Consumption of Coffee and Tea Is Associated with Macular Retinal Nerve Fiber Layer Thickness: Results from the UK Biobank
(This article belongs to the Section Nutritional Epidemiology)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Coffee and Tea Consumption
2.3. Eye Examinations and OCT Measurements
2.4. Covariates
2.5. Study Limitations
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Landais, E.; Moskal, A.; Mullee, A.; Nicolas, G.; Gunter, M.J.; Huybrechts, I.; Overvad, K.; Roswall, N.; Affret, A.; Fagherazzi, G.; et al. Coffee and Tea Consumption and the Contribution of Their Added Ingredients to Total Energy and Nutrient Intakes in 10 European Countries: Benchmark Data from the Late 1990s. Nutrients 2018, 10, 725. [Google Scholar] [CrossRef] [Green Version]
- International Coffee Organization. World Coffee Consumption. Available online: https://www.ico.org/trade_statistics.asp?section=Statistics (accessed on 2 August 2022).
- International Tea Committee. Annual Bulletin Statistics. Available online: https://inttea.com/publications/ (accessed on 2 August 2022).
- Spaeth, A.M.; Goel, N.; Dinges, D.F. Cumulative neurobehavioral and physiological effects of chronic caffeine intake: Individual differences and implications for the use of caffeinated energy products. Nutr. Rev. 2014, 72 (Suppl. S1), 34–47. [Google Scholar] [CrossRef] [PubMed]
- Fukutomi, R.; Ohishi, T.; Koyama, Y.; Pervin, M.; Nakamura, Y.; Isemura, M. Beneficial Effects of Epigallocatechin-3-O-Gallate, Chlorogenic Acid, Resveratrol, and Curcumin on Neurodegenerative Diseases. Molecules 2021, 26, 415. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Bidel, S.; Jousilahti, P.; Antikainen, R.; Tuomilehto, J. Coffee and tea consumption and the risk of Parkinson’s disease. Mov. Disord. 2007, 22, 2242–2248. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, H.; Li, S.; Li, W.D.; Wang, Y. Consumption of coffee and tea and risk of developing stroke, dementia, and poststroke dementia: A cohort study in the UK Biobank. PLoS Med. 2021, 18, e1003830. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.J.; Danesh-Meyer, H.V. Caffeine and the eye. Surv. Ophthalmol. 2019, 64, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Haller, S.; Montandon, M.L.; Rodriguez, C.; Herrmann, F.R.; Giannakopoulos, P. Impact of Coffee, Wine, and Chocolate Consumption on Cognitive Outcome and MRI Parameters in Old Age. Nutrients 2018, 10, 1391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pham, K.; Mulugeta, A.; Zhou, A.; O’Brien, J.T.; Llewellyn, D.J.; Hypponen, E. High coffee consumption, brain volume and risk of dementia and stroke. Nutr. Neurosci. 2021, 25, 2111–2122. [Google Scholar] [CrossRef]
- Zhang, S.; Otsuka, R.; Nishita, Y.; Nakamura, A.; Kato, T.; Iwata, K.; Tange, C.; Tomida, M.; Ando, F.; Shimokata, H.; et al. Green tea consumption is associated with annual changes in hippocampal volumes: A longitudinal study in community-dwelling middle-aged and older Japanese individuals. Arch. Gerontol. Geriatr. 2021, 96, 104454. [Google Scholar] [CrossRef]
