Effects of Microecological Regulators on Rheumatoid Arthritis: A Systematic Review and Meta-Analysis of Randomized, Controlled Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Data Extraction
2.4. Quality Assessment
2.5. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Risk of Bias Assessment
3.4. Outcomes
3.4.1. Disease Activity Indices
- DAS28
- TJC-28 and SJC-28
3.4.2. Life Impact
- HAQ
- VAS of pain
3.4.3. Inflammatory Markers
- CRP
- ESR
- IL-1β, IL-6 and TNF-α
3.4.4. Tolerance Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Conforti, A.; Di Cola, I.; Pavlych, V.; Ruscitti, P.; Berardicurti, O.; Ursini, F.; Giacomelli, R.; Cipriani, P. Beyond the joints, the extra-articular manifestations in rheumatoid arthritis. Autoimmun. Rev. 2021, 20, 102735. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, Y.; Xu, D.; Nossent, J.; Pavlos, N.J.; Xu, J. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Gregersen, P.K.; Silver, J.; Winchester, R.J. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 1987, 30, 1205–1213. [Google Scholar] [CrossRef]
- Petrovská, N.; Prajzlerová, K.; Vencovský, J.; Šenolt, L.; Filková, M. The pre-clinical phase of rheumatoid arthritis: From risk factors to prevention of arthritis. Autoimmun. Rev. 2021, 20, 102797. [Google Scholar] [CrossRef]
- Radu, A.F.; Bungau, S.G. Management of Rheumatoid Arthritis: An Overview. Cells 2021, 10, 2857. [Google Scholar] [CrossRef]
- Brusca, S.B.; Abramson, S.B.; Scher, J.U. Microbiome and mucosal inflammation as extra-articular triggers for rheumatoid arthritis and autoimmunity. Curr. Opin. Rheumatol. 2014, 26, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Catrina, A.I.; Ytterberg, A.J.; Reynisdottir, G.; Malmström, V.; Klareskog, L. Lungs, joints and immunity against citrullinated proteins in rheumatoid arthritis. Nat. Rev. Rheumatol. 2014, 10, 645–653. [Google Scholar] [CrossRef]
- Kim, D.; Yoo, S.A.; Kim, W.U. Gut microbiota in autoimmunity: Potential for clinical applications. Arch. Pharm. Res. 2016, 39, 1565–1576. [Google Scholar] [CrossRef]
- Wells, P.M.; Williams, F.M.K.; Matey-Hernandez, M.L.; Menni, C.; Steves, C.J. ‘RA and the microbiome: Do host genetic factors provide the link? J. Autoimmun. 2019, 99, 104–115. [Google Scholar] [CrossRef]
- Kim, D.; Zeng, M.Y.; Núñez, G. The interplay between host immune cells and gut microbiota in chronic inflammatory diseases. Exp. Mol. Med. 2017, 49, e339. [Google Scholar] [CrossRef] [Green Version]
- Noack, M.; Miossec, P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun. Rev. 2014, 13, 668–677. [Google Scholar] [CrossRef]
- Scher, J.U.; Sczesnak, A.; Longman, R.S.; Segata, N.; Ubeda, C.; Bielski, C.; Rostron, T.; Cerundolo, V.; Pamer, E.G.; Abramson, S.B.; et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2013, 2, e01202. [Google Scholar] [CrossRef]
- Phillips, R. Rheumatoid arthritis: Microbiome reflects status of RA and response to therapy. Nat. Rev. Rheumatol. 2015, 11, 502. [Google Scholar] [CrossRef]
- Pianta, A.; Arvikar, S.; Strle, K.; Drouin, E.E.; Wang, Q.; Costello, C.E.; Steere, A.C. Evidence of the Immune Relevance of Prevotella copri, a Gut Microbe, in Patients With Rheumatoid Arthritis. Arthritis Rheumatol. 2017, 69, 964–975. [Google Scholar] [CrossRef] [Green Version]
- Kroese, J.M.; Brandt, B.W.; Buijs, M.J.; Crielaard, W.; Lobbezoo, F.; Loos, B.G.; van Boheemen, L.; van Schaardenburg, D.; Zaura, E.; Volgenant, C.M.C. Differences in the Oral Microbiome in Patients With Early Rheumatoid Arthritis and Individuals at Risk of Rheumatoid Arthritis Compared to Healthy Individuals. Arthritis Rheumatol. 2021, 73, 1986–1993. [Google Scholar] [CrossRef]
