A Dose-Dependent Association between Alcohol Consumption and Incidence of Proteinuria and Low Glomerular Filtration Rate: A Systematic Review and Meta-Analysis of Cohort Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search and Selection Criteria
2.2. Data Extraction and Quality Assessment
2.3. Statistical Analysis
Author, Country, Year, Age, Sex | Alcohol Consumption (Representative g/Day) | N | Outcomes | Covariates |
---|---|---|---|---|
PHS [32] | ≤1 drink/week (0.0) | 4259 | eGFR * < 55 | Age, BMI, hypertension, diabetes, hypercholesterolemia, CVD, smoking, physical activity, parental CVD, RCT assignment |
USA, 2005 | 2–4 drinks/week (6.0) | 2582 | ||
Age | 5–6 drinks/week (11.0) | 1474 | ||
Men | ≥7 drinks/week (16.8) | 2708 | ||
Yamagata [33] | Never drinkers (0.0) | 88,934 † | eGFR < 60 | Age, BMI, hypertension, IGT, diabetes, TCHO, HDL-C, TG, proteinuria, hematuria, smoking |
Japan, 2007 | Occasional drinkers (5.0) | 10,036 † | ||
Age ≥ 40 years | Ethanol < 20 g/day (10.0) | 22,112 † | ||
Men & women | Ethanol > 20 g/day (24.0) | 2632 † | ||
ILSA [34] Italy, 2011 Age 65–84 years Men & women | Abstainers (0.0) | 615 ‡ | eGFR < 60 | Age, BMI, hypertension, diabetes, TCHO, hyperlipidemia, fibrinogen, smoking, education level |
Former | 673 ‡ | |||
<12 g/day (6.0) | 819 ‡ | |||
12–24 g/day (18.0) | 665 ‡ | |||
25–47 g/day (36.0) | 413 ‡ | |||
≥48 g/day (57.6) | 219 ‡ | |||
Nagai [35] Japan, 2013 Age ≥40 years Men § | Non-drinkers (0.0) | 26,232 | Proteinuria ≥ 1+ | Age, BMI, hypertensin, diabetes, TCHO, HDL-C, TG, eGFR, smoking |
Occasional drinkers (5.0) | 12,019 | |||
Ethanol <20 g/day (10.0) | 39,135 | |||
Ethanol >20 g/day (24.0) | 4468 | |||
Kansai Healthcare [36] Japan, 2014 40–55 years Men | Non-drinkers (0.0) | 1390 | eGFR < 60 | Age, BMI, SBP, DBP, FPG, smoking, leisure-time physical activity |
0.1–23.0 g/day (11.5) | 3914 | |||
23.1–46.0 g/day (34.5) | 2895 | |||
46.1–69.0 g/day (57.5) | 811 | |||
≥69.1 g/day (82.9) | 102 | |||
PREVEND [37] Netherlands, 2015 Age 28–75 years Men & women | No/rare drinkers (0.0) | 1285 | UAE > 30 eGFR < 60 | Age, sex, height, weight, SBP, hypertension, insulin resistance, diabetes, TCHO/HDL-C, hyperlipidemia, CVD, smoking, education level, parental CKD |
<10 g/week (0.7) | 860 | |||
10–69.9 g/week (5.7) | 1949 | |||
70–210 g/week (20.0) | 1121 | |||
>210 g/week (36.0) | 261 | |||
Kansai Healthcare [38] Japan, 2016 Age 40–55 years Men | Non-drinkers (0.0) | 1397 | Proteinuria ≥ 1+ | Age, BMI, hypertension, FPG, eGFR, smoking, leisure-time physical activity |
0.1–23.0 g/day (11.5) | 3929 | |||
23.1–46.0 g/day (34.5) | 2909 | |||
46.1–69.0 g/day (57.5) | 816 | |||
≥69.1 g/day (82.9) | 103 | |||
Kimura [20] Japan, 2018 Age 40–75 years Men & women | Rare drinkers (0.0) | 57,042 | Proteinuria ≥ 1+ | Age, BMI, MAP, hypertension, HbA1c, diabetes, HDL-C, dyslipidemia, eGFR, CVD, smoking |
Occasional drinkers (5.0) | 57,593 | |||
≤19 g/d (10.0) | 20,818 | |||
20–39 g/day (30.0) | 27,817 | |||
40–59 g/day (50.0) | 11,098 | |||
≥60 g/day (72.0) | 3204 | |||
Park [19] Korea, 2019 Age 20–80 years Men & women | No drinkers (0.0) | 7,245,632 | Proteinuria ≥ 1+ eGFR < 60 | Age, BMI, SBP, hypertension, FPG, diabetes, HDL-C, TG, eGFR, smoking, regular exercise |
<10 g/day (5.0) | 3,402,518 | |||
10–19.9 g/day (15.0) | 1,623,400 | |||
20–39.9 g/day (30.0) | 1,361,836 | |||
≥40 g/day (48.0) | 557,492 | |||
ARIC [39] USA, 2020 Age 45–64 years Men & women | Never drinkers (0.0) | 3118 | eGFR < 60 with eGFR decline > 30% | Age, sex, race-center, BMI, hypertension, diabetes, eGFR, smoking, physical activity, energy intake, education level, income, health insurance |
Former drinkers | 2239 | |||
≤1 drink/week (1.0) | 2960 | |||