- Kashani, A.H.; Asanad, S.; Chan, J.W.; Singer, M.B.; Zhang, J.; Sharifi, M.; Khansari, M.M.; Abdolahi, F.; Shi, Y.; Biffi, A.; et al. Past, present and future role of retinal imaging in neurodegenerative disease. Prog. Retin. Eye Res. 2021, 83, 100938. [Google Scholar] [CrossRef]
- Jeevakumar, V.; Sefton, R.; Chan, J.; Gopinath, B.; Liew, G.; Shah, T.M.; Siette, J. Association between retinal markers and cognition in older adults: A systematic review. BMJ Open 2022, 12, e054657. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.W.; Sung, K.R.; Song, M.K. Ganglion Cell-Inner Plexiform Layer and Retinal Nerve Fiber Layer Changes in Glaucoma Suspects Enable Prediction of Glaucoma Development. Am. J. Ophthalmol. 2020, 210, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Ucak, T.; Alagoz, A.; Cakir, B.; Celik, E.; Bozkurt, E.; Alagoz, G. Analysis of the retinal nerve fiber and ganglion cell—Inner plexiform layer by optical coherence tomography in Parkinson’s patients. Park. Relat. Disord. 2016, 31, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.Y.; Johnson, L.N.; Sinoff, S.E.; Festa, E.K.; Heindel, W.C.; Snyder, P.J. Change in retinal structural anatomy during the preclinical stage of Alzheimer’s disease. Alzheimers Dement. (Amst.) 2018, 10, 196–209. [Google Scholar] [CrossRef] [PubMed]
- den Haan, J.; Verbraak, F.D.; Visser, P.J.; Bouwman, F.H. Retinal thickness in Alzheimer’s disease: A systematic review and meta-analysis. Alzheimers Dement. (Amst.) 2017, 6, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Cheung, C.Y.; Ikram, M.K.; Chen, C.; Wong, T.Y. Imaging retina to study dementia and stroke. Prog. Retin. Eye Res. 2017, 57, 89–107. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.P.; Grossi, C.M.; Khawaja, A.P.; Jennifer, L.Y.; Khaw, K.-T.; Patel, P.J.; Khaw, P.-T.; Morgan, J.E.; Vernon, S.A.; Foster, P.J.; et al. Associations with Intraocular Pressure in a Large Cohort: Results from the UK Biobank. Ophthalmology 2016, 123, 771–782. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Reisman, C.A.; Wang, Z.; Fukuma, Y.; Hangai, M.; Yoshimura, N.; Tomidokoro, A.; Araie, M.; Raza, A.; Hood, N.C.; et al. Automated layer segmentation of macular OCT images using dual-scale gradient information. Opt. Express 2010, 18, 21293–21307. [Google Scholar] [CrossRef] [Green Version]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.E.; Bauma, A.E.L.; Booth, M.L.E.; Ainsworth, B.E. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Cho, S.; Jacobs, D.R., Jr.; Park, K. Instant coffee consumption may be associated with higher risk of metabolic syndrome in Korean adults. Diabetes Res. Clin. Pract. 2014, 106, 145–153. [Google Scholar] [CrossRef]
- Qi, H.; Li, S. Dose-response meta-analysis on coffee, tea and caffeine consumption with risk of Parkinson’s disease. Geriatr. Gerontol. Int. 2014, 14, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, N.; Nakanishi, Y.; Watanabe, Y.; Kitamura, K.; Kabasawa, K.; Takahashi, A.; Saito, T.; Kobayashi, R.; Takachi, R.; Oshiki, R.; et al. Association of coffee, green tea, and caffeine with the risk of dementia in older Japanese people. J. Am. Geriatr. Soc. 2021, 69, 3529–3544. [Google Scholar] [CrossRef]
