Level of Fruit and Vegetable Intake and Its Relationship with Risk for Malnutrition in China’s Adult Labor Force: China Nutrition and Health Surveillance, 2015–2017
Abstract
:1. Introduction
2. Data Sources and Methods
2.1. Study Design
2.2. Data Collections
2.3. Fruits and Vegetable Intake Assessment
2.4. Weight Status and Malnutrition Diagnosis
- (1)
- Underweight: BMI < 18.5;
- (2)
- Normal weight: 18.5 ≤ BMI < 24.0;
- (3)
- Overweight: 24.0 ≤ BMI < 28.0;
- (4)
- Obesity: BMI ≥ 28.0.
2.5. Covariates
2.6. Statistical Analysis
3. Results
3.1. General Characteristics of Participants
3.2. Fruit and Vegetable Intake among Chinese Labour Force Aged 18–64
3.3. Insufficient Fruit and Vegetable Intake Status among Chinese Labor Force Aged 18–64
3.4. Factors Associated with Fruit and Vegetable Intake among Chinese Labor Force
3.5. The Association between Fruit and Vegetable Intake and Malnutrition among Chinese Labor Force
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khobai, H.; Mbeki, Z.M. Health and Economic Growth in Vista Countries: An ARDL Bounds Test Approach. MPRA Paper. 2018. Available online: https://mpra.ub.uni-muenchen.de/89868/ (accessed on 8 February 2023).
- Sahn, D.E. Health, Poverty and Economic Growth: An Introduction. Afr. Dev. Rev. 2013, 24, 267–269. [Google Scholar] [CrossRef]
- Population Census Office under the State Council, Department of Population and Employment Statistics, National Bureau of Statistics Tabulation on the 2010 Population Census of the People’s Republic of China. Available online: http://www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/indexch.htm (accessed on 8 February 2023).
- Chang, J.; Wang, Y. Comprehensive Report on Nutrition and Health Status Monitoring of Chinese Residents from 2010 to 2013; Peking University Medical Press: Beijing, China, 2016; ISBN 978-7-5659-1460-7. [Google Scholar]
- He, Y.; Li, Y.; Yang, X.; Hemler, E.C.; Fang, Y.; Zhao, L.; Zhang, J.; Yang, Z.; Wang, Z.; He, L.; et al. The Dietary Transition and Its Association with Cardiometabolic Mortality among Chinese Adults, 1982–2012: A Cross-Sectional Population-Based Study. Lancet Diabetes Endocrinol. 2019, 7, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Forouzanfar, M.H.; Alexander, L.; Anderson, H.R.; Bachman, V.F.; Biryukov, S.; Brauer, M.; Burnett, R.; Casey, D.; Coates, M.M.; Cohen, A.; et al. Global, Regional, and National Comparative Risk Assessment of 79 Behavioural, Environmental and Occupational, and Metabolic Risks or Clusters of Risks in 188 Countries, 1990–2013: A Systematic Analysis for the Global Burden of Disease Study 2013. Lancet 2015, 386, 2287–2323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanaway, J.D.; Afshin, A.; Gakidou, E.; Lim, S.S.; Abate, D.; Abate, K.H.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; et al. Global, Regional, and National Comparative Risk Assessment of 84 Behavioural, Environmental and Occupational, and Metabolic Risks or Clusters of Risks for 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1923–1994. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Zhang, X.; Gao, Y.-T.; Li, H.; Yang, G.; Huang, J.; Zheng, W.; Xiang, Y.-B.; Shu, X.-O. Fruit and Vegetable Intake and Risk of CHD: Results from Prospective Cohort Studies of Chinese Adults in Shanghai. Br. J. Nutr. 2014, 111, 353–362. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Gallegos, J.L.; Haskell-Ramsay, C.; Lodge, J.K. Effects of Chronic Consumption of Specific Fruit (Berries, Citrus and Cherries) on CVD Risk Factors: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Eur. J. Nutr. 2021, 60, 615–639. [Google Scholar] [CrossRef]
- Elsahoryi, N.A.; Neville, C.E.; Patterson, C.C.; Linden, G.J.; Moitry, M.; Biasch, K.; Kee, F.; Amouyel, P.; Bongard, V.; Dallongeville, J.; et al. Association between Overall Fruit and Vegetable Intake, and Fruit and Vegetable Sub-Types and Blood Pressure: The PRIME Study (Prospective Epidemiological Study of Myocardial Infarction). Br. J. Nutr. 2021, 125, 557–567. [Google Scholar] [CrossRef]
- Wang, T.; Heianza, Y.; Sun, D.; Zheng, Y.; Huang, T.; Ma, W.; Rimm, E.B.; Manson, J.E.; Hu, F.B.; Willett, W.C.; et al. Improving Fruit and Vegetable Intake Attenuates the Genetic Association with Long-Term Weight Gain. Am. J. Clin. Nutr. 2019, 110, 759–768. [Google Scholar] [CrossRef]
- Chen, G.-C.; Koh, W.-P.; Yuan, J.-M.; Qin, L.-Q.; van Dam, R.M. Green Leafy and Cruciferous Vegetable Consumption and Risk of Type 2 Diabetes: Results from the Singapore Chinese Health Study and Meta-Analysis. Br. J. Nutr. 2018, 119, 1057–1067. [Google Scholar] [CrossRef] [Green Version]
- Amiot-Carlin, M.-J. Fruit and vegetable consumption: What benefits, what risks? Rev. Prat. 2019, 69, 139–142. [Google Scholar]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and Vegetable Intake and the Risk of Cardiovascular Disease, Total Cancer and All-Cause Mortality—A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyebode, O.; Gordon-Dseagu, V.; Walker, A.; Mindell, J.S. Fruit and Vegetable Consumption and All-Cause, Cancer and CVD Mortality: Analysis of Health Survey for England Data. J. Epidemiol. Community Health 2014, 68, 856–862. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Action Plan for the Prevention and Control of Non Communicable Diseases 2013–2020. Available online: https://apps.who.int/iris/handle/10665/94384 (accessed on 8 February 2023).
