Rutin, a Flavonoid Compound Derived from Garlic, as a Potential Immunomodulatory and Anti-Inflammatory Agent against Murine Schistosomiasis mansoni
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Preparation of ASb Extract
2.3. Determination of Total Phenolic and Total Flavonoid Content
2.4. Investigations of Flavonoids
2.4.1. Separation and Identification of Rutin Compound
2.4.2. Chemical Analysis
2.4.3. Physical Analysis
2.5. Parasites and Animals
2.6. Study of Acute Oral Toxicity of Rutin in Mice
2.7. Experimental Design
2.8. Parasitological Analysis
2.9. Histopathological and Morphometric Analysis
2.10. Serum Sample Preparation
2.11. Biochemical Analysis
2.11.1. Assessment of Liver Biomarkers
2.11.2. Assessment of Antioxidant Markers
2.12. Cytokine Analysis
2.13. Flow Cytometric (FCM) Analysis
2.14. Statistical Analysis
3. Results
3.1. Phytochemical Analysis
3.2. Isolation and Identification of Rutin Compound
3.3. Acute Oral Toxicity of Isolated Rutin in Mice
3.4. Rutin Reduces Adult Worm S. mansoni Burden and Egg Production in Liver Tissue and Feces
3.5. Rutin Reduces the Pathological Damage in S. mansoni-Infected CD1 Mice
3.6. Rutin Reduces Changes in Serum Liver Biomarkers and Antioxidant Markers in Mice
3.7. Rutin Induced Changes in Serum Cytokines in S. mansoni-Infected Mice
3.8. Rutin Induced Apoptosis in the Spleen
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chitsulo, L.; Engels, D.; Montresor, A.; Savioli, L. The global status of schistosomiasis and its control. Acta Trop. 2000, 77, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Steinmann, P.; Keiser, J.; Bos, R.; Tanner, M.; Utzinger, J. Schistosomiasis and water resources development: Systematic review, meta-analysis, and estimates of people at risk. Lancet Infect. Dis. 2006, 6, 411–425. [Google Scholar] [CrossRef]
- Colley, D.G.; Bustinduy, A.L.; Secor, W.E.; King, C.H. Human schistosomiasis. Lancet 2014, 383, 2253–2264. [Google Scholar] [CrossRef] [PubMed]
- Warren, K.S.; Cummings, P.; Mahmoud, A.A.F.; Murphy, D.J.; Houser, H.B. Schistosomiasis mansoni in Yemeni in California: Duration of infection, presence of disease, therapeutic management. Am. J. Trop. Med. Hyg. 1974, 23, 902–909. [Google Scholar] [CrossRef]
- Amaral, K.B.; Silva, T.P.; Malta, K.K.; Carmo, L.A.S.; Dias, F.F.; Almeida, M.R.; Andrade, G.F.S.; Martins, J.S.; Pinho, R.R.; Costa-Neto, S.F.; et al. Natural Schistosoma mansoni Infection in the Wild Reservoir Nectomys squamipes Leads to Excessive Lipid Droplet Accumulation in Hepatocytes in the Absence of Liver Functional Impairment. PLoS ONE 2016, 11, e0166979. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, C.; Fallon, P.G. Schistosoma “Eggs-Iting” the Host: Granuloma Formation and Egg Excretion. Front. Immunol. 2018, 9, 2492. [Google Scholar] [CrossRef] [Green Version]
- El-Khadragy, M.F.; Al-Olayan, E.M.; Elmallah, M.I.Y.; Alharbi, A.M.; Yehia, H.M.; Moneim, A.E.A. Probiotics and yogurt modulate oxidative stress and fibrosis in livers of Schistosoma mansoni-infected mice. BMC Complement. Altern. Med. 2019, 19, 1–13. [Google Scholar] [CrossRef] [PubMed]
