Relationship between Diet Quality and Maternal Stool Microbiota in the MUMS Australian Pregnancy Cohort
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Overall Cohort
3.2. Low-Risk versus High-Risk Pregnancy
3.3. Pregnancy Complications
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huttenhower, C.; Gevers, D.; Knight, R.; Abubucker, S.; Badger, J.H.; Chinwalla, A.T.; Creasy, H.H.; Earl, A.M.; FitzGerald, M.G.; Fulton, R.S.; et al. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Kashtanova, D.A.; Popenko, A.S.; Tkacheva, O.N.; Tyakht, A.; Alexeev, D.G.; Boytsov, S. Association between the gut microbiota and diet: Fetal life, early childhood, and further life. Nutrition 2016, 32, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.C.; Yadav, J.S.; Barrow, S.D.; Robertson, B.K. Gut microbiome diversity influenced more by the Westernized dietary regime than the body mass index as assessed using effect size statistic. Microbiologyopen 2017, 6, e00476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maher, S.E.; O’Brien, E.C.; Moore, R.L.; Byrne, D.F.; Geraghty, A.; Saldova, R.; Murphy, E.F.; Van Sinderen, D.; Cotter, P.; McAuliffe, F.M. The association between the maternal diet and the maternal and infant gut microbiome: A systematic review. Br. J. Nutr. 2020, Mar 4, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Lammi-Keefe, C.J.; Couch, S.C.; Philipson, E.H. Nutrition and Health: Handbook of Nutrition and Pregnancy; Humana Press: Totowa, NJ, USA, 2008; pp. 1–374. [Google Scholar] [CrossRef]
- Ranjan, R.; Rani, A.; Metwally, A.; McGee, H.S.; Perkins, D.L. Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem. Biophys. Res. Commun 2016, 469, 967–977. [Google Scholar] [CrossRef] [Green Version]
- Susic, D.; Davis, G.; O’Sullivan, A.J.; McGovern, E.; Harris, K.; Roberts, L.M.; Craig, M.E.; Mangos, G.; Hold, G.L.; El-Omar, E.M.; et al. Microbiome Understanding in Maternity Study (MUMS), an Australian prospective longitudinal cohort study of maternal and infant microbiota: Study protocol. BMJ Open 2020, 10, e040189. [Google Scholar] [CrossRef]
- International Association of Diabetes and Pregnancy Study Groups Consensus Panel; Metzger, B.E.; Gabbe, S.G.; Persson, B.; Buchanan, T.A.; Catalano, P.A.; Damm, P.; Dyer, A.R.; de Leiva, A.; Hod, M.; et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 2010, 33, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.A.; Magee, L.A.; Kenny, L.C.; Karumanchi, S.A.; McCarthy, F.; Saito, S.; Hall, D.R.; Warren, C.E.; Adoyi, G.; Ishaku, S. Hypertensive Disorders of Pregnancy: ISSHP Classification, Diagnosis, and Management Recommendations for International Practice. Hypertension 2018, 72, 24–43. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, K.M.; Yaktine, A.L. (Eds.) Institute of Medicine and National Research Council Committee to Reexamine the Institute of Medicine Pregnancy Weight Guidelines. Weight Gain During Pregnancy: Reexamining the Guidelines. In The National Academies Collection: Reports Funded by National Institutes of Health; National Academies Press: Washington, DC, USA, 2009. [Google Scholar] [CrossRef]
- Collins, C.E.; Boggess, M.M.; Watson, J.F.; Guest, M.; Duncanson, K.; Pezdirc, K.; Rollo, M.; Hutchesson, M.J.; Burrows, T.L. Reproducibility and comparative validity of a food frequency questionnaire for Australian adults. Clin. Nutr. 2014, 33, 906–914. [Google Scholar] [CrossRef]
- AUSNUT 2011–13–Australian Food Composition Database; Food Standards of Australia and New Zealand. FSANZ: Canberra, Australia, 2014.
