% | 2.10% | 0.40% | 4.30% | 1.90% | 0.10% | 1.70% | 9.30% | ||
OTU00012 | Gemmiger formicilis | 0.40% | 0.50% | 0.90% | 0.30% | 1.10% | 2.20% | 0.20% | 0.60% | 1.60% | ||
Lower levels of the OTU | Higher levels of the OTU |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duysburgh, C.; Verstrepen, L.; Broeck, M.V.d.; Righetto, Z.; Perez, M., III. Investigation of Enterogermina’s Protective and Restorative Mechanisms on the Gut Microbiota with PPI, Using SHIME Technology. Nutrients 2023, 15, 653. https://doi.org/10.3390/nu15030653
Duysburgh C, Verstrepen L, Broeck MVd, Righetto Z, Perez M III. Investigation of Enterogermina’s Protective and Restorative Mechanisms on the Gut Microbiota with PPI, Using SHIME Technology. Nutrients. 2023; 15(3):653. https://doi.org/10.3390/nu15030653
Chicago/Turabian StyleDuysburgh, Cindy, Lynn Verstrepen, Mattia Van den Broeck, Zefferino Righetto, and Marcos Perez, III. 2023. "Investigation of Enterogermina’s Protective and Restorative Mechanisms on the Gut Microbiota with PPI, Using SHIME Technology" Nutrients 15, no. 3: 653. https://doi.org/10.3390/nu15030653
APA StyleDuysburgh, C., Verstrepen, L., Broeck, M. V. d., Righetto, Z., & Perez, M., III. (2023). Investigation of Enterogermina’s Protective and Restorative Mechanisms on the Gut Microbiota with PPI, Using SHIME Technology. Nutrients, 15(3), 653. https://doi.org/10.3390/nu15030653