- Bae, J.H.; Kim, J.M.; Lee, J.M.; Song, J.E.; Lee, M.Y.; Chung, P.-W.; Park, K.H. Effects of consumption of coffee, tea, or soft drinks on open-angle glaucoma: Korea National Health and Nutrition Examination Survey 2010 to 2011. PLoS ONE 2020, 15, e0236152. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.M.; Wu, A.M.; Tseng, V.L.; Yu, F.; Coleman, A.L. Frequency of a diagnosis of glaucoma in individuals who consume coffee, tea and/or soft drinks. Br. J. Ophthalmol. 2018, 102, 1127–1133. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cheng, S.; Cheng, J.; Wang, M.; Zhong, Y.; Yu, A.Y. Habitual coffee consumption increases risk of primary open-angle glaucoma: A Mendelian randomization study. Ophthalmology 2022, 129, 1014–1021. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Aschard, H.; Kang, J.H.; Lentjes, M.A.H.; Do, R.; Wiggs, J.L.; Khawaja, A.P.; Pasquale, L.R.; Modifiable Risk Factors for Glaucoma Collaboration. Intraocular Pressure, Glaucoma, and Dietary Caffeine Consumption: A Gene-Diet Interaction Study from the UK Biobank. Ophthalmology 2021, 128, 866–876. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz Tugan, B.; Subasi, S.; Pirhan, D.; Karabas, L.; Yuksel, N.; Kucuk, K.D. Evaluation of macular and peripapillary vascular parameter change in healthy subjects after caffeine intake using optical coherence tomography angiography. Indian J. Ophthalmol. 2022, 70, 879–889. [Google Scholar] [CrossRef]
- Okuno, T.; Sugiyama, T.; Tominaga, M.; Kojima, S.; Ikeda, T. Effects of caffeine on microcirculation of the human ocular fundus. Jpn. J. Ophthalmol. 2002, 46, 170–176. [Google Scholar] [CrossRef]
- Hirata, Y. Trans-Fatty Acids as an Enhancer of Inflammation and Cell Death: Molecular Basis for Their Pathological Actions. Biol. Pharm. Bull. 2021, 44, 1349–1356. [Google Scholar] [CrossRef]
- Liu, Z.-M.; Tse, L.A.; Chen, B.; Wu, S.; Chan, D.; Kowk, T.; Woo, J.; Xiang, Y.-T.; Wong, S.Y.-S. Dietary acrylamide exposure was associated with mild cognition decline among non-smoking Chinese elderly men. Sci. Rep. 2017, 7, 6395. [Google Scholar] [CrossRef] [Green Version]
- Garey, J.; Paule, M.G. Effects of chronic oral acrylamide exposure on incremental repeated acquisition (learning) task performance in Fischer 344 rats. Neurotoxicol. Teratol. 2010, 32, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Cao, J.; Yang, H.; Pham, P.; Khan, U.; Brown, B.; Wang, Y.; Zieneldien, T.; Cao, C. Commercial and Instant Coffees Effectively Lower Abeta1-40 and Abeta1-42 in N2a/APPswe Cells. Front. Nutr. 2022, 9, 850523. [Google Scholar] [CrossRef] [PubMed]
