Associations between Maternal Diet, Human Milk Macronutrients, and Breast-Fed Infant Growth during the First Month of Life in the SMILE Iwamizawa in Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Dietary Assessment
2.3. Human Milk Collection and Analysis
2.4. Anthropometry Data
2.5. Statistical Analyses
3. Results
3.1. Participant Characteristics and Maternal Dietary Intakes
3.2. Macronutrients in Human Milk
3.3. Association between Maternal Dietary Intakes and Human Milk Macronutrients
3.4. Gestational Outcome and Anthropometry of Infants
3.5. Association between Human Milk Macronutrients and Breast-Fed Infant Growth
3.6. Association between Human Milk Macronutrients and the Risk of Infant Growth Abnormalities
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horta, B.L.; Victora, C.G. Short-Term Effects of Breastfeeding: A Systematic Review of the Benefits of Breastfeeding on Diarhoea and Pneumonia Mortality; World Health Organization: Geneva, Swizterland, 2013. [Google Scholar]
- Lönnerdal, B.; Erdmann, P.; Thakkar, S.K.; Sauser, J.; Destaillats, F. Longitudinal evolution of true protein, amino acids and bioactive proteins in breast milk: A developmental perspective. J. Nutr. Biochem. 2017, 41, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koletzko, B. Human milk lipids. Ann. Nutr. Metab. 2016, 69, 28–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bode, L. Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology 2012, 22, 1147–1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Section on Breastfeeding. Breastfeeding and the Use of Human Milk. Pediatrics 2012, 129, e827–e841. [CrossRef] [Green Version]
- Lönnerdal, B. Infant formula and infant nutrition: Bioactive proteins of human milk and implications for composition of infant formulas. Am. J. Clin. Nutr. 2014, 99, 712S–717S. [Google Scholar] [CrossRef] [Green Version]
- Timby, N.; Domellöf, M.; Lönnerdal, B.; Hernell, O. Supplementation of Infant Formula with Bovine Milk Fat Globule Membranes. Adv. Nutr. 2017, 8, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Wiciński, M.; Sawicka, E.; Gębalski, J.; Kubiak, K.; Malinowski, B. Human Milk Oligosaccharides: Health Benefits, Potential Applications in Infant Formulas, and Pharmacology. Nutrients 2020, 12, 266. [Google Scholar] [CrossRef] [Green Version]
- Schwarzenberg, S.J.; Georgieff, M.K. Advocacy for improving nutrition in the first 1000 days to support childhood devel-opment and adult health. Pediatrics 2018, 141, e20173716. [Google Scholar] [CrossRef] [Green Version]
- Dewey, K.G.; Heinig, M.J.; Nommsen, L.A.; Peerson, J.M.; Lönnerdal, B. Breast-fed infants are leaner than formula-fed infants at 1 y of age: The DARLING study. Am. J. Clin. Nutr. 1993, 57, 140–145. [Google Scholar] [CrossRef]
- Gale, C.; Logan, K.M.; Santhakumaran, S.; Parkinson, J.R.; Hyde, M.J.; Modi, N. Effect of breastfeeding compared with formula feeding on infant body composition: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2012, 95, 656–669. [Google Scholar] [CrossRef]
- Breij, L.M.; Abrahamse-Berkeveld, M.; Acton, D.; Rolfe, E.D.L.; Ong, K.K.; Hokken-Koelega, A.C. Impact of Early Infant Growth, Duration of Breastfeeding and Maternal Factors on Total Body Fat Mass and Visceral Fat at 3 and 6 Months of Age. Ann. Nutr. Metab. 2017, 71, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Feldman-Winter, L.; Kellams, A.; Peter-Wohl, S.; Taylor, J.S.; Lee, K.G.; Terrell, M.J.; Noble, L.; Maynor, A.R.; Meek, J.Y.; Stuebe, A.M. Evidence-Based Updates on the First Week of Exclusive Breastfeeding Among Infants ≥35 Weeks. Pediatrics 2020, 145, e20183696. [Google Scholar] [CrossRef] [PubMed]