- Fraenkel, L.; Bathon, J.M.; England, B.R.; St Clair, E.W.; Arayssi, T.; Carandang, K.; Deane, K.D.; Genovese, M.; Huston, K.K.; Kerr, G.; et al. 2021 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Rheumatol. 2021, 73, 1108–1123. [Google Scholar] [CrossRef]
- Smolen, J.S.; Landewé, R.B.M.; Bergstra, S.A.; Kerschbaumer, A.; Sepriano, A.; Aletaha, D.; Caporali, R.; Edwards, C.J.; Hyrich, K.L.; Pope, J.E.; et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2022 update. Ann. Rheum. Dis. 2023, 82, 3–18. [Google Scholar] [CrossRef]
- Youssef, J.; Novosad, S.A.; Winthrop, K.L. Infection Risk and Safety of Corticosteroid Use. Rheum. Dis. Clin. N. Am. 2016, 42, 157–176. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zhou, H.; Liu, L. Side effects of methotrexate therapy for rheumatoid arthritis: A systematic review. Eur. J. Med. Chem 2018, 158, 502–516. [Google Scholar] [CrossRef]
- Bungau, S.G.; Behl, T.; Singh, A.; Sehgal, A.; Singh, S.; Chigurupati, S.; Vijayabalan, S.; Das, S.; Palanimuthu, V.R. Targeting Probiotics in Rheumatoid Arthritis. Nutrients 2021, 13, 3376. [Google Scholar] [CrossRef]
- Hotel, A.C.P.; Cordoba, A. Evaluation of Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Acid Bacteria. Prevention 2001, 5, 1–10. [Google Scholar]
- Wang, P.; Tao, J.H.; Pan, H.F. Probiotic bacteria: A viable adjuvant therapy for relieving symptoms of rheumatoid arthritis. Inflammopharmacology 2016, 24, 189–196. [Google Scholar] [CrossRef]
- Cristofori, F.; Dargenio, V.N.; Dargenio, C.; Miniello, V.L.; Barone, M.; Francavilla, R. Anti-Inflammatory and Immunomodulatory Effects of Probiotics in Gut Inflammation: A Door to the Body. Front. Immunol. 2021, 12, 578386. [Google Scholar] [CrossRef]
- Ruemmele, F.M.; Bier, D.; Marteau, P.; Rechkemmer, G.; Bourdet-Sicard, R.; Walker, W.A.; Goulet, O. Clinical evidence for immunomodulatory effects of probiotic bacteria. J. Pediatr. Gastroenterol. Nutr. 2009, 48, 126–141. [Google Scholar] [CrossRef] [Green Version]
- Schorpion, A.; Kolasinski, S.L. Can Probiotic Supplements Improve Outcomes in Rheumatoid Arthritis? Curr. Rheumatol. Rep. 2017, 19, 73. [Google Scholar] [CrossRef]
- Horta-Baas, G.; Sandoval-Cabrera, A.; Romero-Figueroa, M.D.S. Modification of Gut Microbiota in Inflammatory Arthritis: Highlights and Future Challenges. Curr. Rheumatol. Rep. 2021, 23, 67. [Google Scholar] [CrossRef]
- Cencic, A.; Chingwaru, W. The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients 2010, 2, 611–625. [Google Scholar] [CrossRef] [Green Version]
- Fuego, C.; Mena-Vazquez, N.; Caparros-Ruiz, R.; Urena-Garnica, I.; Diaz-Cordoves, G.; Jimenez-Nunez, F.G.; Ordonez-Canizares, M.C.; Rojas-Gimenez, M.; Redondo-Rodriguez, R.; Cano-Garcia, L.; et al. Efficacy of treatment with probiotics in the inflammatory activity of patients with rheumatoid arthritis. systematic review of the literature. Ann. Rheum. Dis. 2018, 77, 1251. [Google Scholar] [CrossRef]
- Zeng, L.; Deng, Y.; He, Q.; Yang, K.; Li, J.; Xiang, W.; Liu, H.; Zhu, X.; Chen, H. Safety and efficacy of probiotic supplementation in 8 types of inflammatory arthritis: A systematic review and meta-analysis of 34 randomized controlled trials. Front. Immunol. 2022, 13, 961325. [Google Scholar] [CrossRef]
- Mohammed, A.T.; Khattab, M.; Ahmed, A.M.; Turk, T.; Sakr, N.; Khalil, A.M.; Abdelhalim, M.; Sawaf, B.; Hirayama, K.; Huy, N.T. The therapeutic effect of probiotics on rheumatoid arthritis: A systematic review and meta-analysis of randomized control trials. Clin. Rheumatol. 2017, 36, 2697–2707. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Centre for Reviews and Dissemination; University of York. PROSPERO International Prospective Register of Systematic Reviews. Available online: https://www.crd.york.ac.uk/PROSPERO/#aboutpage (accessed on 8 October 2022).