- Mancini, R.S.; Wang, Y.; Weaver, D.F. Phenylindanes in Brewed Coffee Inhibit Amyloid-Beta and Tau Aggregation. Front. Neurosci. 2018, 12, 735. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, H.; Li, S.; Cao, Z.; Li, W.-D.; Yan, T.; Wang, Y. Association of coffee and genetic risk with incident dementia in middle-aged and elderly adults. Nutr. Neurosci. 2021, 25, 2359–2368. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.S.; Koh, S.H. Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Transl. Neurodegener. 2020, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Madeira, M.H.; Ortin-Martinez, A.; Nadal-Nicolas, F.; Ambrosio, A.F.; Vidal-Sanz, M.; Agudo-Barriuso, M.; Santiago, A.R. Caffeine administration prevents retinal neuroinflammation and loss of retinal ganglion cells in an animal model of glaucoma. Sci. Rep. 2016, 6, 27532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Wang, L.; Wen, D.; Ren, C.; Chen, S.; Zhang, Z.; Hu, L.; Yu, Z.; Tombran-Tink, J.; Zhang, X.; et al. Neuroprotection of retinal cells by Caffeic Acid Phenylethyl Ester (CAPE) is mediated by mitochondrial uncoupling protein UCP2. Neurochem. Int. 2021, 151, 105214. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, C.; Chen, Y.; Liang, J.-J.; Xu, Y.; Chen, S.-L.; Huang, S.; Yang, Q.-C.; Cen, L.-P.; Pang, C.P.; et al. Green Tea Extract Ameliorates Ischemia-Induced Retinal Ganglion Cell Degeneration in Rats. Oxid. Med. Cell. Longev. 2019, 2019, 8407206. [Google Scholar] [CrossRef] [Green Version]
- Yamakuchi, M.; Bao, C.; Ferlito, M.; Lowenstein, C.J. Epigallocatechin gallate inhibits endothelial exocytosis. Biol. Chem. 2008, 389, 935–941. [Google Scholar] [CrossRef] [Green Version]
- Jang, H.J.; Ridgeway, S.D.; Kim, J.A. Effects of the green tea polyphenol epigallocatechin-3-gallate on high-fat diet-induced insulin resistance and endothelial dysfunction. Am. J. Physiol. Endocrinol. Metab. 2013, 305, E1444–E1451. [Google Scholar] [CrossRef]
- Mozaffarian, D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity: A Comprehensive Review. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef]
Variables | Total | Non-Coffee Drinkers | Coffee Drinkers | Non-Tea Drinkers | Tea Drinkers |
---|---|---|---|---|---|
35,557 (100%) | 7695 (100%) | 27,862 (100%) | 5082 (100%) | 30,475 (100%) | |
Average thickness of macular retinal nerve fiber layer (µm) # | |||||
28.52 (4.24) | 28.47 (4.17) | 28.53 (4.27) | 28.44 (4.25) | 28.53 (4.24) | |
Age at baseline (Years) §,†,‡ | |||||
<50 | 9844 (27%) | 2554 (33%) | 7290 (26%) | 1721 (34%) | 8123 (27%) |
50–54 | 5615 (15%) | 1300 (17%) | 4315 (15%) | 767 (15%) | 4848 (16%) |
55–59 | 6212 (17%) | 1351 (18%) | 4861 (17%) | 837 (16%) | 5375 (18%) |
60–64 | 8146 (22%) | 1451 (19%) | 6695 (24%) | 1065 (21%) | 7081 (23%) |
>64 | 5740 (16%) | 1039 (14%) | 4701 (17%) | 692 (14%) | 5048 (17%) |
Sex §,† | |||||
Female | 18,952 (53%) | 4405 (57%) | 14,547 (52%) | 2761 (54%) | 16,191 (53%) |
Male | 16,605 (46%) | 3290 (43%) | 13,315 (48%) | 2321 (46%) | 14,284 (47%) |
Assessment center §,†,‡ | |||||
Sheffield | 9571 (26%) | 1946 (25%) | 7625 (27%) | 1448 (28%) | 8123 (27%) |
Liverpool | 2628 (7%) | 563 (7%) | 2065 (7%) | 379 (7%) | 2249 (7%) |