- Chinese Nutrition Society. The Dietary Guidelines for Chinese Residents (2022); People’s Medical Publishing House: Beijing, China, 2022; ISBN 978-7-117-31404-6. [Google Scholar]
- Yu, D.; Zhao, L.; Zhang, J.; Yang, Z.; Yang, L.; Huang, J.; Fang, H.; Guo, Q.; Xu, X.; Ju, L.; et al. China Nutrition and Health Surveys (1982–2017). China CDC Wkly. 2021, 3, 193–195. [Google Scholar] [CrossRef]
- Yang, Y. China Food Composition Tables 2004; Peking University Medical Press: Beijing, China, 2005; ISBN 978-7-81071-678-9. [Google Scholar]
- Yang, Y.; Wang, G.; Pan, X. China Food Composition Tables 2009; Peking University Medical Press: Beijing, China, 2009; ISBN 978-7-81116-727-6. [Google Scholar]
- Yang, Y. China Food Composition Tables Standard Edition; Peking University Medical Press: Beijing, China, 2018; ISBN 978-7-5659-1699-1. [Google Scholar]
- National Health and Family Planning Commission of the People’s Republic of China. Criteria of Weight for Adults; China Standard Press: Beijing, China, 2013. [Google Scholar]
- National Bureau of Statistics of China. Code for Statistical Division and Code for Urban and Rural division in 2012. Available online: http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2012/index.html (accessed on 9 February 2023).
- National Health and Family Planning Commission of People’s Republic of China. China Health Statistical Yearbook 2013. Available online: http://www.nhc.gov.cn/htmlfiles/zwgkzt/ptjnj/year2013/index2013.html (accessed on 9 February 2023).
- Disease Prevention and Control Bureau of the State Health and Family Planning Commission Report on Chinese Residents’ Chronic Diseases and Nutrition (2015); People’s Medical Publishing House: Beijing, China, 2017; ISBN 978-7-117-23755-0.
- GBD 2017 Diet Collaborators Health Effects of Dietary Risks in 195 Countries, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [CrossRef] [Green Version]
- Lee-Kwan, S.H.; Moore, L.V.; Blanck, H.M.; Harris, D.M.; Galuska, D. Disparities in State-Specific Adult Fruit and Vegetable Consumption—United States, 2015. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 1241–1247. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Moore, L.V.; Park, S.; Harris, D.M.; Blanck, H.M. Adults Meeting Fruit and Vegetable Intake Recommendations—United States, 2019. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 1–9. [Google Scholar] [CrossRef]
- Polsky, J.Y.; Garriguet, D. Change in Vegetable and Fruit Consumption in Canada between 2004 and 2015. Health Rep. 2020, 31, 3–12. [Google Scholar]
- Nguyen, B.; Bauman, A.; Gale, J.; Banks, E.; Kritharides, L.; Ding, D. Fruit and Vegetable Consumption and All-Cause Mortality: Evidence from a Large Australian Cohort Study. Int. J. Behav. Nutr. Phys. Act 2016, 13, 9. [Google Scholar] [CrossRef] [Green Version]
- Mensah, D.O.; Nunes, A.R.; Bockarie, T.; Lillywhite, R.; Oyebode, O. Meat, Fruit, and Vegetable Consumption in Sub-Saharan Africa: A Systematic Review and Meta-Regression Analysis. Nutr. Rev. 2021, 79, 651–692. [Google Scholar] [CrossRef]
- Kalmpourtzidou, A.; Eilander, A.; Talsma, E.F. Global Vegetable Intake and Supply Compared to Recommendations: A Systematic Review. Nutrients 2020, 12, 1558. [Google Scholar] [CrossRef]
- Zhao, L.; He, Y. China National Nutrition and Health Surveillance Report 2010–2013: Dietary and Nutrient Intake Status; People’s Medical Publishing House: Beijing, China, 2018; ISBN 978-7-117-27433-3. [Google Scholar]
- Tanaka, S.; Yoneoka, D.; Ishizuka, A.; Ueda, P.; Nakamura, K.; Uneyama, H.; Hayashi, N.; Shibuya, K.; Nomura, S. Projections of Disability-Adjusted Life Years for Major Diseases Due to a Change in Vegetable Intake in 2017–2040 in Japan. BMC Public Health 2021, 21, 770. [Google Scholar] [CrossRef] [PubMed]
- Ju, L.; Zhang, Q.; Yang, Z.; Zhao, L.; Yang, T.; Wang, Y.; Wang, S.; Li, R.; Xu, J.; Fang, H.; et al. Intake of main food among the children aged 6–17 years in different regions of China in 2019–2021. Wei Sheng Yan Jiu 2023, 52, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, K.; Olstad, D.; Leech, R.; Ball, K.; Meertens, B.; Potter, J.; Cleanthous, X.; Reynolds, R.; McNaughton, S. Socioeconomic Inequities in Diet Quality and Nutrient Intakes among Australian Adults: Findings from a Nationally Representative Cross-Sectional Study. Nutrients 2017, 9, 1092. [Google Scholar] [CrossRef] [Green Version]
- Boylan, S.; Lallukka, T.; Lahelma, E.; Pikhart, H.; Malyutina, S.; Pajak, A.; Kubinova, R.; Bragina, O.; Stepaniak, U.; Gillis-Januszewska, A.; et al. Socio-Economic Circumstances and Food Habits in Eastern, Central and Western European Populations. Public Health Nutr. 2011, 14, 678–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diet, Nutrition, and the Prevention of Chronic Diseases: Report of a WHO-FAO Expert Consultation. World Health Organ. Tech. Rep. Ser. 2003, 916, 1–149.