- Cochrane Handbook for Systematic Reviews of Interventions. Available online: https://training.cochrane.org/handbook (accessed on 12 November 2022).
- Vaghef-Mehrabany, E.; Alipour, B.; Homayouni-Rad, A.; Sharif, S.K.; Asghari-Jafarabadi, M.; Zavvari, S. Probiotic supplementation improves inflammatory status in patients with rheumatoid arthritis. Nutrition 2014, 30, 430–435. [Google Scholar] [CrossRef]
- Nenonen, M.T.; Helve, T.A.; Rauma, A.L.; Hänninen, O.O. Uncooked, lactobacilli-rich, vegan food and rheumatoid arthritis. Br. J. Rheumatol. 1998, 37, 274. [Google Scholar] [CrossRef] [Green Version]
- Khojah, H.M.; Ahmed, S.; Abdel-Rahman, M.S.; Elhakeim, E.H. Resveratrol as an effective adjuvant therapy in the management of rheumatoid arthritis: A clinical study. Clin. Rheumatol. 2018, 37, 2035–2042. [Google Scholar] [CrossRef]
- Javadi, F.; Ahmadzadeh, A.; Eghtesadi, S.; Aryaeian, N.; Zabihiyeganeh, M.; Rahimi Foroushani, A.; Jazayeri, S. The Effect of Quercetin on Inflammatory Factors and Clinical Symptoms in Women with Rheumatoid Arthritis: A Double-Blind, Randomized Controlled Trial. J. Am. Coll. Nutr. 2016, 36, 9–15. [Google Scholar] [CrossRef]
- Alavi, A.; Goodfellow, L.; Fraser, O.; Tarelli, E.; Bland, M.; Axford, J. A double-blind, randomized, placebo-controlled study to explore the efficacy of a dietary plant-derived polysaccharide supplement in patients with rheumatoid arthritis. Rheumatology 2011, 50, 1111–1119. [Google Scholar] [CrossRef] [Green Version]
- Zamani, B.; Golkar, H.R.; Farshbaf, S.; Emadi-Baygi, M.; Tajabadi-Ebrahimi, M.; Jafari, P.; Akhavan, R.; Taghizadeh, M.; Memarzadeh, M.R.; Asemi, Z. Clinical and metabolic response to probiotic supplementation in patients with rheumatoid arthritis: A randomized, double-blind, placebo-controlled trial. Int. J. Rheum. Dis. 2016, 19, 869. [Google Scholar] [CrossRef]
- Pineda Mde, L.; Thompson, S.F.; Summers, K.; de Leon, F.; Pope, J.; Reid, G. A randomized, double-blinded, placebo-controlled pilot study of probiotics in active rheumatoid arthritis. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2011, 17, Cr347–Cr354. [Google Scholar] [CrossRef] [Green Version]
- Mandel, D.R.; Eichas, K.; Holmes, J. Bacillus coagulans: A viable adjunct therapy for relieving symptoms of rheumatoid arthritis according to a randomized, controlled trial. BMC Complement. Altern. Med. 2010, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- Hatakka, K.; Martio, J.; Korpela, M.; Herranen, M.; Poussa, T.; Laasanen, T.; Saxelin, M.; Vapaatalo, H.; Moilanen, E.; Korpela, R. Effects of probiotic therapy on the activity and activation of mild rheumatoid arthritis—A. Scand. J. Rheumatol. 2003, 32, 211–215. [Google Scholar] [CrossRef]
- Cannarella, L.A.T.; Mari, N.L.; Alcântar, C.C.; Iryioda, T.M.V.; Costa, N.T.; Oliveira, S.R.; Lozovoy, M.A.B.; Reiche, E.M.V.; Dichi, I.; Simão, A.N.C. Mixture of probiotics reduces inflammatory biomarkers and improves the oxidative/nitrosative profile in people with rheumatoid arthritis. Nutrition 2021, 89, 111282. [Google Scholar] [CrossRef]