- Dewey, K.G.; Nommsen-Rivers, L.A.; Heinig, M.J.; Cohen, R.J. Risk Factors for Suboptimal Infant Breastfeeding Behavior, Delayed Onset of Lactation, and Excess Neonatal Weight Loss. Pediatrics 2003, 112, 607–619. [Google Scholar] [CrossRef] [PubMed]
- Nommsen-Rivers, L.A. Does Insulin Explain the Relation between Maternal Obesity and Poor Lactation Outcomes? An Overview of the Literature. Adv. Nutr. Int. Rev. J. 2016, 7, 407–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballard, O.; Morrow, A.L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef] [Green Version]
- Andreas, N.J.; Kampmann, B.; Le-Doare, K.M. Human breast milk: A review on its composition and bioactivity. Early Hum. Dev. 2015, 91, 629–635. [Google Scholar] [CrossRef]
- Han, S.M.; Derraik, J.G.B.; Binia, A.; Sprenger, N.; Vickers, M.H.; Cutfield, W.S. Maternal and Infant Factors Influencing Human Milk Oligosaccharide Composition: Beyond Maternal Genetics. J. Nutr. 2021, 151, 1383–1393. [Google Scholar] [CrossRef]
- Gridneva, Z.; Rea, A.; Tie, W.J.; Lai, C.T.; Kugananthan, S.; Ward, L.C.; Murray, K.; Hartmann, P.E.; Geddes, D.T. Carbohydrates in Human Milk and Body Composition of Term Infants during the First 12 Months of Lactation. Nutrients 2019, 11, 1472. [Google Scholar] [CrossRef] [Green Version]
- Young, B.E.; Levek, C.; Reynolds, R.M.; Rudolph, M.C.; MacLean, P.; Hernandez, T.L.; Friedman, J.E.; Krebs, N.F. Bioactive components in human milk are differentially associated with rates of lean and fat mass deposition in infants of mothers with normal vs. elevated BMI. Pediatr. Obes. 2018, 13, 598–606. [Google Scholar] [CrossRef]
- De Fluiter, K.S.; Kerkhof, G.F.; van Beijsterveldt, I.A.L.P.; Breij, L.M.; van de Heijning, B.J.M.; Abrahamse-Berkeveld, M.; Hokken-Koelega, A.C.S. Longitudinal human milk macronutrients, body composition and infant appetite during early life. Clin. Nutr. 2021, 40, 3401–3408. [Google Scholar] [CrossRef]
- Shiraishi, M.; Haruna, M.; Matsuzaki, M.; Murayama, R.; Sasaki, S. Availability of two self-administered diet history questionnaires for pregnant Japanese women: A validation study using 24-hour urinary markers. J. Epidemiol. 2017, 27, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Comparison of relative validity of food group intakes estimated by compre-hensive and brief-type self-administered diet history questionnaires against 16 d dietary records in Japanese adults. Public Health Nutr. 2011, 14, 1200–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komatsu, Y.; Kumakura, D.; Seto, N.; Izumi, H.; Takeda, Y.; Ohnishi, Y.; Nakaoka, S.; Aizawa, T. Dynamic associations of milk components with the infant gut microbiome and fecal metabolites in a mother–infant model by microbiome, NMR metabolomic, and time-series clustering analyses. Front. Nutr. 2022, 8, 813690. [Google Scholar] [CrossRef]
- The Japanese Society for Pediatric Endocrinology. Excel-Based Clinical Tools for Growth Evaluation of Children. Available online: http://jspe.umin.jp/medical/chart_dl.html (accessed on 1 March 2022).
- Chou, J.H.; Roumiantsev, S.; Singh, R. PediTools Electronic Growth Chart Calculators: Applications in Clinical Care, Research, and Quality Improvement. J. Med. Internet Res. 2020, 22, e16204. [Google Scholar] [CrossRef] [PubMed]
- Bravi, F.; Wiens, F.; Decarli, A.; Pont, A.D.; Agostoni, C.; Ferraroni, M. Impact of maternal nutrition on breast-milk composition: A systematic review. Am. J. Clin. Nutr. 2016, 104, 646–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministry of Health, Labour and Welfare of Japan. Tokyo: The National Health and Nutrition Survey in Japan 2019. Available online: https://www.mhlw.go.jp/content/000711006.pdf (accessed on 1 March 2022).