2–7 drinks/week (9.0) | 2592 | |||
8–14 drinks/week (22.0) | 1029 | |||
≥15 drinks/week (36.0) | 754 | |||
PROMISE [40] | Infrequent drinkers (0.0) | 6199 | Proteinuria ≥ 1+ eGFR < 60 | Age, sex, BMI, hypertension, diabetes, hyperlipidemia, eGFR, smoking |
Japan, 2021 | <20 g/day (10.0) | 3157 | ||
Age 20–74 years | 20–39 g/day (30.0) | 1162 | ||
Men & women | ≥40 g/day (48.0) | 657 | ||
Tanaka [21] | No (0.0) | 11,369 | Proteinuria ≥ 1+ eGFR < 60 with eGFR decline > 25% | Age, BMI, hypertension, diabetes, dyslipidemia, CVD, eGFR, smoking |
Japan, 2022 | <23 g/day (11.5) | 8289 | ||
Age 20–80 years | 23–46 g/day (34.5) | 5007 | ||
Men & women | ≥46 g/day (55.2) | 2123 |
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Search Strategies in PubMed and Web of Science
Appendix A.1. Pubmed
- #1
- glomerular filtration rate OR proteinuria
- #2
- alcohol
- #3
- “2000/1/1” [Date - Publication]: “2022/12/31” [Date - Publication]
- #4
- “English” [Language]
- #5
- #1 AND #2 AND #3 AND #4
- #6
- systematic review[Title] OR meta-analysis[Title] OR guidelines[Title] OR recommendations[Title] OR cross-sectional[Title] OR case report[Title] OR case reports[Title] OR case series[Title]
- #7
- rat[Title] OR rats[Title] OR rodent[Title] OR mouse[Title] OR mice[Title] OR murine[Title] OR dog[Title] OR dogs[Title] OR porcine[Title] OR rabbit[Title] OR rabbits[Title] OR zebrafish[Title] OR in vivo[Title] OR in vitro[Title]
- #8
- #5 NOT #6 NOT #7
- Search results: 1273
Appendix A.2. Web of Science
- #1
- ALL=(glomerular filtration rate) OR ALL=(proteinuria)
- #2
- #1 AND ALL=(alcohol)
- #3
- #2 AND PY=(2000-2022)
- #4
- #3 AND LA=(English)
- #5
- #4 NOT TI=(systematic review) NOT TI=(meta-analysis) NOT TI=(guidelines) NOT TI=(cross-sectional) NOT TI=(case report) NOT TI=(case reports) NOT TI=(case series)
- #6
- #5 NOT TI=(rat) NOT TI=(rats) NOT TI=(rodent) NOT TI=(mouse) NOT TI=(mice) NOT TI=(murine) NOT TI=(dog) NOT TI=(dogs) NOT TI=(porcine) NOT TI=(rabbit) NOT TI=(rabbits) NOT TI=(zebrafish) NOT TI=(in vivo) NOT TI=(in vitro)
- Search results: 559
References
- Okada, H.; Yasuda, Y.; Kashihara, N.; Asahi, K.; Ito, T.; Kaname, S.; Kanda, E.; Kanno, Y.; Shikata, K.; Shibagaki, Y.; et al. Essential Points from Evidence-Based Clinical Practice Guidelines for Chronic Kidney Disease 2018. Clin. Exp. Nephrol. 2019, 23, 1–15. [Google Scholar] [CrossRef] [Green Version]
- GBD 2017 Risk Factor Collaborators Global, Regional, and National Comparative Risk Assessment of 84 Behavioural, Environmental and Occupational, and Metabolic Risks or Clusters of Risks for 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1923–1994. [CrossRef] [Green Version]
- Elshahat, S.; Cockwell, P.; Maxwell, A.P.; Griffin, M.; O’Brien, T.; O’Neill, C. The Impact of Chronic Kidney Disease on Developed Countries from a Health Economics Perspective: A Systematic Scoping Review. PLoS ONE 2020, 15, e0230512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallan, S.I.; Matsushita, K.; Sang, Y.; Mahmoodi, B.K.; Black, C.; Ishani, A.; Kleefstra, N.; Naimark, D.; Roderick, P.; Tonelli, M.; et al. Age and Association of Kidney Measures with Mortality and End-Stage Renal Disease. JAMA 2012, 308, 2349–2360. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, K.; Coresh, J.; Sang, Y.; Chalmers, J.; Fox, C.; Guallar, E.; Jafar, T.; Jassal, S.K.; Landman, G.W.D.; Muntner, P.; et al. Estimated Glomerular Filtration Rate and Albuminuria for Prediction of Cardiovascular Outcomes: A Collaborative Meta-Analysis of Individual Participant Data. Lancet Diabetes Endocrinol. 2015, 3, 514–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Go, A.S.; Chertow, G.M.; Fan, D.; McCulloch, C.E.; Hsu, C.-Y. Chronic Kidney Disease and the Risks of Death, Cardiovascular Events, and Hospitalization. N. Engl. J. Med. 2004, 351, 1296–1305. [Google Scholar] [CrossRef]