- Alipour, B.; Homayouni-Rad, A.; Vaghef-Mehrabany, E.; Sharif, S.K.; Vaghef-Mehrabany, L.; Asghari-Jafarabadi, M.; Nakhjavani, M.R.; Mohtadi-Nia, J. Effects of Lactobacillus casei supplementation on disease activity and inflammatory cytokines in rheumatoid arthritis patients: A randomized double-blind clinical trial. Int. J. Rheum. Dis. 2014, 17, 519. [Google Scholar] [CrossRef]
- Zanami, B.; Farshbaf, S.; Golkar, H.R.; Bahmani, F.; Asemi, Z. Synbiotic supplementation and the effects on clinical and metabolic responses in patients with rheumatoid arthritis: A randomised, double-blind, placebo-controlled trial. Br. J. Nutr. 2017, 117, 1095–1102. [Google Scholar] [CrossRef]
- Vadell, A.K.E.; Bärebring, L.; Hulander, E.; Gjertsson, I.; Lindqvist, H.M.; Winkvist, A. Anti-inflammatory Diet in Rheumatoid Arthritis (ADIRA)—A randomized, controlled crossover trial indicating effects on disease activity. Am. J. Clin. Nutr. 2020, 111, 1203–1213. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Wu, K.; Zeng, S.; Liu, W.; Cui, T.; Chen, Z.; Lin, L.; Chen, D.; Ouyang, H. Punicalagin Inhibited Inflammation and Migration of Fibroblast-Like Synoviocytes Through NF-κB Pathway in the Experimental Study of Rheumatoid Arthritis. J. Inflamm. Res. 2021, 14, 1901–1913. [Google Scholar] [CrossRef]
- Liu, F.; Liu, Y.; Zhan, S.; Lv, J.; Sun, F.; Weng, B.; Liu, S.; Xia, P. Chebulanin exerts its anti-inflammatory and anti-arthritic effects via inhibiting NF-κB and MAPK activation in collagen-induced arthritis mice. Int. Immunopharmacol. 2020, 88, 106823. [Google Scholar] [CrossRef]
- Esvaran, M.; Conway, P.L. Lactobacillus fermentum PC1 has the Capacity to Attenuate Joint Inflammation in Collagen-Induced Arthritis in DBA/1 Mice. Nutrients 2019, 11, 785. [Google Scholar] [CrossRef] [Green Version]
- Amdekar, S.; Singh, V.; Singh, R.; Sharma, P.; Keshav, P.; Kumar, A. Lactobacillus casei reduces the inflammatory joint damage associated with collagen-induced arthritis (CIA) by reducing the pro-inflammatory cytokines: Lactobacillus casei: COX-2 inhibitor. J. Clin. Immunol. 2011, 31, 147–154. [Google Scholar] [CrossRef]
- Lowe, J.R.; Briggs, A.M.; Whittle, S.; Stephenson, M.D. A systematic review of the effects of probiotic administration in inflammatory arthritis. Complement. Ther. Clin. Pract. 2020, 40, 101207. [Google Scholar] [CrossRef]
- Zaiss, M.M.; Joyce Wu, H.J.; Mauro, D.; Schett, G.; Ciccia, F. The gut-joint axis in rheumatoid arthritis. Nat. Rev. Rheumatol. 2021, 17, 224–237. [Google Scholar] [CrossRef]
- Yamashita, M.; Matsumoto, K.; Endo, T.; Ukibe, K.; Hosoya, T.; Matsubara, Y.; Nakagawa, H.; Sakai, F.; Miyazaki, T. Preventive Effect of Lactobacillus helveticus SBT2171 on Collagen-Induced Arthritis in Mice. Front. Microbiol. 2017, 8, 1159. [Google Scholar] [CrossRef]