- Kobayashi, S.; Yuan, X.; Sasaki, S.; Osawa, Y.; Hirata, T.; Abe, Y.; Takayama, M.; Arai, Y.; Masui, Y.; Ishizaki, T. Relative validity of brief-type self-administered diet history questionnaire among very old Japanese aged 80 years or older. Public Health Nutr. 2019, 22, 212–222. [Google Scholar] [CrossRef]
- Hester, S.N.; Hustead, D.S.; Mackey, A.D.; Singhal, A.; Marriage, B.J. Is the macronutrient intake of formula-fed infants greater than breast-fed infants in early infancy? J. Nutr. Metab. 2012, 2012, 891201. [Google Scholar] [CrossRef] [Green Version]
- Saarela, T.; Kokkonen, J.; Koivisto, M. Macronutrient and energy contents of human milk fractions during the first six months of lactation. Acta Paediatr. 2005, 94, 1176–1181. [Google Scholar] [CrossRef]
- Nojiri, K.; Higurashi, S.; Takahashi, T.; Tsujimori, Y.; Kobayashi, S.; Toba, Y.; Yamamura, J.-I.; Nomura, K.; Ueno, H.M. Cohort profile: Japanese human milk study, a prospective birth cohort: Baseline data for lactating women, infants and human milk macronutrients. BMJ Open 2021, 11, e055028. [Google Scholar] [CrossRef]
- Fumeaux, C.J.F.; Garcia-Rodenas, C.L.; De Castro, C.A.; Courtet-Compondu, M.-C.; Thakkar, S.K.; Beauport, L.; Tolsa, J.-F.; Affolter, M. Longitudinal Analysis of Macronutrient Composition in Preterm and Term Human Milk: A Prospective Cohort Study. Nutrients 2019, 11, 1525. [Google Scholar] [CrossRef] [Green Version]
- Prentice, A. Constituents of Human Milk. Food Nutr. Bull. 1996, 17, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lönnerdal, B. Nutritional and physiologic significance of human milk proteins. Am. J. Clin. Nutr. 2003, 77, 1537S–1543S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elwakiel, M.; Hageman, J.A.; Wang, W.; Szeto, I.; van Goudoever, J.B.; Hettinga, K.A.; Schols, H.A. Human Milk Oligosaccharides in Colostrum and Mature Milk of Chinese Mothers: Lewis Positive Secretor Subgroups. J. Agric. Food Chem. 2018, 66, 7036–7043. [Google Scholar] [CrossRef] [PubMed]
- Ganseforth, S. Shifting Matter and Meanings in Japanese Seafood Assemblages: Fish as Functional Food Cyborgs and Emblematic Cultural Commodities. Green Lett. 2022, 26, 56–71. [Google Scholar] [CrossRef]
- Di Maso, M.; Bravi, F.; Ferraroni, M.; Agostoni, C.; Eussen, S.R.B.M.; Decsi, T.; Quitadamo, P.A.; Tonetto, P.; Peila, C.; Profeti, C.; et al. Adherence to Mediterranean Diet of Breastfeeding Mothers and Fatty Acids Composition of Their Human Milk: Results From the Italian MEDIDIET Study. Front. Nutr. 2022, 9, 891376. [Google Scholar] [CrossRef]
- Bravi, F.; Di Maso, M.; Eussen, S.; Agostoni, C.; Salvatori, G.; Profeti, C.; Tonetto, P.; Quitadamo, P.; Kazmierska, I.; Vacca, E.; et al. Dietary Patterns of Breastfeeding Mothers and Human Milk Composition: Data from the Italian MEDIDIET Study. Nutrients 2021, 13, 1722. [Google Scholar] [CrossRef]