Hounslow | 6867 (19%) | 1506 (2%) | 5361 (19%) | 918 (18%) | 5949 (2%) |
Croydon | 8935 (25%) | 1901 (25%) | 7034 (25%) | 1231 (24%) | 7704 (25%) |
Birmingham | 7476 (21%) | 1764 (23%) | 5712 (21%) | 1093 (22%) | 6383 (21%) |
Swansea | 80 (1%) | 15 (1%) | 65 (1%) | 13 (1%) | 67 (1%) |
Average total household income before tax (£) §,† | |||||
<18 k | 5614 (15%) | 1464 (19%) | 4150 (15%) | 805 (16%) | 4809 (16%) |
18 k~30 k | 7309 (20%) | 1566 (2%) | 5743 (21%) | 997 (2%) | 6312 (21%) |
31 k~51 k | 8281 (23%) | 1678 (22%) | 6603 (24%) | 1241 (24%) | 7040 (23%) |
52 k~100 k | 7365 (20%) | 1439 (19%) | 5926 (21%) | 1007 (2%) | 6358 (21%) |
>100 k | 2459 (6%) | 442 (6%) | 2017 (7%) | 350 (7%) | 2109 (7%) |
Missing | 4529 (12%) | 1106 (14%) | 3423 (12%) | 682 (13%) | 3847 (13%) |
Townsend deprivation index §,†,‡ | |||||
Quantile 1 (<−3.6) | 7549 (21%) | 1438 (19%) | 6111 (22%) | 1037 (2%) | 6512 (21%) |
Quantile 2 (−3.6~−2.1) | 8351 (23%) | 1710 (22%) | 6641 (24%) | 1123 (22%) | 7228 (24%) |
Quantile 3 (−2.1~0.6) | 9934 (27%) | 2134 (28%) | 7800 (28%) | 1422 (28%) | 8512 (28%) |
Quantile 4 (>0.6) | 9684 (27%) | 2402 (31%) | 7282 (26%) | 1496 (29%) | 8188 (27%) |
Missing | 39 (1%) | 11 (1%) | 28 (1%) | 4 (1%) | 35 (1%) |
Smoking statue §,†,‡ | |||||
Never | 12,368 (34%) | 2374 (31%) | 9994 (36%) | 1730 (34%) | 10,638 (35%) |
Ever/Current | 3426 (9%) | 680 (9%) | 2746 (10%) | 594 (12%) | 2832 (9%) |
Missing | 19,763 (55%) | 4641 (60%) | 15,122 (54%) | 2758 (54%) | 17,005 (56%) |
Alcohol intake status §,†,‡ | |||||
Never | 1194 (3%) | 429 (6%) | 765 (3%) | 239 (5%) | 955 (3%) |
Ever/Current | 32,848 (92%) | 6599 (86%) | 26,249 (94%) | 4554 (90%) | 28,294 (93%) |
Missing | 1515 (4%) | 667 (9%) | 848 (3%) | 289 (6%) | 1226 (4%) |
Ethnic background §,† | |||||
White | 32,470 (91%) | 6496 (84%) | 25,974 (93%) | 4677 (92%) | 27,793 (91%) |
Others | 2940 (8%) | 1156 (15%) | 1784 (6%) | 385 (8%) | 2555 (8%) |
Missing | 147 (1%) | 43 (1%) | 104 (1%) | 20 (1%) | 127 (1%) |
Education achievement §,† | |||||
O levels or equivalent | 10,213 (28%) | 2522 (33%) | 7691 (28%) | 1517 (30%) | 8696 (29%) |
A levels or equivalent | 2210 (6%) | 464 (6%) | 1746 (6%) | 331 (7%) | 1879 (6%) |
University | 22,823 (64%) | 4608 (6%) | 18,215 (65%) | 3185 (63%) | 19,638 (64%) |
Missing | 311 (1%) | 101 (1%) | 210 (1%) | 49 (1%) | 262 (1%) |
Body mass index (BMI; kg/m2) §,†,‡ | |||||
Normal (<25) | 12,041 (33%) | 2675 (35%) | 9366 (34%) | 1541 (30%) | 10,500 (34%) |
Overweight (25–30) | 15,150 (42%) | 3128 (41%) | 12,022 (43%) | 2098 (41%) | 13,052 (43%) |
Obesity (>30) | 8200 (23%) | 1846 (24%) | 6354 (23%) | 1421 (28%) | 6779 (22%) |
Missing | 166 (1%) | 46 (1%) | 120 (1%) | 22 (1%) | 144 (1%) |
Moderate to vigorous physical activity (MVPA; Metabolic Equivalent Task (MET) minutes/week) §,†,‡ | |||||
Quantile 1 (<240) | 7609 (21%) | 1754 (23%) | 5855 (21%) | 1222 (24%) | 6387 (21%) |
Quantile 2 (240–960) | 7718 (21%) | 1608 (21%) | 6110 (22%) | 1014 (2%) | 6704 (22%) |