- Kano, H.; Mogami, O.; Uchida, M. Oral administration of milk fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 to DBA/1 mice inhibits secretion of proinflammatory cytokines. Cytotechnology 2002, 40, 67–73. [Google Scholar] [CrossRef]
- Sredkova, P.; Batsalova, T.; Moten, D.; Dzhambazov, B. Prebiotics can change immunomodulatory properties of probiotics. Cent Eur. J. Immunol. 2020, 45, 248–255. [Google Scholar] [CrossRef]
- Fan, Z.; Yang, B.; Ross, R.P.; Stanton, C.; Shi, G.; Zhao, J.; Zhang, H.; Chen, W. Protective effects of Bifidobacterium adolescentis on collagen-induced arthritis in rats depend on timing of administration. Food Funct. 2020, 11, 4499–4511. [Google Scholar] [CrossRef]
- Rosser, E.C.; Piper, C.J.M.; Matei, D.E.; Blair, P.A.; Rendeiro, A.F.; Orford, M.; Alber, D.G.; Krausgruber, T.; Catalan, D.; Klein, N.; et al. Microbiota-Derived Metabolites Suppress Arthritis by Amplifying Aryl-Hydrocarbon Receptor Activation in Regulatory B Cells. Cell Metab 2020, 31, 837–851.e10. [Google Scholar] [CrossRef]
- Davani-Davari, D.; Negahdaripour, M.; Karimzadeh, I.; Seifan, M.; Mohkam, M.; Masoumi, S.J.; Berenjian, A.; Ghasemi, Y. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods 2019, 8, 92. [Google Scholar] [CrossRef] [Green Version]
- Stinson, L.F.; Payne, M.S.; Keelan, J.A. Planting the seed: Origins, composition, and postnatal health significance of the fetal gastrointestinal microbiota. Crit. Rev. Microbiol. 2017, 43, 352–369. [Google Scholar] [CrossRef]
- Rizzello, V.; Bonaccorsi, I.; Dongarrà, M.L.; Fink, L.N.; Ferlazzo, G. Role of natural killer and dendritic cell crosstalk in immunomodulation by commensal bacteria probiotics. J. Biomed. Biotechnol. 2011, 2011, 473097. [Google Scholar] [CrossRef] [Green Version]
- Kwon, H.K.; Lee, C.G.; So, J.S.; Chae, C.S.; Hwang, J.S.; Sahoo, A.; Nam, J.H.; Rhee, J.H.; Hwang, K.C.; Im, S.H. Generation of regulatory dendritic cells and CD4+Foxp3+ T cells by probiotics administration suppresses immune disorders. Proc. Natl. Acad. Sci. USA 2010, 107, 2159–2164. [Google Scholar] [CrossRef] [Green Version]
- Mazziotta, C.; Tognon, M.; Martini, F.; Torreggiani, E.; Rotondo, J.C. Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells 2023, 12, 184. [Google Scholar] [CrossRef]
- Sanchez, P.; Letarouilly, J.G.; Nguyen, Y.; Sigaux, J.; Barnetche, T.; Czernichow, S.; Flipo, R.M.; Sellam, J.; Daien, C. Efficacy of Probiotics in Rheumatoid Arthritis and Spondyloarthritis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2022, 14, 354. [Google Scholar] [CrossRef]
Study | Country | Inclusion Criteria | Groups | Age (Years) Mean (SD) | Disease Duration (Years) Mean (SD) | Activity Score Mean (SD) | Current Medication | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DMARDs N (%) | Oral CS N (%) | NSAIDs N (%) | |||||||||||
Prebiotics: n = 3 | |||||||||||||