- Xia, J.; Wang, L.; Ma, Z.; Zhong, L.; Wang, Y.; Gao, Y.; He, L.; Su, X. Cigarette Smoking and Chronic Kidney Disease in the General Population: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Nephrol. Dial. Transplant. 2017, 32, 475–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seidu, S.; Abdool, M.; Almaqhawi, A.; Wilkinson, T.J.; Kunutsor, S.K.; Khunti, K.; Yates, T. Physical Activity and Risk of Chronic Kidney Disease: Systematic Review and Meta-Analysis of 12 Cohort Studies Involving 1,281,727 Participants. Eur. J. Epidemiol. 2023. [Google Scholar] [CrossRef]
- Zhang, F.; Ren, Y.; Wang, H.; Bai, Y.; Huang, L. Daily Step Counts in Patients with Chronic Kidney Disease: A Systematic Review and Meta-Analysis of Observational Studies. Front. Med. 2022, 9, 842423. [Google Scholar] [CrossRef]
- Fujii, Y.; Yamamoto, R.; Shinzawa, M.; Kimura, Y.; Aoki, K.; Tomi, R.; Ozaki, S.; Yoshimura, R.; Taneike, M.; Nakanishi, K.; et al. Occupational Sedentary Behavior and Prediction of Proteinuria in Young to Middle-Aged Adults: A Retrospective Cohort Study. J. Nephrol. 2021, 34, 719–728. [Google Scholar] [CrossRef]
- Yamamoto, R.; Nagasawa, Y.; Iwatani, H.; Shinzawa, M.; Obi, Y.; Teranishi, J.; Ishigami, T.; Yamauchi-Takihara, K.; Nishida, M.; Rakugi, H.; et al. Self-Reported Sleep Duration and Prediction of Proteinuria: A Retrospective Cohort Study. Am. J. Kidney Dis. 2012, 59, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Cheungpasitporn, W.; Thongprayoon, C.; Gonzalez-Suarez, M.L.; Srivali, N.; Ungprasert, P.; Kittanamongkolchai, W.; Caples, S.M.; Erickson, S.B. The Effects of Short Sleep Duration on Proteinuria and Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Nephrol. Dial. Transplant. 2017, 32, 991–996. [Google Scholar] [CrossRef]
- Bach, K.E.; Kelly, J.T.; Campbell, K.L.; Palmer, S.C.; Khalesi, S.; Strippoli, G.F.M. Healthy Dietary Patterns and Incidence of CKD: A Meta-Analysis of Cohort Studies. Clin. J. Am. Soc. Nephrol. 2019, 14, 1441–1449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomi, R.; Yamamoto, R.; Shinzawa, M.; Kimura, Y.; Fujii, Y.; Aoki, K.; Ozaki, S.; Yoshimura, R.; Taneike, M.; Nakanishi, K.; et al. Frequency of Breakfast, Lunch, and Dinner and Incidence of Proteinuria: A Retrospective Cohort Study. Nutrients 2020, 12, 3549. [Google Scholar] [CrossRef]
- Jhee, J.H.; Kee, Y.K.; Park, J.T.; Chang, T.-I.; Kang, E.W.; Yoo, T.-H.; Kang, S.-W.; Han, S.H. A Diet Rich in Vegetables and Fruit and Incident CKD: A Community-Based Prospective Cohort Study. Am. J. Kidney Dis. 2019, 74, 491–500. [Google Scholar] [CrossRef]
- Ozaki, S.; Yamamoto, R.; Shinzawa, M.; Tomi, R.; Yoshimura, R.; Nakanishi, K.; Nishida, M.; Nagatomo, I.; Kudo, T.; Yamauchi-Takihara, K.; et al. Vegetable Preference and Prediction of Proteinuria: A Retrospective Cohort Study. Ann. Nutr. Metab. 2021, 77, 337–343. [Google Scholar] [CrossRef]
- Li, D.; Xu, J.; Liu, F.; Wang, X.; Yang, H.; Li, X. Alcohol Drinking and the Risk of Chronic Kidney Damage: A Meta-Analysis of 15 Prospective Cohort Studies. Alcohol. Clin. Exp. Res. 2019, 43, 1360–1372. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.C.; Yu, Q.T.; Bai, H.; Xu, H.Z.; Gu, P.; Chen, L.Y. Alcohol Intake and the Risk of Chronic Kidney Disease: Results from a Systematic Review and Dose-Response Meta-Analysis. Eur. J. Clin. Nutr. 2021, 75, 1555–1567. [Google Scholar] [CrossRef]
- Park, M.; Lee, S.M.; Yoon, H.-J. Association between Alcohol Intake and Measures of Incident CKD: An Analysis of Nationwide Health Screening Data. PLoS ONE 2019, 14, e0222123. [Google Scholar] [CrossRef]