- Guo, Q.; Yu, D.; Zhao, L.; Fang, H.; Ju, L.; Li, S. Status of fresh vegetables and fruit consumption among Chinese aged 60 years old and above in 2015. Wei Sheng Yan Jiu 2021, 50, 401–408. [Google Scholar] [CrossRef]
- Miller, V.; Cudhea, F.; Singh, G.; Micha, R.; Shi, P.; Zhang, J.; Onopa, J.; Karageorgou, D.; Webb, P.; Mozaffarian, D. Estimated Global, Regional, and National Cardiovascular Disease Burdens Related to Fruit and Vegetable Consumption: An Analysis from the Global Dietary Database (FS01-01-19). Curr. Dev. Nutr. 2019, 3, 3130601. [Google Scholar] [CrossRef] [Green Version]
- Kwon, Y.-S.; Yang, Y.-Y.; Park, Y.; Park, Y.-K.; Kim, S. Dietary Assessment and Factors According to Fruits and Vegetables Intake in Korean Elderly People: Analysis of Data from the Korea National Health and Nutrition Examination Survey, 2013–2018. Nutrients 2020, 12, 3492. [Google Scholar] [CrossRef]
- Pedersen, A.M.L.; Dynesen, A.W.; Heitmann, B.L. Older Age, Smoking, Tooth Loss and Denture-Wearing but Neither Xerostomia nor Salivary Gland Hypofunction Are Associated with Low Intakes of Fruit and Vegetables in Older Danish Adults. J. Nutr. Sci. 2021, 10, e47. [Google Scholar] [CrossRef]
- Darmon, N.; Drewnowski, A. Does Social Class Predict Diet Quality? Am. J. Clin. Nutr. 2008, 87, 1107–1117. [Google Scholar] [CrossRef] [Green Version]
- Mayén, A.-L.; Marques-Vidal, P.; Paccaud, F.; Bovet, P.; Stringhini, S. Socioeconomic Determinants of Dietary Patterns in Low- and Middle-Income Countries: A Systematic Review. Am. J. Clin. Nutr. 2014, 100, 1520–1531. [Google Scholar] [CrossRef] [Green Version]
- Kjøllesdal, M.; Htet, A.S.; Stigum, H.; Hla, N.Y.; Hlaing, H.H.; Khaine, E.K.; Khaing, W.; Khant, A.K.; Khin, N.O.K.; Mauk, K.K.A.; et al. Consumption of Fruits and Vegetables and Associations with Risk Factors for Non-Communicable Diseases in the Yangon Region of Myanmar: A Cross-Sectional Study. BMJ Open 2016, 6, e011649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holcomb, C.A. Positive Influence of Age and Education on Food Consumption and Nutrient Intakes of Older Women Living Alone. J. Am. Diet. Assoc. 1995, 95, 1381–1386. [Google Scholar] [CrossRef]
- Turrell, G.; Kavanagh, A.M. Socio-Economic Pathways to Diet: Modelling the Association between Socio-Economic Position and Food Purchasing Behaviour. Public Health Nutr. 2006, 9, 375–383. [Google Scholar] [CrossRef] [Green Version]
- Hout, M. Social and Economic Returns to College Education in the United States. Annu. Rev. Sociol. 2012, 38, 379–400. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, R.; Tsuji, M.; Senju, A.; Kusuhara, K.; Kawamoto, T. Japan Environment and Children’s Study Group Dietary Differences in Male Workers among Smaller Occupational Groups within Large Occupational Categories: Findings from the Japan Environment and Children’s Study (JECS). Int. J. Environ. Res. Public Health 2018, 15, 961. [Google Scholar] [CrossRef] [Green Version]
- Escoto, K.H.; Laska, M.N.; Larson, N.; Neumark-Sztainer, D.; Hannan, P.J. Work Hours and Perceived Time Barriers to Healthful Eating among Young Adults. Am. J. Health Behav. 2012, 36, 786–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almajwal, A.M. Stress, Shift Duty, and Eating Behavior among Nurses in Central Saudi Arabia. Saudi Med. J. 2016, 37, 191–198. [Google Scholar] [CrossRef]
