Insulin, Testosterone, and Albumin in Term and Preterm Breast Milk, Donor Milk, and Infant Formula
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Maternal Demographics
3.2. Components in Breast Milk
3.3. Infant Formula Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Academy of Pediatrics Committee on Nutrition, Section on Breastfeeding, and Committee on Fetus and Newborn. Donor human milk for the high-risk infant: Preparation, safety, and usage options in the United States. Pediatrics 2017, 139, e20163440. [Google Scholar] [CrossRef] [Green Version]
- Möllers, L.S.; Yousuf, E.I.; Hamatschek, C.; Morrison, K.M.; Hermanussen, M.; Fusch, C.; Rochow, N. Metabolic-endocrine disruption due to preterm birth impacts growth, body composition, and neonatal outcome. Pediatr. Res. 2022, 91, 1350–1360. [Google Scholar] [CrossRef]
- Vass, R.A.; Kemeny, A.; Dergez, T.; Ertl, T.; Reglodi, D.; Jungling, A.; Tamas, A. Distribution of bioactive factors in human milk samples. Int. Breastfeed. J. 2019, 14, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vass, R.A.; Kiss, G.; Bell, E.F.; Roghair, R.D.; Miseta, A.; Bódis, J.; Funke, S.; Ertl, T. Breast milk for term and preterm infants-own mother’s milk or donor milk? Nutrients 2021, 13, 424. [Google Scholar] [CrossRef] [PubMed]
- Escuder-Vieco, D.; Espinosa-Martos, I.; Rodríguez, J.M.; Fernández, L.; Pallás-Alonso, C.R. Effect of HTST and Holder Pas-teurization on the concentration of immunoglobulins, growth factors, and hormones in donor human milk. Front. Immunol. 2018, 9, 2222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grand, R.I.; Sutphen, J.L.; Montgomery, R.K. The Immature Intestine: Implications for Nutrition of the Neonate. Ciba Found. Symp. 1979, 70, 293–328. [Google Scholar] [CrossRef]
- Shulman, R.J. Effect of enteral administration of insulin on intestinal development and feeding tolerance in preterm infants: A pilot study. Arch. Dis. Child. Fetal Neonatal Ed. 2022, 86, F131–F133. [Google Scholar] [CrossRef] [Green Version]
- Shamir, R.; Kolacek, S.; Koletzko, S.; Tavori, I.; Bader, D.; Litmanovitz, I.; Flidel-Rimon, O.; Marks, K.A.; Sukhotnik, I.; Shehadeh, N. Oral Insulin Supplementation in Paediatric Short Bowel Disease: A Pilot Observational Study. J. Pediatr. Gastroenterol. Nutr. 2009, 49, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Mank, E.; Naninck, E.F.G.; Limpens, J.; Van Toledo, L.; Van Goudoever, J.B.; van den Akker, C.H.P. Enteral Bioactive Factor Supplementation in Preterm Infants: A Systematic Review. Nutrients 2020, 12, 2916. [Google Scholar] [CrossRef] [PubMed]
- Mank, E.; de Pipaón, M.S.; Lapillonne, A.; Carnielli, V.P.; Senterre, T.; Shamir, R.; van Toledo, L.; van Goudoever, J.B.; FIT-04 Study Group; Kooi, E.M.; et al. Efficacy and Safety of Enteral Recombinant Human Insulin in Preterm Infants. JAMA Pediatr. 2022, 176, 452. [Google Scholar] [CrossRef] [PubMed]
- Bramen, J.E.; Hranilovich, J.A.; Dahl, R.E.; Chen, J.; Rosso, C.; Forbes, E.E.; Dinov, I.D.; Worthman, C.M.; Sowell, E.R. Sex Matters during Adolescence: Testosterone-Related Cortical Thickness Maturation Differs between Boys and Girls. PLoS ONE 2012, 7, e33850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucaccioni, L.; Trevisani, V.; Boncompagni, A.; Marrozzini, L.; Berardi, A.; Iughetti, L. Minipuberty: Looking Back to Understand Moving Forward. Front. Pediatr. 2021, 8, 612235. [Google Scholar] [CrossRef] [PubMed]