- Qiao, Y.; Feng, J.; Yang, J.; Gu, G. The Relationship between Dietary Vitamin A Intake and the Levels of Sialic Acid in the Breast Milk of Lactating Women. J. Nutr. Sci. Vitaminol. 2013, 59, 347–351. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liu, Y.; Liu, L.; Li, J.; Du, G.; Chen, J. Microbial production of sialic acid and sialylated human milk oligosaccharides: Advances and perspectives. Biotechnol. Adv. 2019, 37, 787–800. [Google Scholar] [CrossRef]
- Ten Bruggencate, S.J.M.; Bovee-Oudenhoven, I.M.; Feitsma, A.L.; Van Hoffen, E.; Schoterman, M.H. Functional role and mechanisms of sialyllactose and other sialylated milk oligosaccharides. Nutr. Rev. 2014, 72, 377–389. [Google Scholar] [CrossRef]
- Kouwenhoven, S.M.P.; Antl, N.; Finken, M.J.J.; Twisk, J.W.R.; van der Beek, E.M.; Abrahamse-Berkeveld, M.; van de Heijning, B.J.M.; Schierbeek, H.; Holdt, L.M.; van Goudoever, J.B.; et al. A modified low-protein infant formula supports adequate growth in healthy, term infants: A randomized, double-blind, equivalence trial. Am. J. Clin. Nutr. 2020, 111, 962–974. [Google Scholar] [CrossRef] [PubMed]
- Kouwenhoven, S.M.; Antl, N.; Finken, M.J.; Twisk, J.W.; van der Beek, E.M.; Abrahamse-Berkeveld, M.; van de Heijning, B.J.; van Goudoever, J.B.; Koletzko, B.V. Long-term effects of a modified, low-protein infant formula on growth and body composition: Follow-up of a randomized, double-blind, equivalence trial. Clin. Nutr. 2021, 40, 3914–3921. [Google Scholar] [CrossRef] [PubMed]
- Putet, G.; Labaune, J.-M.; Mace, K.; Steenhout, P.; Grathwohl, D.; Raverot, V.; Morel, Y.; Picaud, J.-C. Effect of dietary protein on plasma insulin-like growth factor-1, growth, and body composition in healthy term infants: A randomised, double-blind, controlled trial (Early Protein and Obesity in Childhood (EPOCH) study). Br. J. Nutr. 2016, 115, 271–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stettler, N.; Kumanyika, S.K.; Katz, S.H.; Zemel, B.S.; Stallings, V.A. Rapid weight gain during infancy and obesity in young adulthood in a cohort of African Americans. Am. J. Clin. Nutr. 2003, 77, 1374–1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekelund, U.; Ong, K.K.; Linné, Y.; Neovius, M.; Brage, S.; Dunger, D.B.; Wareham, N.J.; Rössner, S. Association of Weight Gain in Infancy and Early Childhood with Metabolic Risk in Young Adults. J. Clin. Endocrinol. Metab. 2007, 92, 98–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nomura, K.; Nagashima, K.; Suzuki, S.; Itoh, H. Application of Japanese guidelines for gestational weight gain to multiple pregnancy outcomes and its optimal range in 101,336 Japanese women. Sci. Rep. 2019, 9, 17310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kono, Y. Neurodevelopmental outcomes of very low birth weight infants in the Neonatal Research Network of Japan: Im-portance of neonatal intensive care unit graduate follow-up. Clin. Exp. Pediatr. 2021, 64, 313–321. [Google Scholar] [CrossRef]
Characteristics (n = 71) | |
---|---|
Maternal background | |
Age (years) *1 | 31.1 ± 4.9 |
Height (cm) *1 | 158.6 ± 5.6 |
Early-pregnancy BMI *2 (kg/m2) *1 | 21.6 ± 3.2 |