- El Ridi, R.; Salem, R.; Wagih, A.; Mahana, N.; El Demellawy, M.; Tallima, H. Influence of interleukin-2 and interferon-gamma in murine schistosomiasis. Cytokine 2006, 33, 281–288. [Google Scholar] [CrossRef]
- El Ridi, R.; Wagih, A.; Salem, R.; Mahana, N.; El Demellawy, M.; Tallima, H. Impact of interleukin-1 and interleukin-6 in murine primary schistosomiasis. Int. Immunopharmacol. 2006, 6, 1100–1108. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.S.; Mentink-Kane, M.M.; Pesce, J.T.; Ramalingam, T.R.; Thompson, R.; Wynn, T. Immunopathology of schistosomiasis. Immunol. Cell Biol. 2006, 85, 148–154. [Google Scholar] [CrossRef]
- Costain, A.H.; Phythian-Adams, A.T.; Colombo, S.A.P.; Marley, A.K.; Owusu, C.; Cook, P.C.; Brown, S.L.; Webb, L.M.; Lundie, R.J.; Smits, H.H.; et al. Dynamics of Host Immune Response Development During Schistosoma mansoni Infection. Front. Immunol. 2022, 13, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Femoe, U.M.; Jatsa, H.B.; Greigert, V.; Brunet, J.; Cannet, C.; Kenfack, M.C.; Feussom, N.G.; Fassi, J.B.K.; Nkondo, E.T.; Abou-Bacar, A.; et al. Pathological and immunological evaluation of different regimens of praziquantel treatment in a mouse model of Schistosoma mansoni infection. PLoS Negl. Trop. Dis. 2022, 16, e0010382. [Google Scholar] [CrossRef]
- Zou, D.; Liu, J.; Peng, L.; Hu, L.; Gao, Y.; Liang, Y.; Liu, Y.; Xiao, J. Imbalance of Th17/Tregs promotes egg granuloma formation of liver with Schistosomiasis japonicum in mice. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi = Chin. J. Cell. Mol. Immunol. 2022, 38, 872–879. [Google Scholar]
- Crellen, T.; Walker, M.; Lamberton, P.H.; Kabatereine, N.B.; Tukahebwa, E.M.; Cotton, J.A.; Webster, J.P. Reduced Efficacy of Praziquantel AgainstSchistosoma mansoniIs Associated with Multiple Rounds of Mass Drug Administration. Clin. Infect. Dis. 2016, 63, 1151–1159. [Google Scholar] [CrossRef] [Green Version]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the 30 Years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Zheng, Y.M.; Ho, W.S. Effect of quercetin glucosides from Allium extracts on HepG2, PC-3 and HT-29 cancer cell lines. Oncol. Lett. 2018, 15, 4657–4661. [Google Scholar] [CrossRef] [Green Version]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Aly, I.; Taher, E.E.; El-Sayed, H.; Mohammed, F.A.; Elnain, G.; Hamad, R.S.; Bayoumy, E.M. Efficacy of soluble glycoprotein fraction from Allium sativum purified by size exclusion chromatography on murine Schistosomiasis mansoni. Microb. Pathog. 2017, 107, 243–248. [Google Scholar] [CrossRef]
- Metwally, D.M.; Al-Olayan, E.M.; Alanazi, M.; Alzahrany, S.B.; Semlali, A. Antischistosomal and anti-inflammatory activity of garlic and allicin compared with that of praziquantel in vivo. BMC Complement. Altern. Med. 2018, 18, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Abu Almaaty, A.; Rashed, H.; Soliman, M.; Fayad, E.; Althobaiti, F.; El-Shenawy, N. Parasitological and Biochemical Efficacy of the Active Ingredients of Allium sativum and Curcuma longa in Schistosoma mansoni Infected Mice. Molecules 2021, 26, 4542. [Google Scholar] [CrossRef]