- Kjøllesdal, M.R.; Holmboe-Ottesen, G.; Wandel, M. Frequent Use of Staff Canteens Is Associated with Unhealthy Dietary Habits and Obesity in a Norwegian Adult Population. Public Health Nutr. 2011, 14, 133–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roos, E.; Sarlio-Lähteenkorva, S.; Lallukka, T. Having Lunch at a Staff Canteen Is Associated with Recommended Food Habits. Public Health Nutr. 2004, 7, 53–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, L.M.; Quinn, T.A.; Glanz, K.; Ramirez, G.; Kahwati, L.C.; Johnson, D.B.; Buchanan, L.R.; Archer, W.R.; Chattopadhyay, S.; Kalra, G.P.; et al. The Effectiveness of Worksite Nutrition and Physical Activity Interventions for Controlling Employee Overweight and Obesity: A Systematic Review. Am. J. Prev. Med. 2009, 37, 340–357. [Google Scholar] [CrossRef] [PubMed]
- Mandracchia, F.; Tarro, L.; Llauradó, E.; Valls, R.M.; Solà, R. Interventions to Promote Healthy Meals in Full-Service Restaurants and Canteens: A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 1350. [Google Scholar] [CrossRef]
- Bertoia, M.L.; Mukamal, K.J.; Cahill, L.E.; Hou, T.; Ludwig, D.S.; Mozaffarian, D.; Willett, W.C.; Hu, F.B.; Rimm, E.B. Changes in Intake of Fruits and Vegetables and Weight Change in United States Men and Women Followed for Up to 24 Years: Analysis from Three Prospective Cohort Studies. PLoS Med. 2015, 12, e1001878. [Google Scholar] [CrossRef]
- Ledoux, T.A.; Hingle, M.D.; Baranowski, T. Relationship of Fruit and Vegetable Intake with Adiposity: A Systematic Review. Obes. Rev. 2011, 12, e143–e150. [Google Scholar] [CrossRef]
- Newby, P.K.; Muller, D.; Hallfrisch, J.; Qiao, N.; Andres, R.; Tucker, K.L. Dietary Patterns and Changes in Body Mass Index and Waist Circumference in Adults. Am. J. Clin. Nutr. 2003, 77, 1417–1425. [Google Scholar] [CrossRef] [Green Version]
- McNaughton, S.A.; Mishra, G.D.; Stephen, A.M.; Wadsworth, M.E.J. Dietary Patterns throughout Adult Life Are Associated with Body Mass Index, Waist Circumference, Blood Pressure, and Red Cell Folate. J. Nutr. 2007, 137, 99–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Z.; Hu, X.; Yuan, B.; Hu, G.; Pan, X.; Dai, Y.; Byles, J.E.; Holmboe-Ottesen, G. Vegetable-Rich Food Pattern Is Related to Obesity in China. Int. J. Obes. 2008, 32, 975–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rautiainen, S.; Wang, L.; Lee, I.-M.; Manson, J.E.; Buring, J.E.; Sesso, H.D. Higher Intake of Fruit, but Not Vegetables or Fiber, at Baseline Is Associated with Lower Risk of Becoming Overweight or Obese in Middle-Aged and Older Women of Normal BMI at Baseline. J. Nutr. 2015, 145, 960–968. [Google Scholar] [CrossRef] [Green Version]
- Safdar, N.F.; Bertone-Johnson, E.; Cordeiro, L.; Jafar, T.H.; Cohen, N.L. Dietary Patterns of Pakistani Adults and Their Associations with Sociodemographic, Anthropometric and Life-Style Factors. J. Nutr. Sci. 2013, 2, e42. [Google Scholar] [CrossRef] [Green Version]
- Alinia, S.; Hels, O.; Tetens, I. The Potential Association between Fruit Intake and Body Weight—A Review. Obes. Rev. 2009, 10, 639–647. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Hoffmann, G.; Kalle-Uhlmann, T.; Arregui, M.; Buijsse, B.; Boeing, H. Fruit and Vegetable Consumption and Changes in Anthropometric Variables in Adult Populations: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. PLoS ONE 2015, 10, e0140846. [Google Scholar] [CrossRef] [PubMed]
- Rejman, K.; Górska-Warsewicz, H.; Kaczorowska, J.; Laskowski, W. Nutritional Significance of Fruit and Fruit Products in the Average Polish Diet. Nutrients 2021, 13, 2079. [Google Scholar] [CrossRef] [PubMed]
- Van Duyn, M.A.; Pivonka, E. Overview of the Health Benefits of Fruit and Vegetable Consumption for the Dietetics Professional: Selected Literature. J. Am. Diet. Assoc. 2000, 100, 1511–1521. [Google Scholar] [CrossRef] [PubMed]
- CCTV-2 Finance Channel. 2017 Consumption Report: Fruits and Vegetables. Available online: https://tv.cctv.com/2018/01/11/VIDE6SiNfc9bjutyO7uks1Up180111.shtml (accessed on 9 February 2023).