- Amory, J.; Bush, M.A.; Zhi, H.; Caricofe, R.B.; Matsumoto, A.M.; Swerdloff, R.S.; Wang, C.; Clark, R.V. Oral Testosterone with and without Concomitant Inhibition of 5α-Reductase by Dutasteride in Hypogonadal Men for 28 Days. J. Urol. 2011, 185, 626–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbst, K.L.; Bhasin, S. Testosterone action on skeletal muscle. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Nagasawa, T.; Kiyosawa, I.; Fukuwatari, Y.; Kitayama, T.; Uechi, M. Alpha-lactalbumin and serum albumin in human milk. J. Dairy Sci. 1973, 56, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Vass, R.A.; Bell, E.F.; Colaizy, T.T.; Schmelzel, M.L.; Johnson, K.J.; Walker, J.R.; Ertl, T.; Roghair, R.D. Hormone levels in pre-term and donor human milk before and after Holder pasteurization. Pediatr. Res. 2020, 88, 612–617. [Google Scholar] [CrossRef]
- Peila, C.; Moro, G.E.; Bertino, E.; Cavallarin, L.; Giribaldi, M.; Giuliani, F.; Cresi, F.; Coscia, A. The Effect of Holder Pasteurization on Nutrients and Biologically-Active Components in Donor Human Milk: A Review. Nutrients 2016, 8, 477. [Google Scholar] [CrossRef] [Green Version]
- Vass, R.A.; Kiss, G.; Bell, E.F.; Miseta, A.; Bódis, J.; Funke, S.; Bokor, S.; Molnár, D.; Kósa, B.; Kiss, A.A.; et al. Thyroxine and thyroid-stimulating hormone in own mother’s milk, donor milk, and infant formula. Life 2022, 12, 584. [Google Scholar] [CrossRef]
- van der Voorn, B.; de Waard, M.; van Goudoever, J.B.; Rotteveel, J.; Heijboer, A.C.; Finken, M.J. Breast-milk cortisol and cortisone concentrations follow the diurnal rhythm of maternal hypothalamus-pituitary-adrenal axis activity. J. Nutr. 2016, 146, 2174–2179. [Google Scholar] [CrossRef] [Green Version]
- Sann, L. Neonatal hypoglycemia. Biol. Neonate 1990, 58, 16–21. [Google Scholar] [CrossRef]
- Werner, H.; LeRoith, D. Insulin and insulin-like growth factor receptors in the brain: Physiological and pathological aspects. Eur. Neuropsychopharmacol. 2014, 24, 1947–1953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ley, S.H.; Hanley, A.J.; Stone, D.; O’Connor, D.L. Effects of Pasteurization on Adiponectin and Insulin Concentrations in Donor Human Milk. Pediatr. Res. 2011, 70, 278–281. [Google Scholar] [CrossRef] [Green Version]
- Sarkadi, L.S.; Zhang, M.; Muránszky, G.; Vass, R.A.; Matsyura, O.; Benes, E.; Vari, S.G. Fatty Acid Composition of Milk from Mothers with Normal Weight, Obesity, or Gestational Diabetes. Life 2022, 12, 1093. [Google Scholar] [CrossRef]
- Turner, D.; Monthé-Drèze, C.; Cherkerzian, S.; Gregory, K.; Sen, S. Maternal obesity and cesarean section delivery: Additional risk factors for neonatal hypoglycemia? J. Perinatol. 2019, 39, 1057–1064. [Google Scholar] [CrossRef] [PubMed]
- Mosinger, B.; Placer, Z.; Koldovský, O. Passage of Insulin through the Wall of the Gastro-intestinal Tract of the Infant Rat. Nature 1959, 184, 1245–1246. [Google Scholar] [CrossRef]
- Buts, J.-P.; De Keyser, N.; Dive, C. Intestinal development in the suckling rat: Effect of insulin on the maturation of villus and crypt cell functions. Eur. J. Clin. Investig. 1988, 18, 391–398. [Google Scholar] [CrossRef]