Alavi et al., 2010 [38] | UK | ACR criteria, ≥18 years, active disease, stable regime of treatment ≥ 2 months | Prebiotics | 60 (10.5) | NR | DAS28 score 4.29 | NR | NR | NR | ||||
Placebo | NR | ||||||||||||
Javadi et al., 2016 [37] | Iran | Women, ACR 1987, 19–70 years, active disease, stable regime of treatment ≥ 1 month | Prebiotics | 46.55 (9.94) | 5.17 (3.83) | NR | MTX 23 (92) HCQ 18 (72) SSZ 4 (16) Cyclosporine 3 (12) | Prednisolone 19 (76) | 6 (24) | ||||
Placebo | 48.00 (8.39) | 4.87 (3.03) | NR | MTX 23 (92) HCQ 20 (80) SSZ 2 (8) Cyclosporine 2 (8) | Prednisolone 19 (76) | 8 (32) | |||||||
Khojah et al., 2018 [36] | Egypt | ACR criteria | Prebiotics | 46.5 (12.3) | 9.4 (5.8) | DAS28-ESR 4.62 (0.99) | NR | NR | NR | ||||
Placebo | 44.2 (16.4) | 9.8 (5.5) | DAS28-ESR 4.91 (0.92) | ||||||||||
Probiotics: n = 6 | |||||||||||||
Hatakka et al., 2003 [42] | Finland | ACR 1987, 18–64 years, disease duration > 1-year, stable regime of treatment ≥ 3 month | Probiotics | 50 (10) | 8.3 (7.3) | NR | 100 | 6 (75) | 6 (75) | ||||
Placebo | 53 (7) | 11.0 (8.2) | NR | 100 | 8 (62) | 10 (77) | |||||||
Mandel et al., 2010 [41] | USA | ACR 1987, 18–80 years, disease duration ≥ 1-year, oral CS < 10 mg/day, four or more among: MS ≥ 1 h, STS in ≥3 joint areas, swelling of IPP or MCP or wrist joints, rheumatoid nodules, RF+, erosions | Probiotics | 62.5 | NR | NR | 18 (78) | NR | 2 (9.1) | ||||
Placebo | 17 (77) | NR | 3 (13.6) | ||||||||||
Pineda et al., 2011 [40] | Canada | ACR criteria, 18–80 years, ≥4 swollen and tender joints, stable regime of treatment ≥ 1 month | Probiotics | 63.8 (7.5) | 19 (12.4) | DAS28 4.18 (1.05) | MTX 11 (73) HCQ 6 (40) Leflunomide 3 (20) SSZ 5 (33) | 4 (26) | NR | ||||
Placebo | 59.1 (9.1) | 13.7 (8.4) | DAS28 4.83 (0.91) | MTX 11 (78) HCQ 7 (50) Leflunomide 3 (21) SSZ 4 (28) Myochrysine 2 (14) | 3 (21) | NR | |||||||
Alipour et al., 2014 [44] | Iran | Woman, ACR 1987, 20–80 years, disease duration ≥ 1 year, CRP < 5.1, no NSAIDs or bDMARDs, oral CS < 10 mg/day | Probiotics | 44.29 (9.77) | 5.25 (3.75,10.0) | DAS28-CRP 2.56 (1.01) | MTX 15 (68.2) HCQ 18 (81.8) | Prednisolone 21 (95.5) | NR | ||||
Placebo | 41.14 (12.65) | 4.75 (3.0,9.0) | DAS28-CRP 2.31 (0.90) | MTX 20 (83.3) HCQ 18 (75.0) | Prednisolone 23 (95.8) | NR | |||||||
Zamani et al., 2016 [39] | Iran | ACR 1987, 25–70 years, disease duration ≥ 6 months, DAS28 > 3.2, no biological DMARDS. | Probiotics | 52.2 (12.2) | 7.0 (5.7) | DAS28-CRP 4.0 (0.7) | MTX 29 (96.7) HCQ 20 (66.7) | Prednisone 27 (90.0) | NR | ||||
Placebo | 50.6 (13.1) | 7.0 (6.7) | DAS28-CRP 4.1 (0.7) | MTX 29 (96.7) HCQ 21 (70.0) | Prednisone 28 (93.3) | NR | |||||||
Cannarella et al., 2021 [43] | Brazil | ACR 1987, ≥18 years, | Probiotics | 59 (49,68) | 18 (10,25) | DAS28-ESR 3.20 (2.47-4.21) | MTX 17 (80.95) HCQ 7 (33.33) Leflunomide 11 (52.38) | Prednisone 7 (33.33) | NR | ||||
Placebo | 57 (48,64) | 12 (7,20) | DAS28-ESR 3.83 (2.75-4.69) | MTX 10 (47.61) HCQ 7 (33.33) Leflunomide 8 (38.09) | Prednisone 15 (71.42) | NR | |||||||