- Hamad, R.S.; Abd El-Moaty, H.I. Impact of Allium sativum ethanol extract on immuno-regulatory T cells and anti-inflammatory cytokine profile in murine schistosomiasis. Trop. Biomed. 2021, 38, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Ganeshpurkar, A.; Saluja, A.K. The Pharmacological Potential of Rutin. Saudi Pharm. J. 2016, 25, 149–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.Y.; Li, L.J.; Dong, Q.X.; Zhu, J.; Huang, Y.R.; Hou, S.J.; Yu, X.L.; Liu, R.T. Rutin prevents tau pathology and neuroinflammation in a mouse model of Alzheimer’s disease. J. Neuroinflamm. 2021, 18, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, O.M.; Elkomy, M.H.; Fahim, H.I.; Ashour, M.B.; Naguib, I.A.; Alghamdi, B.S.; Mahmoud, H.U.R.; Ahmed, N.A. Rutin and Quercetin Counter Doxorubicin-Induced Liver Toxicity in Wistar Rats via Their Modulatory Effects on Inflammation, Oxidative Stress, Apoptosis, and Nrf2. Oxidative Med. Cell. Longev. 2022, 2022, 1–19. [Google Scholar] [CrossRef]
- Elsawy, H.; Badr, G.M.; Sedky, A.; Abdallah, B.M.; Alzahrani, A.M.; Abdel-Moneim, A.M. Rutin ameliorates carbon tetrachloride (CCl4)-induced hepatorenal toxicity and hypogonadism in male rats. PeerJ 2019, 7, e7011. [Google Scholar] [CrossRef] [Green Version]
- Karawya, M.S.; Aboutabi, E.A. Phytoconstituents of Tabernaemontana coronaria Jaco Willd and Tabernaemontana dicotoma Roxb. I. Phytochemical screening and TLC investigation of alkaloidal content. Egypt. J. Pharm. Sci. 1982, 20, 41–49. [Google Scholar]
- Liu, Y.L.; Neuman, P.; Borbara, N.T.; Mabry, J.J. Techniques for Flavonoids Analysis. Rev. Latinamer. Quim. 1989, (Suppl. S1), 90–130. [Google Scholar]
- Harborne, J.B.; Mabry, T.J.; Mabry, H. The Flavonoids; Chapman and Hall: London, UK, 1975; p. 1204. [Google Scholar]
- Mabry, T.; Markham, K.R.; Thomas, M.B. The Systematic Identification of Flavonoids; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; p. 354. [Google Scholar]
- Peters, P.A.; Warren, K.S. A Rapid Method of Infecting Mice and Other Laboratory Animals with Schistosoma mansoni: Subcutaneous Injection. J. Parasitol. 1969, 55, 558. [Google Scholar] [CrossRef]
- Panic, G.; Ruf, M.-T.; Keiser, J. Immunohistochemical Investigations of Treatment with Ro 13-3978, Praziquantel, Oxamniquine, and Mefloquine in Schistosoma mansoni-Infected Mice. Antimicrob. Agents Chemother. 2017, 61, e01142-17. [Google Scholar] [CrossRef] [Green Version]
- Tendler, M.; Pinto, R.M.; Lima, A.O.; Gebara, G.; Katz, N. Schistosoma mansoni: Vaccination with adult worm antigens. Int. J. Parasitol. 1986, 16, 347–352. [Google Scholar] [CrossRef]
- Katz, N.; Coelho, P.M.; Pellegrino, J. Evaluation of Kato’s quantitative method through the recovery of Schistosoma mansoni eggs added to human feces. J. Parasitol. 1970, 56, 1032–1033. [Google Scholar] [CrossRef] [PubMed]
- Luna, L.G. Manual of Histologic Staining Methods of the Armed Forces Institute of Pathology; McGraw-Hill: New York, NY, USA, 1968. [Google Scholar]
- Shackelford, C.; Long, G.; Wolf, J.; Okerberg, C.; Herbert, R. Qualitative and quantitative analysis of nonneoplastic lesions in toxicology studies. Toxicol. Pathol. 2022, 30, 93–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harborne, J.B. Phytochemical Methods; Chapman and Hall: London, OH, USA, 1984; p. 287. [Google Scholar]