Quantile 3 (960–2160) | 6884 (19%) | 1418 (18%) | 5466 (2%) | 910 (18%) | 5974 (2%) |
Quantile 4 (>2160) | 7379 (20%) | 1565 (2%) | 5814 (21%) | 1042 (21%) | 6337 (21%) |
Missing | 5967 (16%) | 1350 (18%) | 4617 (17%) | 894 (18%) | 5073 (17%) |
Sleep duration (hour) §,†,‡ | |||||
<7 h | 9035 (25%) | 2027 (26%) | 7008 (25%) | 1474 (29%) | 7561 (25%) |
7 h | 14,326 (40%) | 2916 (38%) | 11,410 (41%) | 1930 (38%) | 12,396 (41%) |
8 h | 9879 (27%) | 2168 (28%) | 7711 (28%) | 1342 (26%) | 8537 (28%) |
>8 h | 2317 (6%) | 584 (8%) | 1733 (6%) | 336 (7%) | 1981 (7%) |
Diabetes at baseline §,† | |||||
No | 34,104 (95%) | 7342 (95%) | 26,762 (96%) | 4861 (96%) | 29,243 (96%) |
Yes | 1453 (4%) | 353 (5%) | 1100 (4%) | 221 (4%) | 1232 (4%) |
Cardiovascular diseases at baseline § | |||||
No | 33,486 (94%) | 7229 (94%) | 26,257 (94%) | 4788 (94%) | 28,698 (94%) |
Yes | 2071 (5%) | 466 (6%) | 1605 (6%) | 294 (6%) | 1777 (6%) |
Hypertension at baseline §,† | |||||
No | 26,519 (74%) | 5668 (74%) | 20,851 (75%) | 3835 (75%) | 22,684 (74%) |
Yes | 9038 (25%) | 2027 (26%) | 7011 (25%) | 1247 (25%) | 7791 (26%) |
Healthy diet §,†,‡ | |||||
No | 7662 (21%) | 1774 (23%) | 5888 (21%) | 1242 (24%) | 6420 (21%) |
Yes | 27,895 (78%) | 5921 (77%) | 21,974 (79%) | 3840 (76%) | 24,055 (79%) |
Habitual intake of sweeten beverages or foods §,†,‡ | |||||
No | 886 (2%) | 284 (4%) | 602 (2%) | 161 (3%) | 725 (2%) |
Yes | 34,671 (97%) | 7411 (96%) | 27,260 (98%) | 4921 (97%) | 29,750 (98%) |
Serum high density liptein (HDL) cholesterol level §,†,‡ | |||||
Abnormal | 3379 (9%) | 764 (10%) | 2615 (9%) | 562 (11%) | 2817 (9%) |
Normal | 27,872 (78%) | 5946 (77%) | 21,926 (79%) | 3907 (77%) | 23,965 (79%) |
Missing | 4306 (12%) | 985 (13%) | 3321 (12%) | 613 (12%) | 3693 (12%) |
Serum low density liptein (LDL) cholesterol level §,† | |||||
Abnormal | 14,181 (39%) | 3276 (43%) | 10,905 (39%) | 1982 (39%) | 12,199 (40%) |
Normal | 18,507 (52%) | 3759 (49%) | 14,748 (53%) | 2684 (53%) | 15,823 (52%) |
Missing | 2869 (8%) | 660 (9%) | 2209 (8%) | 416 (8%) | 2453 (8%) |
Spherical equivalent (SE) (Diopters) # | |||||
−0.06 (1.91) | −0.07 (1.87) | −0.06 (1.93) | −0.08 (1.90) | −0.06 (1.92) | |
Intraocular pressure (IOP) (mmHg) #,† | |||||
15.20 (2.93) | 15.09 (2.98) | 15.23 (2.92) | 15.15 (2.94) | 15.21 (2.93) |
Multivariable Model 1 § | Multivariable Model 2 § | ||||||
---|---|---|---|---|---|---|---|
Categories (Cups/Day) | Number (No.) | Coefficient (β) | 95% Confidential Intervals | Categories (Cups/Day) | Number (No.) | Coefficient (β) | 95% Confidential Intervals |
Coffee (p for trend = 0.88) | Coffee (p for trend =0.60) | ||||||
0 | 7695 | Reference | Reference | 0 | 7695 | Reference | Reference |
0.5–1 | 10,268 | 0.05 | (−0.07~0.18) | 0.5–1 | 10,268 | 0.03 | (−0.09~0.15) |
2–3 | 11,034 | 0.08 | (−0.04~0.12) | 2–3 | 11,034 | 0.06 | (−0.07~0.18) |
≥4 | 6560 | −0.02 | (−0.17~0.12) | ≥4 | 6560 | 0.02 | (−0.13~0.16) |
All | 27,862 | 0.05 | (−0.06~0.15) | All | 27,862 | 0.03 | (−0.07~0.14) |
Tea (p for trend = 0.04) | Tea (p for trend =0.05) | ||||||