Characteristics | N | Percentage (%) |
---|---|---|
Total | 45,459 | 100.0 |
Gender | ||
Male | 21,098 | 46.4 |
Female | 24,361 | 53.6 |
Age group (Years) | ||
18–29 | 4695 | 10.3 |
30–39 | 6677 | 14.7 |
40–49 | 19,980 | 44.0 |
50–64 | 14,107 | 31.0 |
Residential area | ||
Urban | 18,321 | 40.3 |
Rural | 27,138 | 59.7 |
Regional division 1 | ||
Eastern | 17,030 | 37.5 |
Central | 13,228 | 29.1 |
Western | 15,201 | 33.4 |
Regional division 2 | ||
Northern | 22,148 | 48.7 |
Southern | 23,311 | 51.3 |
Educational level | ||
PS and below | 19,313 | 42.5 |
JS | 15,511 | 34.1 |
HS and TS | 6707 | 14.8 |
C or above | 3928 | 8.6 |
Occupation | ||
Employed | 35,344 | 77.7 |
Not employed | 10,115 | 22.3 |
Household income | ||
Low | 9102 | 20.0 |
Middle | 10,993 | 24.2 |
Upper-middle | 13,906 | 30.6 |
High | 11,458 | 25.2 |
Marital status | ||
Married | 42,443 | 93.4 |
Not married | 3016 | 6.6 |
Weight status | ||
Underweight | 1521 | 3.3 |
Normal | 20,955 | 46.1 |
Overweight | 16,238 | 35.7 |
Obesity | 6745 | 14.8 |
Characteristics | Fruit | Vegetable | Fruit and Vegetable | |||
---|---|---|---|---|---|---|
M (IRQ) | p Value | M (IRQ) | p Value | M (IRQ) | p Value | |
Total | 64.3 (128.6) | 210.0 (280.0) | 330.0 (299.5) | |||
Gender | ||||||
Male | 51.4 (114.3) | <0.0001 ** | 250.0 (270.0) | <0.0001 ** | 328.6 (301.6) | 0.0566 |
Female | 71.4 (125.7) | 200.0 (285.7) | 335.7 (294.7) | |||
Age group (Years) | ||||||
18–29 | 85.7 (124.3) | <0.0001 ** | 200.0 (300.0) | <0.0001 ** | 328.6 (300.0) | 0.3353 |
30–39 | 85.7 (130.0) | 200.0 (300.0) | 342.9 (294.1) | |||
40–49 | 57.1 (130.3) | 240.0 (280.0) | 326.8 (300.0) | |||
50–64 | 50.0 (114.3) | 250.0 (250.0) | 330.0 (305.9) | |||
Residential area | ||||||
Urban | 91.4 (145.0) | <0.0001 ** | 250.0 (250.0) | <0.0001 ** | 370.0 (310.0) | <0.0001 ** |
Rural | 50.0 (100.0) | 200.0 (300.0) | 307.9 (298.5) | |||
Regional division 1 | ||||||
Eastern | 80.0 (132.4) | <0.0001 ** | 300.0 (250.0) | <0.0001 ** | 400.0 (311.4) | <0.0001 ** |
Central | 55.7 (115.7) | 200.0 (300.0) | 310.0 (275.7) | |||
Western | 57.1 (123.1) | 200.0 (300.0) | 300.0 (300.0) | |||
Regional division 2 | ||||||
Northern | 85.7 (131.4) | <0.0001 ** | 200.0 (300.0) | <0.0001 ** | 314.3 (314.3) | <0.0001 ** |
Southern | 50.0 (92.9) | 300.0 (240.0) | 342.9 (287.8) | |||
Educational level | ||||||
PS and below | 42.9 (88.6) | <0.0001 ** | 200.0 (300.0) | <0.0001 ** | 300.0 (291.4) | <0.0001 ** |
JS | 70.0 (124.3) | 240.0 (250.0) | 345.7 (295.7) | |||
HS and TS | 100.0 (144.3) | 250.0 (250.0) | 385.7 (307.1) | |||
C or above | 114.3 (140.0) | 250.0 (230.0) | 400.0 (325.0) | |||
Occupation | ||||||
Employed | 57.1 (130.3) | <0.0001 ** | 214.3 (280.0) | 0.8196 | 328.6 (300.0) | 0.0008 ** |
Not employed | 74.3 (127.1) | 200.0 (271.4) | 342.9 (300.0) | |||
Household income | ||||||
Low | 40.0 (90.1) | <0.0001 ** | 200.0 (300.0) | <0.0001 ** | 300.0 (297.1) | <0.0001 ** |
Middle | 50.0 (99.5) | 200.0 (300.0) | 310.0 (295.6) | |||
Upper-middle | 64.3 (128.6) | 240.0 (257.1) | 342.9 (293.3) | |||