- Kimura, Y.; Yamamoto, R.; Shinzawa, M.; Isaka, Y.; Iseki, K.; Yamagata, K.; Tsuruya, K.; Yoshida, H.; Fujimoto, S.; Asahi, K.; et al. Alcohol Consumption and Incidence of Proteinuria: A Retrospective Cohort Study. Clin. Exp. Nephrol. 2018, 22, 1133–1142. [Google Scholar] [CrossRef]
- Tanaka, A.; Yamaguchi, M.; Ishimoto, T.; Katsuno, T.; Nobata, H.; Iwagaitsu, S.; Sugiyama, H.; Kinashi, H.; Banno, S.; Imaizumi, T.; et al. Association of Alcohol Consumption with the Incidence of Proteinuria and Chronic Kidney Disease: A Retrospective Cohort Study in Japan. Nutr. J. 2022, 21, 31. [Google Scholar] [CrossRef]
- Stroup, D.F.; Berlin, J.A.; Morton, S.C.; Olkin, I.; Williamson, G.D.; Rennie, D.; Moher, D.; Becker, B.J.; Sipe, T.A.; Thacker, S.B. Meta-Analysis of Observational Studies in Epidemiology: A Proposal for Reporting. Meta-Analysis of Observational Studies in Epidemiology (MOOSE) Group. JAMA 2000, 283, 2008–2012. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan-a Web and Mobile App for Systematic Reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stang, A. Critical Evaluation of the Newcastle-Ottawa Scale for the Assessment of the Quality of Nonrandomized Studies in Meta-Analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, D.; Cheng, Y.; Zhang, H.; Ba, M.; Chen, P.; Li, H.; Chen, K.; Sha, W.; Zhang, C.; Chen, H. Association between High Blood Pressure and Long Term Cardiovascular Events in Young Adults: Systematic Review and Meta-Analysis. BMJ 2020, 370, m3222. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the Sample Mean and Standard Deviation from the Sample Size, Median, Range and/or Interquartile Range. BMC Med. Res. Methodol. 2014, 14, 135. [Google Scholar] [CrossRef] [Green Version]
- Di Castelnuovo, A. Alcohol Dosing and Total Mortality in Men and Women. Arch. Intern. Med. 2006, 166, 2437–2445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, A.; Claggett, B.; Jhund, P.S.; Rosamond, W.; Deswal, A.; Aguilar, D.; Shah, A.M.; Cheng, S.; Solomon, S.D. Alcohol Consumption and Risk of Heart Failure: The Atherosclerosis Risk in Communities Study. Eur. Heart J. 2015, 36, 939–945. [Google Scholar] [CrossRef] [Green Version]
- Guo, R.; Ren, J. Alcohol and Acetaldehyde in Public Health: From Marvel to Menace. Int. J. Environ. Res. Public Health 2010, 7, 1285–1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in Meta-Analysis Detected by a Simple, Graphical Test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crippa, A.; Orsini, N. Multivariate Dose-Response Meta-Analysis: The Dosresmeta R Package. J. Stat. Softw. 2016, 72, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Schaeffner, E.S.; Kurth, T.; de Jong, P.E.; Glynn, R.J.; Buring, J.E.; Gaziano, J.M. Alcohol Consumption and the Risk of Renal Dysfunction in Apparently Healthy Men. Arch. Intern. Med. 2005, 165, 1048–1053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamagata, K.; Ishida, K.; Sairenchi, T.; Takahashi, H.; Ohba, S.; Shiigai, T.; Narita, M.; Koyama, A. Risk Factors for Chronic Kidney Disease in a Community-Based Population: A 10-Year Follow-up Study. Kidney Int. 2007, 71, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Buja, A.; Scafato, E.; Baggio, B.; Sergi, G.; Maggi, S.; Rausa, G.; Basile, A.; Manzato, E.; Ghirini, S.; Perissinotto, E. Renal Impairment and Moderate Alcohol Consumption in the Elderly. Results from the Italian Longitudinal Study on Aging (ILSA). Public Health Nutr. 2011, 14, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- Nagai, K.; Saito, C.; Watanabe, F.; Ohkubo, R.; Sato, C.; Kawamura, T.; Uchida, K.; Hiwatashi, A.; Kai, H.; Ishida, K.; et al. Annual Incidence of Persistent Proteinuria in the General Population from Ibaraki Annual Urinalysis Study. Clin. Exp. Nephrol. 2013, 17, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.K.; Hayashi, T.; Uehara, S.; Kinuhata, S.; Oue, K.; Endo, G.; Kambe, H.; Fukuda, K. Drinking Pattern and Risk of Chronic Kidney Disease: The Kansai Healthcare Study. Am. J. Nephrol. 2014, 40, 516–522. [Google Scholar] [CrossRef]