Weight gain during pregnancy *3 (kg) *1 | 10.6 ± 3.0 |
Gestational period (weeks) *1 | 39.5 ± 1.2 |
Primipara [n (%)] | 28 (39.4) |
Caesarean delivery [n (%)] | 10 (14.1) |
Infant background | |
Male [n (%)] | 41 (57.7) |
Birth weight (g) *1 | 3239.6 ± 391.6 |
Birth weight for gestational age *4 | |
SGA [n (%)] | 3 (4.2) |
LGA [n (%)] | 18 (25.4) |
Low birth weight delivery [<2500 g; n (%)] | 2 (2.8) |
Preterm delivery [<37 weeks; n (%)] | 1 (1.4) |
(n = 71) | Colostrum | Human Milk at 1-Month Postpartum | p |
---|---|---|---|
Energy (kcal/100 mL) *1 | 56.1 ± 17.4 | 70.5 ± 13.9 | <0.001 |
Protein (g/100 mL) *1 | 1.9 ± 0.9 | 1.2 ± 0.4 | <0.001 |
Fat (g/100 mL) *1 | 2.2 ± 1.4 | 3.7 ± 1.5 | <0.001 |
Carbohydrate (g/100 mL) *1 | 6.8 ± 0.9 | 7.6 ± 0.7 | <0.001 |
(n = 71) | Human Milk Macronutrient | |||||||
---|---|---|---|---|---|---|---|---|
Energy | Protein | Fat | Carbohydrate | |||||
β *2 | p | β *2 | p | β *2 | p | β *2 | p | |
Dietary nutrient intake | ||||||||
Protein | 0.108 | 0.429 | −0.022 | 0.873 | 0.116 | 0.396 | −0.006 | 0.968 |
Animal protein | 0.070 | 0.586 | −0.038 | 0.766 | 0.071 | 0.582 | 0.030 | 0.816 |
Vegetable protein | 0.068 | 0.626 | 0.053 | 0.702 | 0.085 | 0.540 | −0.097 | 0.488 |
Fat | 0.199 | 0.124 | 0.009 | 0.943 | 0.176 | 0.175 | 0.099 | 0.454 |
Animal fat | 0.094 | 0.467 | −0.121 | 0.350 | 0.083 | 0.525 | 0.137 | 0.297 |
Vegetable fat | 0.170 | 0.174 | 0.138 | 0.269 | 0.151 | 0.229 | −0.009 | 0.943 |
Saturated fat | 0.116 | 0.398 | −0.071 | 0.602 | 0.098 | 0.473 | 0.136 | 0.327 |
Monounsaturated fat | 0.243 | 0.056 | 0.059 | 0.645 | 0.219 | 0.088 | 0.060 | 0.648 |
Polyunsaturated fat | 0.178 | 0.192 | 0.077 | 0.575 | 0.151 | 0.271 | 0.069 | 0.620 |
n-3 Polyunsaturated fat | 0.045 | 0.739 | −0.063 | 0.639 | 0.049 | 0.720 | 0.033 | 0.811 |
n-6 Polyunsaturated fat | 0.200 | 0.139 | 0.120 | 0.377 | 0.166 | 0.224 | 0.071 | 0.610 |
Cholesterol | 0.081 | 0.535 | 0.019 | 0.885 | 0.068 | 0.604 | 0.044 | 0.738 |
Carbohydrate | −0.155 | 0.228 | −0.017 | 0.892 | −0.139 | 0.280 | −0.054 | 0.679 |
Sucrose | −0.056 | 0.684 | 0.040 | 0.771 | −0.054 | 0.698 | −0.038 | 0.788 |
Total dietary fiber | 0.068 | 0.627 | −0.082 | 0.555 | 0.074 | 0.598 | 0.115 | 0.419 |
Soluble dietary fiber | 0.077 | 0.582 | −0.110 | 0.427 | 0.077 | 0.580 | 0.176 | 0.211 |
Insoluble dietary fiber | 0.073 | 0.602 | −0.069 | 0.618 | 0.080 | 0.569 | 0.095 | 0.502 |
Minerals | 0.026 | 0.845 | −0.151 | 0.250 | 0.025 | 0.852 | 0.161 | 0.227 |
Sodium | −0.000 | 0.997 | −0.116 | 0.354 | −0.001 | 0.995 | 0.088 | 0.493 |
Potassium | 0.073 | 0.596 | −0.129 | 0.351 | 0.072 | 0.604 | 0.186 | 0.184 |
Calcium | −0.061 | 0.653 | −0.129 | 0.336 | −0.069 | 0.609 | 0.186 | 0.172 |
Magnesium | 0.021 | 0.881 | −0.086 | 0.535 | 0.027 | 0.845 | 0.095 | 0.503 |
Phosphorus | 0.005 | 0.971 | −0.090 | 0.514 | 0.009 | 0.949 | 0.086 | 0.541 |
Iron | 0.068 | 0.600 | −0.079 | 0.543 | 0.073 | 0.573 | 0.080 | 0.545 |
Zinc | 0.213 | 0.116 | 0.081 | 0.554 | 0.227 | 0.096 | −0.144 | 0.299 |
Copper | 0.028 | 0.838 | 0.010 | 0.941 | 0.052 | 0.708 | −0.083 | 0.551 |