High | 100.0 (157.1) | 250.0 (250.0) | 400.0 (310.0) | |||
Marital status | ||||||
Married | 64.3 (129.0) | 0.003 ** | 214.3 (280.0) | 0.0149 * | 330.0 (298.9) | 0.2657 |
Not married | 64.3 (128.6) | 200.0 (300.0) | 328.6 (300.0) | |||
Weight status | ||||||
Underweight | 42.9 (92.9) | <0.0001 ** | 200.0 (300.0) | <0.0001 ** | 300.0 (284.9) | <0.0001 ** |
Normal | 57.1 (125.7) | 200.0 (280.0) | 324.3 (300.0) | |||
Overweight | 64.3 (128.6) | 230.0 (277.0) | 342.9 (302.9) | |||
Obesity | 77.1 (131.4) | 240.0 (260.0) | 350.0 (303.6) |
Characteristics | Fruit a | Vegetable a | Fruits and Vegetables b | ||||||
---|---|---|---|---|---|---|---|---|---|
<200 g | ≥200 g c | p Value | <300 g | ≥300 g c | p Value | <500 g | ≥500 g c | p Value | |
Total | 79.9 | 20.1 | 53.0 | 47.0 | 55.2 | 44.8 | |||
Gender | |||||||||
Male | 83.4 | 16.6 | <0.0001 ** | 51.1 | 48.9 | 0.0005 ** | 55.9 | 44.1 | 0.2208 |
Female | 76.3 | 23.7 | 54.9 | 45.1 | 54.5 | 45.5 | |||
Age group (Years) | |||||||||
18–29 | 76.7 | 23.3 | <0.0001 ** | 56.8 | 43.2 | 0.0036 ** | 56.3 | 43.7 | 0.4275 |
30–39 | 77.7 | 22.3 | 52.3 | 47.7 | 53.8 | 46.2 | |||
40–49 | 81.7 | 18.3 | 51.6 | 48.4 | 54.8 | 45.2 | |||
50–64 | 84.7 | 15.3 | 50.8 | 49.2 | 56.3 | 43.7 | |||
Residential area | |||||||||
Urban | 75.6 | 24.4 | <0.0001 ** | 51.3 | 48.7 | 0.0564 | 51.0 | 49.0 | <0.0001 ** |
Rural | 84.7 | 15.3 | 54.8 | 45.2 | 59.9 | 40.1 | |||
Regional division 1 | |||||||||
Eastern | 75.1 | 24.9 | <0.0001 ** | 45.8 | 54.2 | <0.0001 ** | 46.6 | 53.4 | <0.0001 * |
Central | 83.1 | 16.9 | 57.3 | 42.7 | 60.4 | 39.6 | |||
Western | 83.5 | 16.5 | 58.8 | 41.2 | 62.2 | 37.8 | |||
Regional division 2 | |||||||||
Northern | 76.5 | 23.5 | <0.0001 | 58.6 | 41.4 | <0.0001 | 57.0 | 43.0 | 0.0766 |
Southern | 82.6 | 17.4 | 48.5 | 51.5 | 53.7 | 46.3 | |||
Educational level | |||||||||
PS and below | 88.6 | 11.4 | <0.0001 ** | 54.5 | 45.5 | 0.0182 * | 61.3 | 38.7 | <0.0001 ** |
JS | 81.1 | 18.9 | 54.2 | 45.8 | 56.5 | 43.5 | |||
HS and TS | 74.3 | 25.7 | 49.1 | 50.9 | 50.0 | 50.0 | |||
C or above | 69.0 | 31.0 | 51.9 | 48.1 | 47.9 | 52.1 | |||
Occupation | |||||||||
Employed | 80.3 | 19.7 | 0.0425 * | 51.8 | 48.2 | <0.0001 ** | 54.9 | 45.1 | 0.2765 |
Not employed | 78.2 | 21.8 | 57.9 | 42.1 | 56.4 | 43.6 | |||
Household income | |||||||||
Low | 86.9 | 13.1 | <0.0001 ** | 58.4 | 41.6 | <0.0001 ** | 64.8 | 35.2 | <0.0001 ** |
Middle | 84.1 | 15.9 | 53.8 | 46.2 | 59.1 | 40.9 | |||
Upper-middle | 80.7 | 19.3 | 53.4 | 46.6 | 54.6 | 45.4 | |||
High | 71.7 | 28.3 | 48.5 | 51.5 | 46.9 | 53.1 | |||
Marital status | |||||||||
Married | 80.1 | 19.9 | 0.3752 | 52.7 | 47.3 | 0.3023 | 54.9 | 45.1 | 0.4302 |
Not married | 78.6 | 21.4 | 54.8 | 45.2 | 56.6 | 43.4 | |||
Weight status | |||||||||
Underweight | 81.4 | 18.6 | 0.1322 | 53.5 | 46.5 | 0.455 | 57.0 | 43.0 | 0.934 |
Normal | 80.6 | 19.4 | 52.1 | 47.9 | 55.1 | 44.9 | |||
Overweight | 79.8 | 20.2 | 53.3 | 46.7 | 55.0 | 45.0 | |||
Obesity | 77.7 | 22.3 | 54.9 | 45.1 | 55.2 | 44.8 |