- Koning, S.H.; Gansevoort, R.T.; Mukamal, K.J.; Rimm, E.B.; Bakker, S.J.L.; Joosten, M.M. Alcohol Consumption Is Inversely Associated with the Risk of Developing Chronic Kidney Disease. Kidney Int. 2015, 87, 1009–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uehara, S.; Hayashi, T.; Kogawa Sato, K.; Kinuhata, S.; Shibata, M.; Oue, K.; Kambe, H.; Hashimoto, K. Relationship Between Alcohol Drinking Pattern and Risk of Proteinuria: The Kansai Healthcare Study. J. Epidemiol. 2016, 26, 464–470. [Google Scholar] [CrossRef] [Green Version]
- Hu, E.A.; Lazo, M.; Rosenberg, S.D.; Grams, M.E.; Steffen, L.M.; Coresh, J.; Rebholz, C.M. Alcohol Consumption and Incident Kidney Disease: Results from the Atherosclerosis Risk in Communities Study. J. Ren. Nutr. 2020, 30, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, Y.; Imaizumi, T.; Kato, S.; Yasuda, Y.; Ishimoto, T.; Kawashiri, H.; Hori, A.; Maruyama, S. Effect of Body Mass Index on the Association between Alcohol Consumption and the Development of Chronic Kidney Disease. Sci. Rep. 2021, 11, 20440. [Google Scholar] [CrossRef]
- Lin, M.; Su, Q.; Huang, H.; Zheng, Y.; Wen, J.; Yao, J.; Liang, J.; Li, L.; Lin, W.; Lin, L.; et al. Alcohol Consumption and the Risk for Renal Hyperfiltration in the General Chinese Population. Eur. J. Clin. Nutr. 2017, 71, 500–505. [Google Scholar] [CrossRef]
- Chang, H.-J.; Lin, K.-R.; Lin, M.-T.; Chang, J.-L. Associations Between Lifestyle Factors and Reduced Kidney Function in US Older Adults: NHANES 1999-2016. Int. J. Public Health 2021, 66, 1603966. [Google Scholar] [CrossRef]
- Okada, Y.; Uehara, S.; Shibata, M.; Koh, H.; Oue, K.; Kambe, H.; Morimoto, M.; Sato, K.K.; Hayashi, T. Habitual Alcohol Intake Modifies Relationship of Uric Acid to Incident Chronic Kidney Disease. Am. J. Nephrol. 2019, 50, 55–62. [Google Scholar] [CrossRef]
- Mudd, J.; Larkins, S.; Watt, K. The Effect of Alcohol Consumption on Clinical Outcomes in Regional Patients with Chronic Disease: A Retrospective Chart Audit. Aust. N. Z. J. Public Health 2020, 44, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Marre, M.; Lièvre, M.; Vasmant, D.; Gallois, Y.; Hadjadj, S.; Reglier, J.C.; Chatellier, G.; Mann, J.; Viberti, G.C.; Passa, P. Determinants of Elevated Urinary Albumin in the 4937 Type 2 Diabetic Subjects Recruited for the DIABHYCAR Study in Western Europe and North Africa. Diabetes Care 2000, 23 (Suppl. S2), B40–B48. [Google Scholar]
- Molino, A.R.; Jerry-Fluker, J.; Atkinson, M.A.; Furth, S.L.; Warady, B.A.; Ng, D.K. The Association of Alcohol, Cigarette, e-Cigarette, and Marijuana Use with Disease Severity in Adolescents and Young Adults with Pediatric Chronic Kidney Disease. Pediatr. Nephrol. 2021, 36, 2493–2497. [Google Scholar] [CrossRef]
- Wakasugi, M.; Kazama, J.J.; Yamamoto, S.; Kawamura, K.; Narita, I. A Combination of Healthy Lifestyle Factors Is Associated with a Decreased Incidence of Chronic Kidney Disease: A Population-Based Cohort Study. Hypertens. Res. 2013, 36, 328–333. [Google Scholar] [CrossRef] [Green Version]