- Forgue-Lafitte, M.E.; Marescot, M.R.; Chamblier, M.C.; Rosselin, G. Evidence for the presence of insulin binding sites in isolated rat intestinal epithelial cells. Diabetologia 1980, 19, 373–378. [Google Scholar] [CrossRef] [Green Version]
- Sodoyez-Goffaux, F.; Sodoyez, J.C.; De Vos, C.J. Insulin receptors in the gastrointestinal tract of the rat fetus: Quantitative autoradiographic studies. Diabetologia 1985, 28, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmerman, T.W.; Reinprecht, J.T.; Binder, H.J. Peptide binding to intestinal epithelium: Distinct sites for insulin, EGF and VIP. Peptides 1985, 6, 229–235. [Google Scholar] [CrossRef]
- Georgiev, I.P.; Georgieva, T.M.; Pfaffl, M.; Hammon, H.M.; Blum, J.W. Insulin-like growth factor and insulin receptors in in-testinal mucosa of neonatal calves. J. Endocrinol. 2003, 176, 121–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ménard, D.; Corriveau, L.; Beaulieu, J.-F. Insulin Modulates Cellular Proliferation in Developing Human Jejunum and Colon. Neonatology 1999, 75, 143–151. [Google Scholar] [CrossRef]
- Shamir, R.; Shehadeh, N. Insulin in Human Milk and the Use of Hormones in Infant Formulas. Nestle Nutr. Inst. Workshop Ser. 2013, 77, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Ng, S.M.; Turner, M.A.; Weindling, A.M. Neurodevelopmental Outcomes at 42 Months After Thyroxine Supplementation in Infants Below 28 Weeks’ Gestation: A Randomized Controlled Trial. Thyroid. 2020, 30, 948–954. [Google Scholar] [CrossRef] [Green Version]
- Lamminmäki, A.; Hines, M.; Kuiri-Hänninen, T.; Kilpeläinen, L.; Dunkel, L.; Sankilampi, U. Testosterone measured in infancy predicts subsequent sex-typed behavior in boys and in girls. Horm Behav. 2012, 61, 611–616. [Google Scholar] [CrossRef] [PubMed]
- Bachman, E.; Travison, T.G.; Basaria, S.; Davda, M.N.; Guo, W.; Li, M.; Westfall, J.C.; Bae, H.; Gordeuk, V.; Bhasin, S. Testosterone induces erythrocytosis via increased erythropoietin and suppressed hepcidin: Evidence for a new erythropoiet-in/hemoglobin set point. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 725–735. [Google Scholar] [CrossRef] [Green Version]
- Juul, S.E. Nonerythropoietic Roles of Erythropoietin in the Fetus and Neonate. Clin. Perinatol. 2000, 27, 527–541. [Google Scholar] [CrossRef]
- Merelli, A.; Czornyj, L.; Lazarowski, A. Erythropoietin: A neuroprotective agent in cerebral hypoxia, neurodegeneration, and epilepsy. Curr Pharm Des. 2013, 19, 6791–6801. [Google Scholar] [CrossRef] [PubMed]
- Weaver, L.T.; Laker, M.F.; Nelson, R. Intestinal permeability in the newborn. Arch. Dis. Child. 1984, 59, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Oguchi, S.; Shinohara, K.; Yamashiro, Y.; Walker, W.A.; Sanderson, I.R. Growth factors in breast milk and their effect on gas-trointestinal development. Zhonghua Min. Guo Xiao Er Ke Yi Xue Hui 1997, 38, 332–337. [Google Scholar]
- Baud, O.; Berkane, N. Hormonal Changes Associated with Intra-Uterine Growth Restriction: Impact on the Developing Brain and Future Neurodevelopment. Front. Endocrinol. 2019, 10, 179. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Martin, C.R.; Claud, E.C. Neurodevelopmental outcome of infants who develop necrotizing enterocolitis: The gut-brain axis. Semin. Perinatol. 2022, 6, 151694. [Google Scholar] [CrossRef] [PubMed]