Characteristics | Ref. | Fruit a | Vegetable a | ||
---|---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | ||
Gender | |||||
Female | Male | 1.73 (1.54–1.94) | <0.0001 ** | 0.90 (0.83–0.98) | 0.0163 * |
Age group (Years) | |||||
30–39 | 18–29 | 0.93 (0.78–1.11) | 0.415 | 1.19 (1.00–1.41) | 0.0476 * |
40–49 | 18–29 | 0.85 (0.72–0.99) | 0.0422 * | 1.27 (1.11–1.46) | 0.0005 ** |
50–64 | 18–29 | 0.77 (0.65–0.91) | 0.0022 ** | 1.38 (1.19–1.61) | <0.0001 ** |
Residential area | |||||
Rural | Urban | 0.83 (0.73–0.93) | 0.0019 ** | 0.98 (0.85–1.13) | 0.7507 |
Regional division 1 | |||||
Central | Eastern | 0.70 (0.61–0.79) | <0.0001 ** | 0.65 (0.55–0.76) | <0.0001 ** |
Western | Eastern | 0.80 (0.70–0.90) | 0.0004 ** | 0.59 (0.50–0.68) | <0.0001 ** |
Regional division 2 | |||||
Southern | Northern | 0.67 (0.60–0.75) | <0.0001 ** | 1.53 (1.35–1.75) | <0.0001 ** |
Educational level | |||||
JS | PS and below | 1.70 (1.49–1.94) | <0.0001 ** | 1.04 (0.95–1.14) | 0.4201 |
HS and TS | PS and below | 2.32 (1.97–2.74) | <0.0001 ** | 1.22 (1.05–1.41) | 0.0079 ** |
C or above | PS and below | 2.56 (2.09–3.14) | <0.0001 ** | 1.05 (0.86–1.27) | 0.6387 |
Occupation | |||||
Not employed | Employed | 1.05 (0.91–1.20) | 0.5178 | 0.80 (0.71–0.90) | 0.0003 ** |
Household income | |||||
Middle | Low | 1.12 (0.93–1.34) | 0.2339 | 1.14 (1.00–1.31) | 0.0534 |
Upper-middle | Low | 1.26 (1.06–1.49) | 0.0075 ** | 1.06 (0.92–1.22) | 0.4039 |
High | Low | 1.71 (1.43–2.05) | <0.0001 ** | 1.17 (1.00–1.38) | 0.0489 * |
Marital status | |||||
Not married | Married | 0.83 (0.68–1.03) | 0.0885 | 0.98 (0.81–1.18) | 0.8001 |
Weight status | |||||
Underweight | Normal | 1.10 (0.74–1.62) | 0.6516 | 1.08 (0.85–1.38) | 0.5375 |
Overweight | Normal | 1.20 (0.81–1.79) | 0.3683 | 1.02 (0.77–1.34) | 0.9156 |
Obesity | Normal | 1.32 (0.87–1.99) | 0.1896 | 0.99 (0.76–1.30) | 0.9662 |
Underweight | Normal | Overweight | Obesity | |
---|---|---|---|---|
OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | |
Fruit | ||||
Urban Male | ||||
Q1 | Ref. | Ref. | Ref. | Ref. |
Q2 | 0.74 (0.24–2.31) | 0.93 (0.70–1.24) | 1.03 (0.80–1.32) | 1.12 (0.82–1.52) |
Q3 | 1.59 (0.55–4.59) | 1.07 (0.82–1.41) | 0.85 (0.63–1.14) | 1.01 (0.73–1.40) |
Q4 | 1.41 (0.45–4.43) | 0.72 (0.51–1.03) | 1.02 (0.78–1.32) | 1.41 (1.04–1.92) |
p for trend | 0.3437 | 0.0917 | 0.5161 | 0.1016 |
Urban Female | ||||
Q1 | Ref. | Ref. | Ref. | Ref. |
Q2 | 0.74 (0.38–1.44) | 1.03 (0.79–1.33) | 1.17 (0.88–1.56) | 0.80 (0.53–1.20) |
Q3 | 0.40 (0.22–0.72) | 1.10 (0.83–1.45) | 1.22 (0.90–1.65) | 0.80 (0.53–1.22) |
Q4 | 0.43 (0.24–0.79) | 1.07 (0.82–1.39) | 1.25 (0.96–1.63) | 0.82 (0.53–1.25) |
p for trend | 0.0104 * | 0.8978 | 0.4302 | 0.736 |
Rural Male | ||||
Q1 | Ref. | Ref. | Ref. | Ref. |
Q2 | 1.08 (0.63–1.86) | 0.90 (0.75–1.06) | 1.00 (0.83–1.21) | 1.24 (0.98–1.57) |
Q3 | 0.71 (0.37–1.37) | 0.83 (0.68–1.00) | 1.27 (1.04–1.54) | 1.05 (0.78–1.42) |
Q4 | 0.95 (0.47–1.94) | 0.84 (0.67–1.06) | 1.01 (0.79–1.29) | 1.41 (1.08–1.84) |