Synbiotics: n = 3 | |||||||||||||
Nenonen et al., 1998 [35] | Finland | ARA criteria, Steinbrocker’s functional class II–III, SJC > 3 or TJC > 5, ESR > 20 mm/h or CRP > 10 mg/L | Probiotics+ uncooked vegan diet | 49.1 (7.1) | 12.6 (10.3) | DAS28-ESR 3.26 | MTX 10 (52.6) | 10 (52.6) | 16 (84.2) | ||||
Normal diet | 55.6 (10.8) | 16.1 (13.6) | DAS28-ESR 3.44 | MTX 5 (25) | 9 (45) | 18 (90) | |||||||
Zamani et al., 2017 [45] | Iran | ACR 1987, 25–70 years, disease duration ≥ 6 months, DAS28 > 3.2. | Synbiotics | 49.3 (11.0) | 7.7 (6.1) | DAS28-CRP 4.2 (0.7) | MTX 26 (96.3) HCQ 19 (70.4) | Prednisolone 24 (88.9) | NR | ||||
Placebo | 49.5 (12.9) | 7.5 (6.4) | DAS28-CRP 3.5 (0.8) | MTX 26 (96.3)HCQ 18 (66.7) | Prednisolone25 (92.6) | NR | |||||||
Vadell et al., 2020 [46] | Sweden | 18–75 years, disease duration ≥ 2 years, DAS28-ESR ≥ 2.6, stable regime of DMARDs treatment ≥ 8 weeks | Probiotics + high-fiber diet | 61 (12) | 20.0 (9.5) | DAS28-ESR 3.8 (0.9) | MTX 31 (66) SSZ 6 (13) anti-TNF 16 (34) | 12 (26) | 24 (51) | ||||
Normal diet | DAS28-CRP 3.6 (0.8) |
Study | Design | Formulation | Population | Intervention | Control | Outcome | Outcome Measurement | ||
---|---|---|---|---|---|---|---|---|---|
Type | N | Type | N | ||||||
Prebiotics: n = 3 | |||||||||
Alavi et al., 2010 [38] | Double-blind RCT | Ambrotose Complex (AC) | 69 | AC 1.3 g/day | 33 | Placebo | 36 | DAS28, patient global score, physician global score, SJS, TJS, ESR, CRP, ACPA, RF | 6 months |
Javadi et al., 2016 [37] | Double-blind RCT | Quercetin | 50 | Quercetin | 25 | Placebo | 25 | DAS28-ESR, PGA, TJC, SJC, early morning stiffness, VAS pain, HAQ, ESR, TNF-α | 8 weeks |
Khojah et al., 2018 [36] | open-label RCT | Resveratrol (RSV) | 100 | RSV 1g/day | 50 | Placebo | 50 | DAS28-ESR, moderate EULAR response, TJC, SJC, ESR, CRP, RF, TNF-α, IL-6 | 3 months |
Probiotics: n = 6 | |||||||||
Hatakka et al., 2003 [42] | Double-blind RCT | Lactobacillus casei 01 | 21 | ≥108 CFU/capsule, daily | 8 | Placebo | 13 | DAS28-CRP, TJC, SJC, GH score, VAS, moderate EULAR response, hs-CRP, IL-1β, IL-6, IL-12, TNF-α, IL-10 | 1 year |
Mandel et al., 2010 [41] | Double-blind RCT | Bacillus coagulans GBI-30, 6086 | 45 | 2 × 109 CFU/caplet, one caplet daily | 23 | Placebo | 22 | ACR20 response, SJC, TJC, HAQ core, VAS pain, VAS activity, ESR, CRP | 8 weeks |
Pineda et al., 2011 [40] | Double-blind RCT | L. rhamnosus GR-1 L. reuteri RC-14 | 29 | 2 × 109 CFU/capsule, one capsule twice daily | 15 | Placebo | 14 | ACR 20 response, DAS28-CRP, SJC, TJC, MS, HAQ score, VAS pain, VAS fatigue ESR, CRP, IL-1β, IL-1α IL-6, IL-8, TNF-α, IL-12p70, IL-15, IL-17 IL-10, GM-CSF | 3 months |
Alipour et al., 2014 [44] | Double-blind RCT | Lactobacillus casei 01 | 46 | ≥108 CFU/capsule, daily | 22 | Placebo | 24 | DAS28-CRP, TJC, S JC, GH score, VAS, moderate EULAR response, hs-CRP, IL-1β, IL-6, IL-12, TNF-α, IL-10 | 8 weeks |