- Sherman, M.P.; Zaghouani, H.; Niklas, V. Gut microbiota, the immune system, and diet influence the neonatal gut-brain axis. Pediatr. Res. 2015, 77, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Quigley, M.; Embleton, N.D.; McGuire, W. Formula versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst. Rev. 2018, 6, CD002971. [Google Scholar] [CrossRef] [PubMed]
- Vass, R.A.; Roghair, R.D.; Bell, E.F.; Colaizy, T.T.; Johnson, K.J.; Schmelzel, M.L.; Walker, J.R.; Ertl, T. Pituitary Glycoprotein Hormones in Human Milk before and after Pasteurization or Refrigeration. Nutrients 2020, 12, 687. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.R.; Ling, P.-R.; Blackburn, G.L. Review of infant feeding: Key features of breast milk and infant formula. Nutrients 2016, 8, 279. [Google Scholar] [CrossRef] [Green Version]
- Hammond, G.L. Plasma steroid-binding proteins: Primary gatekeepers of steroid hormone action. J. Endocrinol. 2016, 230, R13–R25. [Google Scholar] [CrossRef] [Green Version]
- Azad, R.M. Abnormal serum thyroid hormones concentration with healthy functional gland: A review on the metabolic role of thyroid hormones transporter proteins. Pak. J. Biol. Sci. 2011, 14, 313–326. [Google Scholar]
1st–2nd Month | 3rd–6th Month | p Value | |
---|---|---|---|
Total protein g/L | 10.5 ± 0.6 | 9.9 ± 0.7 | 0.2309 |
Insulin pmol/L | 86.4 ± 12.2 | 119.1 ± 12.7 | 0.0439 |
Testosterone pmol/L | 63.3 ± 5.2 | 50.1 ± 4.6 | 0.0212 |
Albumin mg/L | 361.4 ± 22.8 | 351.7 ± 11.9 | 0.2613 |
Preterm | Term | p Value | |
---|---|---|---|
Total protein g/L | 10.29 ± 0.57 | 12.02 ± 1.03 | 0.2813 |
Insulin pmol/L | 109.1 ± 9.8 | 96.7 ± 5.9 | 0.2617 |
Testosterone pmol/L | 54.3 ± 3.9 | 60.1 ± 5.2 | 0.3901 |
Albumin mg/L | 349.4 ± 21.3 | 258.9 ± 11.6 | 0.0032 |
Albumin/protein ratio (g/L) | 0.032 ± 0.001 | 0.021 ± 0.011 | 0.0011 |
Raw | HoP | p Value | |
---|---|---|---|
Total protein g/L | 9.5 ± 0.2 | 9.8 ± 0.1 | 0.1091 |
Insulin pmol/L | 97.4 ± 13.7 | 45.1 ± 3.1 | 0.0002 |
Testosterone umol/L | 43.1 ± 4.3 | 42.4 ± 0.9 | 0.0892 |
Albumin mg/L | 293.7 ± 12.4 | 211.9 ± 10.2 | 0.0026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vass, R.A.; Bell, E.F.; Roghair, R.D.; Kiss, G.; Funke, S.; Bokor, S.; Molnár, D.; Miseta, A.; Bódis, J.; Kovács, K.; et al. Insulin, Testosterone, and Albumin in Term and Preterm Breast Milk, Donor Milk, and Infant Formula. Nutrients 2023, 15, 1476. https://doi.org/10.3390/nu15061476
Vass RA, Bell EF, Roghair RD, Kiss G, Funke S, Bokor S, Molnár D, Miseta A, Bódis J, Kovács K, et al. Insulin, Testosterone, and Albumin in Term and Preterm Breast Milk, Donor Milk, and Infant Formula. Nutrients. 2023; 15(6):1476. https://doi.org/10.3390/nu15061476
Chicago/Turabian StyleVass, Réka A., Edward F. Bell, Robert D. Roghair, Gabriella Kiss, Simone Funke, Szilvia Bokor, Dénes Molnár, Attila Miseta, József Bódis, Kálmán Kovács, and et al. 2023. "Insulin, Testosterone, and Albumin in Term and Preterm Breast Milk, Donor Milk, and Infant Formula" Nutrients 15, no. 6: 1476. https://doi.org/10.3390/nu15061476
APA StyleVass, R. A., Bell, E. F., Roghair, R. D., Kiss, G., Funke, S., Bokor, S., Molnár, D., Miseta, A., Bódis, J., Kovács, K., & Ertl, T. (2023). Insulin, Testosterone, and Albumin in Term and Preterm Breast Milk, Donor Milk, and Infant Formula. Nutrients, 15(6), 1476. https://doi.org/10.3390/nu15061476