0 | 5082 | Reference | Reference | 0 | 5082 | Reference | Reference |
0.5–1 | 4309 | 0.17 | (−0.01~0.34) | 0.5–1 | 4309 | 0.14 | (−0.03~0.31) |
2–3 | 10,503 | 0.12 | (−0.03~0.27) | 2–3 † | 10,503 | 0.11 | (−0.03~0.25) |
≥4 | 15,663 | 0.16 | (0.01~0.30) | ≥4 † | 15,663 | 0.15 | (0.01~0.29) |
All | 30,475 | 0.17 | (0.04~0.29) | All † | 30,475 | 0.14 | (0.01~0.26) |
Multivariable Model 3 § | Multivariable Model 3 § | ||||||
---|---|---|---|---|---|---|---|
Categories (Cups/Day) | Number (No.) | Coefficient (β) | 95% Confidential Intervals | Categories (Cups/Day) | Number (No.) | Coefficient (β) | 95% Confidential Intervals |
Coffee (p for trend = 0.07) | Interaction effect (Coffee × Tea) ‡ | ||||||
0 | 7695 | Reference | Reference | C0 T0 | 833 | Reference | Reference |
0.5–1 | 10,268 | 0.12 | (−0.01~0.26) | C0 T0.5–1 | 468 | 0.43 | (−0.04~0.89) |
2–3 † | 11,034 | 0.16 | (0.03~0.30) | C0 T2–3 | 1763 | 0.32 | (−0.02~0.66) |
≥4 | 6560 | 0.14 | (−0.02~0.30) | C0 T≥4 | 4631 | 0.30 | (−0.01~0.60) |
All † | 27,862 | 0.13 | (0.01~0.25) | C0.5–1 T0 | 514 | 0.28 | (−0.18~0.73) |
C0.5–1 T0.5–1 | 994 | 0.39 | (0.02~0.76) | ||||
Tea (p for trend = 0.03) | C0.5–1 T2–3 | 3068 | 0.41 | (0.10~0.72) | |||
0 | 5082 | Reference | Reference | C0.5–1 T≥4 | 5692 | 0.44 | (0.13~0.75) |
0.5–1 | 4309 | 0.13 | (−0.03~0.30) | C2–3 T0 | 1437 | 0.43 | (0.07~0.79) |
2–3 | 10,503 | 0.11 | (−0.04~0.25) | C2–3 T0.5–1 | 1610 | 0.40 | (0.04~0.75) |
≥4 † | 15,663 | 0.15 | (0.01~0.29) | C2–3 T2–3 | 4172 | 0.41 | (0.09~0.72) |
All † | 30,475 | 0.13 | (0.01~0.26) | C2–3 T≥4 | 3815 | 0.47 | (0.15~0.78) |
C≥4 T0 | 2298 | 0.32 | (−0.01~0.64) | ||||
Instant coffee | C≥4 T0.5–1 | 1237 | 0.51 | (0.15~0.87) | |||
No | 21,057 | Reference | Reference | C≥4 T2–3 | 1500 | 0.38 | (0.02~0.74) |
Yes † | 14,500 | −0.19 | (−0.29~−0.10) | C≥4 T≥4 | 1525 | 0.45 | (0.09~0.81) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Bulloch, G.; Zhang, S.; Chen, Y.; Yang, S.; Wang, W.; Zhu, Z.; He, M. Consumption of Coffee and Tea Is Associated with Macular Retinal Nerve Fiber Layer Thickness: Results from the UK Biobank. Nutrients 2023, 15, 1196. https://doi.org/10.3390/nu15051196
Yuan Y, Bulloch G, Zhang S, Chen Y, Yang S, Wang W, Zhu Z, He M. Consumption of Coffee and Tea Is Associated with Macular Retinal Nerve Fiber Layer Thickness: Results from the UK Biobank. Nutrients. 2023; 15(5):1196. https://doi.org/10.3390/nu15051196
Chicago/Turabian StyleYuan, Yixiong, Gabriella Bulloch, Shiran Zhang, Yanping Chen, Shaopeng Yang, Wei Wang, Zhuoting Zhu, and Mingguang He. 2023. "Consumption of Coffee and Tea Is Associated with Macular Retinal Nerve Fiber Layer Thickness: Results from the UK Biobank" Nutrients 15, no. 5: 1196. https://doi.org/10.3390/nu15051196
APA StyleYuan, Y., Bulloch, G., Zhang, S., Chen, Y., Yang, S., Wang, W., Zhu, Z., & He, M. (2023). Consumption of Coffee and Tea Is Associated with Macular Retinal Nerve Fiber Layer Thickness: Results from the UK Biobank. Nutrients, 15(5), 1196. https://doi.org/10.3390/nu15051196