- Dunkler, D.; Dehghan, M.; Teo, K.K.; Heinze, G.; Gao, P.; Kohl, M.; Clase, C.M.; Mann, J.F.E.; Yusuf, S.; Oberbauer, R.; et al. Diet and Kidney Disease in High-Risk Individuals with Type 2 Diabetes Mellitus. JAMA Intern. Med. 2013, 173, 1682–1692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shankar, A.; Klein, R.; Klein, B.E.K. The Association among Smoking, Heavy Drinking, and Chronic Kidney Disease. Am. J. Epidemiol. 2006, 164, 263–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wai, S.N.; Kelly, J.T.; Johnson, D.W.; Campbell, K.L. Dietary Patterns and Clinical Outcomes in Chronic Kidney Disease: The CKD.QLD Nutrition Study. J. Ren. Nutr. 2017, 27, 175–182. [Google Scholar] [CrossRef]
- Tsuruya, K.; Yoshida, H.; Nagata, M.; Kitazono, T.; Iseki, K.; Iseki, C.; Fujimoto, S.; Konta, T.; Moriyama, T.; Yamagata, K.; et al. Association of Hypertriglyceridemia with the Incidence and Progression of Chronic Kidney Disease and Modification of the Association by Daily Alcohol Consumption. J. Ren. Nutr. 2017, 27, 381–394. [Google Scholar] [CrossRef]
- White, S.L.; Polkinghorne, K.R.; Cass, A.; Shaw, J.E.; Atkins, R.C.; Chadban, S.J. Alcohol Consumption and 5-Year Onset of Chronic Kidney Disease: The AusDiab Study. Nephrol. Dial. Transplant. 2009, 24, 2464–2472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, M.C.; Hwang, S.J.; Massaro, J.M.; Jacques, P.F.; Fox, C.S.; Chu, A.Y. Lifestyle Factors and Indices of Kidney Function in the Framingham Heart Study. Am. J. Nephrol. 2015, 41, 267–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanda, E.; Muneyuki, T.; Suwa, K.; Nakajima, K. Alcohol and Exercise Affect Declining Kidney Function in Healthy Males Regardless of Obesity: A Prospective Cohort Study. PLoS ONE 2015, 10, e0134937. [Google Scholar] [CrossRef] [Green Version]
- Knight, E.L.; Stampfer, M.J.; Rimm, E.B.; Hankinson, S.E.; Curhan, G.C. Moderate Alcohol Intake and Renal Function Decline in Women: A Prospective Study. Nephrol. Dial. Transplant. 2003, 18, 1549–1554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menon, V.; Katz, R.; Mukamal, K.; Kestenbaum, B.; De Boer, I.H.; Siscovick, D.S.; Sarnak, M.J.; Shlipak, M.G. Alcohol Consumption and Kidney Function Decline in the Elderly. Nephrol. Dial. Transplant. 2010, 25, 3301–3307. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.; Wang, Y.; Li, Y.; Xie, D.; Tang, G.; Wang, B.; Wang, X.; Xu, X.; Xu, X.; Hou, F. Risk Factors for Renal Function Decline in Adults with Normal Kidney Function: A 7-Year Cohort Study. J. Epidemiol. Community Health 2015, 69, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Joo, Y.S.; Koh, H.; Nam, K.H.; Lee, S.; Kim, J.; Lee, C.; Yun, H.-R.; Park, J.T.; Kang, E.W.; Chang, T.I.; et al. Alcohol Consumption and Progression of Chronic Kidney Disease: Results from the Korean Cohort Study for Outcome in Patients with Chronic Kidney Disease. Mayo Clin. Proc. 2020, 95, 293–305. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Cho, S.; Kim, S.R. Effect of Alcohol Consumption on Kidney Function: Population-Based Cohort Study. Sci. Rep. 2021, 11, 2381. [Google Scholar] [CrossRef]
- Sato, Y.; Yoshihisa, A.; Maki, T.; Takeishi, Y. Effects of Daily Alcohol Intake on Glomerular Filtration Rate over Three Years. Fukushima J. Med. Sci. 2021, 67, 1–7. [Google Scholar] [CrossRef]
- Cirillo, M.; Bilancio, G.; Secondulfo, C.; Iesce, G.; Ferrara, C.; Terradura-Vagnarelli, O.; Laurenzi, M. Relation of Alcohol Intake to Kidney Function and Mortality Observational, Population-Based, Cohort Study. Nutrients 2022, 14, 1297. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, B.; Song, N.; Shi, Y.; Fang, Y.; Ding, X. Alcohol Consumption and Its Association with Chronic Kidney Disease: Evidence from a 12-Year China Health and Nutrition Survey. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 1392–1401. [Google Scholar] [CrossRef]