Manganese | 0.023 | 0.858 | −0.076 | 0.558 | 0.042 | 0.748 | 0.057 | 0.667 |
Retinol | −0.205 | 0.135 | −0.220 | 0.107 | −0.225 | 0.102 | 0.287 | 0.038 |
Retinol activity equivalent *3 | −0.123 | 0.357 | −0.232 | 0.079 | −0.139 | 0.302 | 0.306 | 0.022 |
α-Carotene | 0.051 | 0.694 | −0.134 | 0.293 | 0.044 | 0.735 | 0.203 | 0.116 |
β-Carotene | 0.023 | 0.856 | −0.123 | 0.332 | 0.022 | 0.862 | 0.156 | 0.222 |
Cryptoxanthin | −0.018 | 0.895 | −0.031 | 0.820 | −0.031 | 0.818 | 0.109 | 0.425 |
β-Carotene equivalent *4 | 0.023 | 0.856 | −0.123 | 0.329 | 0.021 | 0.869 | 0.164 | 0.200 |
Vitamin D | −0.150 | 0.248 | −0.109 | 0.399 | −0.128 | 0.326 | −0.014 | 0.916 |
α-Tocopherol | 0.048 | 0.723 | −0.089 | 0.506 | 0.034 | 0.803 | 0.185 | 0.172 |
Vitamin K | 0.042 | 0.759 | −0.020 | 0.885 | 0.043 | 0.754 | 0.073 | 0.602 |
Vitamin B1 | 0.213 | 0.110 | −0.058 | 0.666 | 0.215 | 0.107 | 0.062 | 0.647 |
Vitamin B2 | 0.073 | 0.596 | −0.116 | 0.395 | 0.058 | 0.674 | 0.228 | 0.099 |
Dietary nutrient intake | ||||||||
Niacin | 0.093 | 0.480 | −0.093 | 0.481 | 0.105 | 0.429 | 0.061 | 0.651 |
Vitamin B6 | 0.158 | 0.244 | −0.099 | 0.465 | 0.169 | 0.213 | 0.094 | 0.496 |
Vitamin B12 | −0.135 | 0.289 | −0.094 | 0.461 | −0.119 | 0.353 | −0.002 | 0.987 |
Folate | 0.024 | 0.855 | −0.112 | 0.395 | 0.026 | 0.846 | 0.156 | 0.243 |
Pantothenic acid | 0.125 | 0.394 | −0.039 | 0.789 | 0.116 | 0.432 | 0.142 | 0.340 |
Vitamin C | 0.005 | 0.970 | −0.114 | 0.391 | 0.006 | 0.962 | 0.148 | 0.271 |
Exclusively Breast-Fed Infant (n = 29) | Length | Weight | Head Circumference | Chest Circumference | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
β *2 | p | β *2 | p | β *2 | p | β *2 | p | |||||
Energy | 0.117 | 0.497 | 0.197 | 0.158 | 0.219 | 0.223 | 0.194 | 0.301 | ||||
Protein | −0.088 | 0.605 | −0.158 | 0.254 | −0.109 | 0.545 | −0.187 | 0.311 | ||||
Fat | 0.114 | 0.515 | 0.187 | 0.187 | 0.214 | 0.239 | 0.176 | 0.355 | ||||
Carbohydrate | 0.126 | 0.518 | 0.253 | 0.105 | 0.278 | 0.168 | 0.386 | 0.060 | ||||
Exclusively Breast-Fed Infant (n = 29) | ΔLength | ΔWeight | ΔHead Circumference | ΔChest Circumference | ||||||||
β *2 | p | β *2 | p | β *2 | p | β *2 | p | |||||
Energy | 0.025 | 0.909 | 0.239 | 0.247 | 0.316 | 0.116 | 0.220 | 0.376 | ||||
Protein | −0.177 | 0.408 | −0.251 | 0.241 | −0.183 | 0.364 | −0.178 | 0.467 | ||||
Fat | 0.010 | 0.963 | 0.222 | 0.288 | 0.295 | 0.148 | 0.191 | 0.448 | ||||
Carbohydrate | 0.278 | 0.255 | 0.406 | 0.092 | 0.284 | 0.217 | 0.540 | 0.044 | ||||
Exclusively Breast-Fed Infant (n = 29) | Length SDS *3 | Weight SDS *3 | Length SDS *4 | Weight SDS *4 | Weight for Length SDS *4 | Head Circumference SDS *4 | ||||||
β *2 | p | β *2 | p | β *2 | p | β *2 | p | β *2 | p | β *2 | p | |
Energy | 0.125 | 0.493 | 0.207 | 0.148 | 0.118 | 0.493 | 0.220 | 0.119 | 0.134 | 0.571 | 0.255 | 0.205 |
Protein | −0.090 | 0.615 | −0.152 | 0.286 | 0.006 | 0.973 | −0.081 | 0.571 | −0.086 | 0.711 | −0.034 | 0.867 |