p for trend | 0.608 | 0.2057 | 0.1062 | 0.0451 * |
Rural Female | ||||
Q1 | Ref. | Ref. | Ref. | Ref. |
Q2 | 0.79 (0.51–1.24) | 0.96 (0.79–1.17) | 0.94 (0.74–1.19) | 1.29 (1.00–1.65) |
Q3 | 0.83 (0.47–1.46) | 0.95 (0.75–1.19) | 1.03 (0.75–1.41) | 1.11 (0.86–1.44) |
Q4 | 0.77 (0.46–1.30) | 1.09 (0.87–1.36) | 0.87 (0.65–1.18) | 1.12 (0.86–1.45) |
p for trend | 0.7238 | 0.3779 | 0.3739 | 0.2823 |
Vegetable | ||||
Urban Male | ||||
Q1 | Ref. | Ref. | Ref. | Ref. |
Q2 | 1.23 (0.59–2.55) | 1.13 (0.86–1.50) | 0.83 (0.63–1.10) | 1.03 (0.74–1.43) |
Q3 | 0.95 (0.39–2.27) | 1.25 (0.93–1.66) | 0.91 (0.70–1.18) | 0.82 (0.58–1.16) |
Q4 | 1.62 (0.68–3.84) | 1.37 (1.01–1.86) | 0.70 (0.51–0.97) | 0.92 (0.65–1.31) |
p for trend | 0.1312 | 0.2137 | 0.1297 | 0.5014 |
Urban Female | ||||
Q1 | Ref. | Ref. | Ref. | Ref. |
Q2 | 1.01 (0.51–1.98) | 1.22 (0.93–1.61) | 0.87 (0.63–1.20) | 0.91 (0.62–1.32) |
Q3 | 0.93 (0.46–1.87) | 1.30 (1.00–1.70) | 0.75 (0.56–0.99) | 1.07 (0.78–1.46) |
Q4 | 0.89 (0.44–1.81) | 1.11 (0.86–1.45) | 0.93 (0.72–1.22) | 1.01 (0.74–1.39) |
p for trend | 0.9785 | 0.1873 | 0.1495 | 0.8095 |
Rural Male | ||||
Q1 | Ref. | Ref. | Ref. | Ref. |
Q2 | 0.86 (0.47–1.56) | 1.02 (0.86–1.21) | 1.13 (0.95–1.35) | 0.81 (0.64–1.01) |
Q3 | 0.61 (0.35–1.06) | 0.93 (0.76–1.15) | 1.21 (0.97–1.51) | 0.96 (0.74–1.24) |
Q4 | 0.65 (0.37–1.15) | 1.12 (0.92–1.37) | 1.07 (0.89–1.30) | 0.79 (0.61–1.03) |
p for trend | 0.2306 | 0.3834 | 0.3017 | 0.125 |
Rural Female | ||||
Q1 | Ref. | Ref. | Ref. | Ref. |
Q2 | 0.89 (0.55–1.44) | 0.94 (0.78–1.14) | 1.01 (0.79–1.28) | 1.15 (0.87–1.52) |
Q3 | 1.11 (0.65–1.88) | 0.81 (0.66–0.99) | 1.21 (0.94–1.56) | 1.04 (0.81–1.34) |
Q4 | 0.75 (0.46–1.23) | 1.02 (0.86–1.22) | 1.03 (0.84–1.26) | 0.99 (0.77–1.28) |
p for trend | 0.3771 | 0.0855 | 0.3895 | 0.664 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Fang, H.; Zhao, L.; Ju, L.; Xu, X.; Yu, D. Level of Fruit and Vegetable Intake and Its Relationship with Risk for Malnutrition in China’s Adult Labor Force: China Nutrition and Health Surveillance, 2015–2017. Nutrients 2023, 15, 1431. https://doi.org/10.3390/nu15061431
Guo Q, Fang H, Zhao L, Ju L, Xu X, Yu D. Level of Fruit and Vegetable Intake and Its Relationship with Risk for Malnutrition in China’s Adult Labor Force: China Nutrition and Health Surveillance, 2015–2017. Nutrients. 2023; 15(6):1431. https://doi.org/10.3390/nu15061431
Chicago/Turabian StyleGuo, Qiya, Hongyun Fang, Liyun Zhao, Lahong Ju, Xiaoli Xu, and Dongmei Yu. 2023. "Level of Fruit and Vegetable Intake and Its Relationship with Risk for Malnutrition in China’s Adult Labor Force: China Nutrition and Health Surveillance, 2015–2017" Nutrients 15, no. 6: 1431. https://doi.org/10.3390/nu15061431
APA StyleGuo, Q., Fang, H., Zhao, L., Ju, L., Xu, X., & Yu, D. (2023). Level of Fruit and Vegetable Intake and Its Relationship with Risk for Malnutrition in China’s Adult Labor Force: China Nutrition and Health Surveillance, 2015–2017. Nutrients, 15(6), 1431. https://doi.org/10.3390/nu15061431