- Shibata, M.; Sato, K.K.; Uehara, S.; Koh, H.; Oue, K.; Kambe, H.; Morimoto, M.; Hayashi, T. Serum Gamma-Glutamyltransferase, Daily Alcohol Consumption, and the Risk of Chronic Kidney Disease: The Kansai Healthcare Study. J. Epidemiol. 2020, 30, 163–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roerecke, M.; Tobe, S.W.; Kaczorowski, J.; Bacon, S.L.; Vafaei, A.; Hasan, O.S.M.; Krishnan, R.J.; Raifu, A.O.; Rehm, J. Sex-Specific Associations Between Alcohol Consumption and Incidence of Hypertension: A Systematic Review and Meta-Analysis of Cohort Studies. J. Am. Heart Assoc. 2018, 7, e008202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knott, C.; Bell, S.; Britton, A. Alcohol Consumption and the Risk of Type 2 Diabetes: A Systematic Review and Dose-Response Meta-Analysis of More than 1.9 Million Individuals from 38 Observational Studies. Diabetes Care 2015, 38, 1804–1812. [Google Scholar] [CrossRef] [Green Version]
- Wood, A.M.; Kaptoge, S.; Butterworth, A.S.; Willeit, P.; Warnakula, S.; Bolton, T.; Paige, E.; Paul, D.S.; Sweeting, M.; Burgess, S.; et al. Risk Thresholds for Alcohol Consumption: Combined Analysis of Individual-Participant Data for 599 912 Current Drinkers in 83 Prospective Studies. Lancet 2018, 391, 1513–1523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheungpasitporn, W.; Thongprayoon, C.; Kittanamongkolchai, W.; Brabec, B.A.; O’Corragain, O.A.; Edmonds, P.J.; Erickson, S.B. High Alcohol Consumption and the Risk of Renal Damage: A Systematic Review and Meta-Analysis. QJM 2015, 108, 539–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarich, P.; Canfell, K.; Banks, E.; Paige, E.; Egger, S.; Joshy, G.; Korda, R.; Weber, M. A Prospective Study of Health Conditions Related to Alcohol Consumption Cessation Among 97,852 Drinkers Aged 45 and over in Australia. Alcohol. Clin. Exp. Res. 2019, 43, 710–721. [Google Scholar] [CrossRef]
- George, L.K.; Koshy, S.K.G.; Molnar, M.Z.; Thomas, F.; Lu, J.L.; Kalantar-Zadeh, K.; Kovesdy, C.P. Heart Failure Increases the Risk of Adverse Renal Outcomes in Patients with Normal Kidney Function. Circ. Heart Fail. 2017, 10, e003825. [Google Scholar] [CrossRef]
- Ishigami, J.; Cowan, L.T.; Demmer, R.T.; Grams, M.E.; Lutsey, P.L.; Carrero, J.-J.; Coresh, J.; Matsushita, K. Incident Hospitalization with Major Cardiovascular Diseases and Subsequent Risk of ESKD: Implications for Cardiorenal Syndrome. J. Am. Soc. Nephrol. 2020, 31, 405–414. [Google Scholar] [CrossRef]
- Wall, T.L.; Luczak, S.E.; Hiller-Sturmhöfel, S. Biology, Genetics, and Environment: Underlying Factors Influencing Alcohol Metabolism. Alcohol Res. 2016, 38, 59–68. [Google Scholar] [PubMed]
- Wechsler, H.; Davenport, A.; Dowdall, G.; Moeykens, B.; Castillo, S. Health and Behavioral Consequences of Binge Drinking in College. A National Survey of Students at 140 Campuses. JAMA 1994, 272, 1672–1677. [Google Scholar] [CrossRef]
- Piano, M.R.; Mazzuco, A.; Kang, M.; Phillips, S.A. Cardiovascular Consequences of Binge Drinking: An Integrative Review with Implications for Advocacy, Policy, and Research. Alcohol. Clin. Exp. Res. 2017, 41, 487–496. [Google Scholar] [CrossRef]
- Zhai, J.; Ma, B.; Qin, J.; Lyu, Q.; Khatun, P.; Liang, R.; Cong, M.; Guo, L.; Kong, Y. Alcohol Consumption Patterns and the Risk of Sarcopenia: A Population-Based Cross-Sectional Study among Chinese Women and Men from Henan Province. BMC Public Health 2022, 22, 1894. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.-J.; Lim, H.-J.; Lee, Y.-J.; Lee, H.-S.; Linton, J.A.; Lee, J.W.; Kang, H.-T. Associations between High-Risk Alcohol Consumption and Sarcopenia among Postmenopausal Women. Menopause 2017, 24, 1022–1027. [Google Scholar] [CrossRef] [PubMed]
- Tosato, M.; Marzetti, E.; Cesari, M.; Savera, G.; Miller, R.R.; Bernabei, R.; Landi, F.; Calvani, R. Measurement of Muscle Mass in Sarcopenia: From Imaging to Biochemical Markers. Aging Clin. Exp. Res. 2017, 29, 19–27. [Google Scholar] [CrossRef]