Zamani et al., 2016 [39] | Double-blind RCT | Lactobacillus acidophilus Lactobacillus casei Bifidobacterium bifidum | 60 | 2×109 CFU/g(capsule) of each strain, one capsule daily | 30 | Placebo | 30 | DAS28-CRP, TJC, SJC, GH score, VAS, hs-CRP, insulin resistance, lipid concentrations, biomarkers and oxidative stress | 8 weeks |
Cannarella et al., 2021 [43] | Double-blind RCT | Lactobacillus acidophilus LA-14 Lactobacillus casei LC-11 Lactococcus lactis LL-23 Bifidobacterium lactis BL-04 Bifidobacterium bifidum BB-06 | 42 | 109 CFU/g of each strain, one sachet (2 g) daily | 21 | Placebo | 21 | DAS28-ESR, TJC, SJC, GH score, hs-CRP, ESR, ferritin, IL-6, TNF-α, IL-10, Oxidative and Nitrosative Stress Biomarkers | 8 weeks |
Synbiotics: n = 3 | |||||||||
Nenonen et al., 1998 [35] | Single-blind RCT | Probiotic: L. plantarum and L. brevis Prebiotic: Uncooked vegan diet (high dietary fibers) | 39 | Lactobacilli 2.4–4.5 × 1010 CFU/day in fermented wheat drink uncooked vegan diet | 19 | Normal diet | 20 | DAS28-ESR, SJC, TJC, HAQ, MS, VAS pain, CRP, ESR | 3 months |
Zamani et al., 2017 [45] | Double-blind RCT | Probiotic: L. acidophilus, L. casei Bifidobacterium bifidum Prebiotic: inulin | 54 | one synbiotic capsule (Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium bifidum (2 × 109 CFU/g each) and inulin 800 mg)/day | 27 | Placebo | 27 | DAS28-CRP, SJC, TJC, VAS pain, hs-CRP | 2 months |
Vadell et al., 2020 [46] | Single-blind crossover RCT | Probiotic: L. plantarum 299 v Prebiotic: Anti-inflammatory Diet rich in fatty acids and fibers | 50 | Probiotic shot: one shot 5 days a week Anti-inflammatory Diet | 26 | Typical Swedish diet | 24 | DAS28-CRP, DAS28-ESR, SJC, TJC, GH score ESR, | 10 weeks |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.; Li, Y.; Wu, Y.; Liang, X.; Zhou, Y.; Liao, Z.; Wen, J.; Cheng, L.; Luo, Y.; Liu, Y. Effects of Microecological Regulators on Rheumatoid Arthritis: A Systematic Review and Meta-Analysis of Randomized, Controlled Trials. Nutrients 2023, 15, 1102. https://doi.org/10.3390/nu15051102
Wu T, Li Y, Wu Y, Liang X, Zhou Y, Liao Z, Wen J, Cheng L, Luo Y, Liu Y. Effects of Microecological Regulators on Rheumatoid Arthritis: A Systematic Review and Meta-Analysis of Randomized, Controlled Trials. Nutrients. 2023; 15(5):1102. https://doi.org/10.3390/nu15051102
Chicago/Turabian StyleWu, Tong, Yanhong Li, Yinlan Wu, Xiuping Liang, Yu Zhou, Zehui Liao, Ji Wen, Lu Cheng, Yubin Luo, and Yi Liu. 2023. "Effects of Microecological Regulators on Rheumatoid Arthritis: A Systematic Review and Meta-Analysis of Randomized, Controlled Trials" Nutrients 15, no. 5: 1102. https://doi.org/10.3390/nu15051102
APA StyleWu, T., Li, Y., Wu, Y., Liang, X., Zhou, Y., Liao, Z., Wen, J., Cheng, L., Luo, Y., & Liu, Y. (2023). Effects of Microecological Regulators on Rheumatoid Arthritis: A Systematic Review and Meta-Analysis of Randomized, Controlled Trials. Nutrients, 15(5), 1102. https://doi.org/10.3390/nu15051102