- Vale, N.; Gouveia, M.J.; Rinaldi, G.; Brindley, P.J.; Gärtner, F.; Correia da Costa, J.M. Praziquantel for Schistosomiasis: Single-Drug Metabolism Revisited, Mode of Action, and Resistance. Antimicrob. Agents Chemother. 2017, 61, e02582-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, H.Y.P.; Liang, T.-R.; Peng, S.-Y. Ameliorative effects of Schisandrin B on Schistosoma mansoni-induced hepatic fibrosis in vivo. PLOS Neglected Trop. Dis. 2021, 15, e0009554. [Google Scholar] [CrossRef]
- Rodrigues, J.G.M.; Albuquerque, P.S.V.; Nascimento, J.R.; Campos, J.A.V.; Godinho, A.S.S.; Araújo, S.J.; Brito, J.M.; Jesus, C.M.; Miranda, G.S.; Rezende, M.C.; et al. The immunomodulatory activity of Chenopodium ambrosioides reduces the parasite burden and hepatic granulomatous inflammation in Schistosoma mansoni-infection. J. Ethnopharmacol. 2020, 264, 113287. [Google Scholar] [CrossRef]
- Markham, K.R. Techniques of Flavonoid Identification; Academic Press: Cambridge, MA, USA, 1982; pp. 83–86. [Google Scholar]
- Agrawal, P.K.; Bansal, M.C.; John, J. Studies in Organic Chemistry. 39. Carbon-13 NMR of Flavonoids; Elsevier: New York, NY, USA, 1989; pp. 283–355. [Google Scholar]
- Markham, K.R.; Geiger, H. XH NMR spectroscopy of flavonoids and their glycosides in hexa-deuterodimethylsulphoxide. In The Flavonoids—Advances in Research since 1986; Harborne, J.B., Ed.; Chapman and Hall: London, OH, USA, 1993. [Google Scholar]
- Fahmy, S.R.; Rabia, I.; Mansour, E.M. The potential role of mefloquine against Schistosoma mansoni infection by prohibition of hepatic oxidative stress in mice. J. Basic Appl. Zool. 2014, 67, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Jatsa, H.B.; Feussom, N.G.; Femoe, U.M.; Kenfack, M.C.; Nkondo, E.T.; Fassi, J.B.K.; Simo, N.D.; Moaboulou, C.; Dongmo, C.N.; Tsague, C.D.; et al. Evaluation of the schistosomicidal, antioxidant and anti-inflammatory activities of the ethyl acetate fraction from Ozoroa pulcherrima Schweinf. Roots on Schistosoma mansoni-induced liver pathology in mice and its phytochemical characterization. J. Ethnopharmacol. 2019, 238, 111883. [Google Scholar] [CrossRef]
- Bai, J.; Zhang, Y.; Tang, C.; Hou, Y.; Ai, X.; Chen, X.; Zhang, Y.; Wang, X.; Meng, X. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed. Pharmacother. 2020, 133, 110985. [Google Scholar] [CrossRef]
- Abarikwu, S.O.; Olufemi, P.D.; Lawrence, C.J.; Wekere, F.C.; Ochulor, A.C.; Barikuma, A.M. Rutin, an antioxidant flavonoid, induces glutathione and glutathione peroxidase activities to protect against ethanol effects in cadmium-induced oxidative stress in the testis of adult rats. Andrologia 2016, 49, e12696. [Google Scholar] [CrossRef]
Group I: Normal Control | Uninfected and Untreated Mice. |
---|---|
Group II: Infected control | Infected with 100 ± 2 S. mansoni cercariae/mouse via the tail; act as infected control group. |
Group III (AS treated) | Mice were infected by 100 ± 2 S. mansoni cercariae/mouse and treated with 50 mg/kg body weight ASb ethanolic extract [21] single dose per day for 40 days. |