- Ebert, N.; Bevc, S.; Bökenkamp, A.; Gaillard, F.; Hornum, M.; Jager, K.J.; Mariat, C.; Eriksen, B.O.; Palsson, R.; Rule, A.D.; et al. Assessment of Kidney Function: Clinical Indications for Measured GFR. Clin. Kidney J. 2021, 14, 1861–1870. [Google Scholar] [CrossRef]
Study Subgroup | N | Men (%) | Age (year) | BMI (kg/m2) | eGFR (mL/min/1.73 m2) | DM (%) | HT (%) | Follow-Up (Year) | NOS |
---|---|---|---|---|---|---|---|---|---|
PHS 2005, men [32] | 11,023 | 100.0 | 52.9 | 24.9 | NA | 2.0 | 20.9 || | 14.2 | 5 |
Yamagata 2007, men [33] | 35,491 | 100.0 | 61.8 ± 10.2 * | 23.2 ± 2.9 * | 81.9 ± 14.5 * | 3.6 *‡ | 21.0 *‡ | NA | 6 |
Yamagata 2007, women [33] | 71,298 | 0.0 | 58.3 ± 10.0 * | 23.5 ± 3.2 * | 79.8 ± 14.2 * | 2.1 *‡ | 18.9 *‡ | NA | 6 |
ILSA 2011, men [34] | 886 | 100.0 | 71.9 † | 26.5 † | NA | 13.5 † | 64.9 † | 3.5 | 6 |
ILSA 2011, women [34] | 653 | 0.0 | 73.1 † | 27.6 † | NA | 13.9 † | 73.2 † | 3.5 | 6 |
Nagai 2013, men [35] | 81,854 | 100.0 | 60.2 ± 9.7 | 23.4 ± 2.9 | NA | 7.5 || | 52.4 || | 4.0 | 7 |
Kansai Healthcare 2014 [36] | 9112 | 100.0 | 48.2 ± 4.2 | 23.2 ± 2.8 | 84.7 ± 14.0 | 0.0 ‡ | 0.0 ‡ | 8.7 | 5 |
PREVEND 2015 [37] | 5476 | 47.4 | 48.4 ± 11.7 | 25.7 ± 4.0 | 97.3 ± 14.8 | 1.0 ‡ | 11.7 ‡ | 10.2 (6.2–11.4) | 7 |
Kansai Healthcare 2016 [38] | 9154 | 100.0 | 48.2 ± 4.2 | 23.2 ± 2.8 | 84.7 ± 14.0 | 0.0 ‡ | 0.0 ‡ | 8.0 | 5 |
Kimura 2018, men [20] | 88,647 | 100.0 | 65 (58–69) | 23.6 ± 3.0 | 75 (69–86) | 5.7 § | 28.8 § | 1.8 (1.0–2.2) | 7 |
Kimura 2018, women [20] | 88,925 | 0.0 | 65 (59–69) | 22.6 ± 3.3 | 76 (68–90) | 3.0 § | 24.1 § | 1.7 (1.0–2.1) | 7 |
Park 2019, men [19] | 7,625,277 | 100.0 | 44.7 | NA | 91.7 | 3.9 ‡ | 10.7 ‡ | 6.4 | 8 |
Park 2019, women [19] | 6,565,601 | 0.0 | 47.9 | NA | 92.6 | 3.6 ‡ | 13.3 ‡ | 6.4 | 8 |
ARIC 2020 [39] | 12,692 | 55.9 | 54 ± 6 | 27.4 | 103.3 | 10.1 ¶ | 25.1 ‡ | 24 ** | 8 |
PROMISE 2021 [40] | 11,175 | 40.2 | 62 (55–67) | 22.3 ± 3.1 | 78 ± 12 | 3.4 ‡ | 17.8 ‡ | 5.0 (2.9–7.6) | 6 |
Tanaka 2022, men [21] | 19,702 | 100.0 | 42 †† | 23.4 †† | 86 †† | 3.1 § | 9.4 § | 4 (3–6) | 5 |
Tanaka 2022, women [21] | 7086 | 0.0 | 43 †† | 21.4 †† | 76 †† | 1.3 § | 5.7 § | 4 (2–5) | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamamoto, R.; Li, Q.; Otsuki, N.; Shinzawa, M.; Yamaguchi, M.; Wakasugi, M.; Nagasawa, Y.; Isaka, Y. A Dose-Dependent Association between Alcohol Consumption and Incidence of Proteinuria and Low Glomerular Filtration Rate: A Systematic Review and Meta-Analysis of Cohort Studies. Nutrients 2023, 15, 1592. https://doi.org/10.3390/nu15071592
Yamamoto R, Li Q, Otsuki N, Shinzawa M, Yamaguchi M, Wakasugi M, Nagasawa Y, Isaka Y. A Dose-Dependent Association between Alcohol Consumption and Incidence of Proteinuria and Low Glomerular Filtration Rate: A Systematic Review and Meta-Analysis of Cohort Studies. Nutrients. 2023; 15(7):1592. https://doi.org/10.3390/nu15071592
Chicago/Turabian StyleYamamoto, Ryohei, Qinyan Li, Naoko Otsuki, Maki Shinzawa, Makoto Yamaguchi, Minako Wakasugi, Yasuyuki Nagasawa, and Yoshitaka Isaka. 2023. "A Dose-Dependent Association between Alcohol Consumption and Incidence of Proteinuria and Low Glomerular Filtration Rate: A Systematic Review and Meta-Analysis of Cohort Studies" Nutrients 15, no. 7: 1592. https://doi.org/10.3390/nu15071592
APA StyleYamamoto, R., Li, Q., Otsuki, N., Shinzawa, M., Yamaguchi, M., Wakasugi, M., Nagasawa, Y., & Isaka, Y. (2023). A Dose-Dependent Association between Alcohol Consumption and Incidence of Proteinuria and Low Glomerular Filtration Rate: A Systematic Review and Meta-Analysis of Cohort Studies. Nutrients, 15(7), 1592. https://doi.org/10.3390/nu15071592