Fat | 0.121 | 0.513 | 0.195 | 0.180 | 0.114 | 0.514 | 0.207 | 0.149 | 0.122 | 0.610 | 0.249 | 0.222 |
Carbohydrate | 0.140 | 0.496 | 0.309 | 0.071 | 0.051 | 0.796 | 0.226 | 0.158 | 0.224 | 0.397 | 0.246 | 0.281 |
Exclusively Breast-Fed Infant (n = 29) | ΔLength SDS *3 | ΔWeight SDS *3 | ΔLength SDS *4 | ΔWeight SDS *4 | ΔWeight for Length SDS *4 | ΔHead Circumference SDS *4 | ||||||
β *2 | p | β *2 | p | β *2 | p | β *2 | p | β *2 | p | β *2 | p | |
Energy | 0.006 | 0.977 | 0.326 | 0.044 | 0.047 | 0.823 | 0.399 | 0.046 | 0.196 | 0.353 | 0.323 | 0.083 |
Protein | −0.168 | 0.372 | −0.191 | 0.273 | −0.104 | 0.615 | −0.182 | 0.399 | 0.015 | 0.941 | −0.120 | 0.525 |
Fat | −0.007 | 0.970 | 0.318 | 0.052 | 0.034 | 0.873 | 0.389 | 0.055 | 0.198 | 0.354 | 0.305 | 0.108 |
Carbohydrate | 0.251 | 0.241 | 0.280 | 0.155 | 0.194 | 0.411 | 0.280 | 0.254 | 0.021 | 0.930 | 0.215 | 0.319 |
Exclusively Breast-Fed Infant (n = 29) | Length *2 (out of 10th %ile–90th %ile) | Weight *2 (out of 10th %ile–90th %ile) | Length *3 (out of 10th %ile–90th %ile) | Weight *3 (out of 10th %ile–90th %ile) | ||||
---|---|---|---|---|---|---|---|---|
OR | 95% CI | OR | 95% CI | OR | 95% CI | OR | 95% CI | |
Energy | 1.02 | (0.95–1.10) | 1.05 | (0.94–1.17) | 1.00 | (0.89–1.11) | 1.01 | (0.92–1.12) |
Protein | 2.86 | (0.89–9.23) | 1.11 | (0.37–3.40) | 1.08 | (0.41–2.82) | 1.39 | (0.58–3.30) |
Fat | 1.02 | (0.95–1.09) | 1.05 | (0.95–1.16) | 0.94 | (0.85–1.05) | 1.01 | (0.93–1.10) |
Carbohydrate | 1.12 | (0.79–1.60) | 0.86 | (0.17–4.31) | 1.11 | (0.72–1.72) | 1.65 | (0.74–3.68) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komatsu, Y.; Wada, Y.; Tabata, F.; Kawakami, S.; Takeda, Y.; Nakamura, K.; Ayabe, T.; Nakamura, K.; Kimura, T.; Tamakoshi, A. Associations between Maternal Diet, Human Milk Macronutrients, and Breast-Fed Infant Growth during the First Month of Life in the SMILE Iwamizawa in Japan. Nutrients 2023, 15, 654. https://doi.org/10.3390/nu15030654
Komatsu Y, Wada Y, Tabata F, Kawakami S, Takeda Y, Nakamura K, Ayabe T, Nakamura K, Kimura T, Tamakoshi A. Associations between Maternal Diet, Human Milk Macronutrients, and Breast-Fed Infant Growth during the First Month of Life in the SMILE Iwamizawa in Japan. Nutrients. 2023; 15(3):654. https://doi.org/10.3390/nu15030654
Chicago/Turabian StyleKomatsu, Yosuke, Yasuaki Wada, Fuka Tabata, Satomi Kawakami, Yasuhiro Takeda, Kiminori Nakamura, Tokiyoshi Ayabe, Koshi Nakamura, Takashi Kimura, and Akiko Tamakoshi. 2023. "Associations between Maternal Diet, Human Milk Macronutrients, and Breast-Fed Infant Growth during the First Month of Life in the SMILE Iwamizawa in Japan" Nutrients 15, no. 3: 654. https://doi.org/10.3390/nu15030654
APA StyleKomatsu, Y., Wada, Y., Tabata, F., Kawakami, S., Takeda, Y., Nakamura, K., Ayabe, T., Nakamura, K., Kimura, T., & Tamakoshi, A. (2023). Associations between Maternal Diet, Human Milk Macronutrients, and Breast-Fed Infant Growth during the First Month of Life in the SMILE Iwamizawa in Japan. Nutrients, 15(3), 654. https://doi.org/10.3390/nu15030654