- Collins, C.E.; Burrows, T.L.; Rollo, M.E.; Boggess, M.M.; Watson, J.F.; Guest, M.; Duncanson, K.; Pezdirc, K.; Hutchesson, M.J. The comparative validity and reproducibility of a diet quality index for adults: The Australian Recommended Food Score. Nutrients 2015, 7, 785–798. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breitwieser, F.P.; Baker, D.N.; Salzberg, S.L. KrakenUniq: Confident and fast metagenomics classification using unique k-mer counts. Genome Biol. 2018, 19, 198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aglago, K.E.; El Menchawy, I.; El Kari, K.; El Hamdouchi, A.; Barkat, A.; Bengueddour, R.; El Haloui, N.; Mokhtar, N.; Aguenaou, H. Development and validation of bioelectrical impedance analysis equations for predicting total body water and fat-free mass in North-African adults. Eur. J. Clin. Nutr. 2013, 67, 1081–1086. [Google Scholar] [CrossRef]
- Bakdash, J.Z.; Marusich, L.R. Repeated Measures Correlation. Front. Psychol. 2017, 8, 456. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, H.; Li, S.; Hodge, A.; Callaway, L.; Mclntyre, H.D.; Barrett, H.; Wilkinson, S.A.; Nitert, M.D. Gut microbiome composition is similar between pregnant women with excess body fat with healthy and less healthy dietary intake patterns. J. Hum. Nutr. Diet. 2023, 1–13. [Google Scholar] [CrossRef]
- Roytio, H.; Mokkala, K.; Vahlberg, T.; Laitinen, K. Dietary intake of fat and fibre according to reference values relates to higher gut microbiota richness in overweight pregnant women. Br. J. Nutr. 2017, 118, 343–352. [Google Scholar] [CrossRef]
- Barrett, H.L.; Gomez-Arango, L.F.; Wilkinson, S.A.; McIntyre, H.D.; Callaway, L.K.; Morrison, M.; Nitert, M.D. A Vegetarian Diet Is a Major Determinant of Gut Microbiota Composition in Early Pregnancy. Nutrients 2018, 10, 890. [Google Scholar] [CrossRef]
- Gomez-Arango, L.F.; Barrett, H.L.; Wilkinson, S.A.; Callaway, L.K.; McIntyre, H.D.; Morrison, M.; Nitert, M.D. Low dietary fiber intake increases Collinsella abundance in the gut microbiota of overweight and obese pregnant women. Gut Microbes 2018, 9, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Laitinen, K.; Mokkala, K. Overall Dietary Quality Relates to Gut Microbiota Diversity and Abundance. Int. J. Mol. Sci. 2019, 20, 1835. [Google Scholar] [CrossRef] [Green Version]
- Mandal, S.; Godfrey, K.M.; McDonald, D.; Treuren, W.V.; Bjørnholt, J.V.; Midtvedt, T.; Moen, B.; Rudi, K.; Knight, R.; Brantsæter, A.L.; et al. Fat and vitamin intakes during pregnancy have stronger relations with a pro-inflammatory maternal microbiota than does carbohydrate intake. Microbiome 2016, 4, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruebel, M.L.; Gilley, S.P.; Sims, C.R.; Zhong, Y.; Turner, D.; Chintapalli, S.V.; Piccolo, B.D.; Andres, A.; Shankar, K. Associations between Maternal Diet, Body Composition and Gut Microbial Ecology in Pregnancy. Nutrients 2021, 13, 3295. [Google Scholar] [CrossRef] [PubMed]
- Rold, L.S.; Bundgaard-Nielsen, C.; Holm-Jacobsen, J.N.; Ovesen, P.G.; Leutscher, P.; Hagstrøm, S.; Sørensen, S. Characteristics of the gut microbiome in women with gestational diabetes mellitus: A systematic review. PLoS ONE 2022, 17, e0262618. [Google Scholar] [CrossRef]
- Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.-Y.; Keilbaugh, S.A.; Bewtra, M.; Knights, D.; Walters, W.A.; Knight, R.; et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011, 334, 105–108. [Google Scholar] [CrossRef] [Green Version]