Group IV (Rutin treated) | Mice were infected by 100 ± 2 S. mansoni cercariae/mouse and received 40 mg/kg body weight rutin, single dose per day for 40 days. |
Group V (PZQ-treated) | Mice were infected by 100 ± 2 S. mansoni cercariae/mouse and treated with 500 mg (dissolved in 70% glycerin)/kg of body weight PZQ; orally 7 weeks postinfection for two successive days [31]. |
UV Spectral Data (λmax, nm) | |
---|---|
Reagent | (λmax, nm) |
MeOH | 258, 329, 358 (flavonol) |
NaOMe | 272, 329 (sh), 407 (free of OH at 3′ and 4′) |
NaOAc | 272, 355 (sh), 393 (free OH at 7) |
NaOAc + H3BO3 | 260, 379 (ortho-dihydroxy group at B ring) |
AlCl3 | 275, 422 (free OH at 5) |
AlCl3 + HCl | 272, 396 (ortho-dihydroxy group at B ring). |
1H-NMR Spectral Data δ (ppm) | |
7.57 (1H, d, J = 2.1 Hz, H-2′), 7.54 (1H, d, J = 9, 2.1 Hz, H-6′),6.89 (1H, d, J = 9.0 Hz, H-5′), 6.40 (1H, d, J = 2.1 Hz, H-8), 6.20 (1H, d, J = 2.1 Hz, H-6), 5.35 (1H, d, J = 7.5 Hz, anomeric cH-1″, glucose), 4.40 (H, broad singlet, anomeric H-1‴, rhamnose), 3.25–3.45 (m, the rest sugar of glucose and rhamnose), 1 (3H, d, J = 6.3 Hz, CH3- rhamnose). |
Mice Groups | Worm Burden | Liver Egg Counts | Feces Egg Counts | |||
---|---|---|---|---|---|---|
Mean ± SE | Reduction (%) | Mean ± SE | Reduction (%) | Mean ± SE | Reduction (%) | |
Infected control | 29.18 ± 6.95 | 0 | 5170 ± 809 | 0 | 4532 ± 598 | 0 |
AS-treated | 11.64 ± 3.69 b | 60.11 | 2720± 122 b | 47.39 | 1814 ± 273 b | 59.97 |
Rutin-treated | 9.3 ± 1.84 c | 68.13 | 758 ± 33 c | 85.34 | 942 ± 531 c | 79.21 |
PZQ-treated | 1.3 ± 0.92 c | 95.54 | 129 ± 10 c | 97.50 | 655 ± 131 c | 85.55 |
Parameters a | Normal | Infected | AS-Treated | Rutin-Treated | PZQ-Treated |
---|---|---|---|---|---|
Inflammatory infiltration | 0.00 ± 0.00 | 2.80 ± 0.20 | 2.50 ± 0.54 | 2.10 ± 0.57 | 2.0 ± 0.5 |
Fibers accumulation | 0.00 ± 0.00 | 2.40 ± 0.55 b | 1.90 ± 0.55 | 1.20 ± 0.47 a | 1.60 ± 0.54 a |
Tissue damage | 0.00 ± 0.00 | 2.60 ± 0.53 b | 2.10 ± 0.55 | 1.40 ± 0.54 a | 1.20 ± 0.47 a |
Necrosis | 0.00 ± 0.00 | 2.30 ± 0.55 b | 1.80 ± 0.55 | 1.20 ± 0.83 a | 1.30 ± 0.45 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamad, R.S. Rutin, a Flavonoid Compound Derived from Garlic, as a Potential Immunomodulatory and Anti-Inflammatory Agent against Murine Schistosomiasis mansoni. Nutrients 2023, 15, 1206. https://doi.org/10.3390/nu15051206
Hamad RS. Rutin, a Flavonoid Compound Derived from Garlic, as a Potential Immunomodulatory and Anti-Inflammatory Agent against Murine Schistosomiasis mansoni. Nutrients. 2023; 15(5):1206. https://doi.org/10.3390/nu15051206
Chicago/Turabian StyleHamad, Rabab S. 2023. "Rutin, a Flavonoid Compound Derived from Garlic, as a Potential Immunomodulatory and Anti-Inflammatory Agent against Murine Schistosomiasis mansoni" Nutrients 15, no. 5: 1206. https://doi.org/10.3390/nu15051206
APA StyleHamad, R. S. (2023). Rutin, a Flavonoid Compound Derived from Garlic, as a Potential Immunomodulatory and Anti-Inflammatory Agent against Murine Schistosomiasis mansoni. Nutrients, 15(5), 1206. https://doi.org/10.3390/nu15051206