- Rothschild, D.; Weissbrod, O.; Barkan, E.; Kurilshikov, A.; Korem, T.; Zeevi, D.; Costea, P.I.; Godneva, A.; Kalka, I.N.; Bar, N.; et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 2018, 555, 210–215. [Google Scholar] [CrossRef] [PubMed]
Age at T1, years | 33.7 ± 4.4 |
Gravidity, n (%) | |
1 | 29 (34) |
2 | 24 (28) |
3 | 17 (20) |
4 or more | 16 (19) |
Parity, n (%) | |
0 | 32 (37) |
1 | 37 (43) |
2 | 12 (14) |
3 or more | 5 (6) |
BMI, kg/m2 | |
T1 | 25.8 ± 5.4 |
T3 | 29.0 ± 5.3 |
Waist circumference, cm | |
T1 | 86.8 ± 10.3 |
T3 | 106.7 ± 9.3 |
Hip circumference, cm | |
T1 | 104.5 ± 12.6 |
T3 | 109.7 ± 11.0 |
Fat mass, % | |
T1 | 47.7 ± 5.3 |
T3 | 48.2 ± 4.9 |
Pregnancy risk, n (%) | |
Low-risk | 36 (42) |
High-risk | 50 (58) |
Complications, n (%) | |
None | 38 (44) |
EGWG | 26 (30) |
GDM | 13 (15) |
HDP | 9 (10) |
T1 n = 80 | T3 n = 76 | |
---|---|---|
Diet quality (ARFS) | 34.9 ± 9.8 | 36.4 ± 9.8 |
Outstanding, n (%) | 11 (14) | 13 (17) |
Excellent, n (%) | 17 (21) | 21 (28) |
Getting there, n (%) | 16 (20) | 11 (14) |
Needs work, n (%) | 36 (45) | 31 (41) |
Energy intake, kJ | 7862 ± 2652 | 8485 ± 2490 |
Carbohydrate, g (% of energy) | 209.2 ± 71.7 (46 ± 7) | 223.9 ± 74.1 (45 ± 7) |
Fibre, g | 25.1 ± 9.9 | 24.8 ± 8.2 |
Sugars, g | 98.6 ± 47.4 | 114.6 ± 46.7 |
Protein, g (% of energy) | 87.5 ± 37.3 (19 ± 3) | 94.3 ± 32.7 (19 ± 4) |
Fat, g (% of energy) | 71.5 ± 27.4 (35 ± 4) | 79.5 ± 26.2 (36 ± 4) |
Saturated fat, g (% of energy) | 29.4 ± 12.4 (14 ± 3) | 34.1 ± 12.3 (16 ± 3) |
Polyunsaturated fat, g (% of energy) | 8.9 ± 3.4 (4 ± 1) | 9.3 ± 3.5 (4 ± 1) |
Monounsaturated fat, g (% of energy) | 26.7 ± 10.4 (13 ± 2) | 29.2 ± 10.1 (13 ± 2) |
Sodium, mg | 1978 ± 687 | 2045 ± 698 |
Potassium, mg | 3064 ± 1143 | 3260 ± 960 |
Magnesium, mg | 364 ± 108 | 387 ± 96 |
Calcium, mg | 1000 ± 344 | 1177 ± 358 |
Phosphorus, mg | 1408 ± 515 | 1558 ± 469 |
Iron, mg | 11.8 ± 4.5 | 12.2 ± 3.8 |
Zinc, mg | 11.5 ± 4.9 | 12.4 ± 4.3 |
Thiamin, mg | 1.48 ± 0.58 | 1.49 ± 0.53 |
Riboflavin, mg | 1.93 ± 0.76 | 2.14 ± 0.77 |
Niacin, mg | 20.97 ± 8.60 | 21.77 ± 7.30 |
Vitamin C, mg | 152 ± 77 | 143 ± 60 |
Folate, µg | 285 ± 109 | 286 ± 92 |
Vitamin A, µg | 1096 ± 613 | 1147 ± 509 |
Retinol, µg | 398 ± 302 | 456 ± 301 |
Beta-carotene, µg | 4145 ± 2667 | 4120 ± 2170 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gow, M.L.; Chua, X.-Y.; El-Omar, E.; Susic, D.; Henry, A. Relationship between Diet Quality and Maternal Stool Microbiota in the MUMS Australian Pregnancy Cohort. Nutrients 2023, 15, 689. https://doi.org/10.3390/nu15030689
Gow ML, Chua X-Y, El-Omar E, Susic D, Henry A. Relationship between Diet Quality and Maternal Stool Microbiota in the MUMS Australian Pregnancy Cohort. Nutrients. 2023; 15(3):689. https://doi.org/10.3390/nu15030689
Chicago/Turabian StyleGow, Megan L., Xin-Yi Chua, Emad El-Omar, Daniella Susic, and Amanda Henry. 2023. "Relationship between Diet Quality and Maternal Stool Microbiota in the MUMS Australian Pregnancy Cohort" Nutrients 15, no. 3: 689. https://doi.org/10.3390/nu15030689
APA StyleGow, M. L., Chua, X. -Y., El-Omar, E., Susic, D., & Henry, A. (2023). Relationship between Diet Quality and Maternal Stool Microbiota in the MUMS Australian Pregnancy Cohort. Nutrients, 15(3), 689. https://doi.org/10.3390/nu15030689