Rare Sugar Metabolism and Impact on Insulin Sensitivity along the Gut–Liver–Muscle Axis In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cell Culture and Exposure
2.3. Development of Insulin Resistance Models
2.4. HPAEC-PAD Sugar Analysis to Study Digestibility of Rare Disaccharides
2.5. Aerobic and Anaerobic Metabolism
2.5.1. General Seahorse Setup
2.5.2. Origin of ATP Production: Setup and Calculations
2.5.3. Disaccharide Digestion
2.5.4. Insulin-Mediated Responses and Insulin Sensitivity
2.6. Insulin-Mediated Glucose Uptake Based on GOD-POD Measurements
2.7. Resazurin Assay for Cellular Reductase Activity
2.8. Protein Correction
2.8.1. SRB Assay
2.8.2. Lysate Preparation and Bio-Rad Protein Assay
2.9. Statistics and Calculations
3. Results
3.1. Disaccharide Digestion and Related ECAR Responses in Intestinal Caco-2 Cells
3.2. Effects of Chronic Monosaccharide Exposure on Energy Metabolism in HepG2 Liver Cells
3.2.1. Cell Growth and Morphology
3.2.2. Resazurin Conversion
3.2.3. Acute OCR and ECAR Responses to Sugar Injections in Galactose Versus Glucose Pre-Treated Cells
3.3. Insulin Sensitivity and Glucose Uptake in L6 Muscle Cells
3.3.1. Insulin-Mediated Glucose Uptake Determined with the GOD-POD Assay
3.3.2. Insulin Sensitivity Determined with Cellular Bioenergetics
4. Discussion
4.1. Rare Disaccharides Are More Slowly Digested than Maltose
4.2. Different Sugars Influence Short-Term Aerobic and Anaerobic Hepatic Metabolism
4.3. Chronic Replacement of Glucose in the Culture Stage Alters the Hepatic Energy Metabolism
4.4. Sugars Differentially Impact Skeletal Muscle Insulin Sensitivity?
4.5. Rare Sugars with the Largest Health Potential
4.6. Model Suitability and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2021, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.; Karlsen, M.; Steinke, G. Type 2 diabetes remission and lifestyle medicine: A position statement from the American College of Lifestyle Medicine. Am. J. Lifestyle Med. 2020, 14, 406–419. [Google Scholar] [CrossRef] [PubMed]
- Ozougwu, J.C.; Obimba, K.C.; Belonwu, C.D.; Unakalamba, C.B. The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. J. Physiol. Pathophysiol. 2013, 4, 46–57. [Google Scholar] [CrossRef] [Green Version]
- Wilcox, G. Insulin and insulin resistance. Clin. Biochem. Rev. 2005, 26, 19–39. [Google Scholar] [PubMed]
- Rask-Madsen, C.; King, G.L. Vascular complications of diabetes: Mechanisms of injury and protective factors. Cell Metab. 2013, 17, 20–33. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Definition, Diagnosis of Diabetes Mellitus and Intermediate Hyperglycaemia: Report of a WHO/IDF Consultation; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Vekic, J.; Silva-Nunes, J.; Rizzo, M. Glucose metabolism disorders: Challenges and opportunities for diagonis and treatment. Metabolites 2022, 12, 712. [Google Scholar] [CrossRef]
- Popovic, D.S.; Rizzo, M.; Stokic, E.; Pananas, N. New sub-phenotyping of subjects at high risk of type 2 diabetes: What are the potential clinical implications? Diabetes Ther. 2021, 12, 1605–1611. [Google Scholar] [CrossRef]
- World Health Organization. Guideline: Sugars Intake for Adults and Children; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Hu, F.B.; Liu, S.; van Dam, R.; Liu, S. Diet and risk of Type II diabetes: The role of types of fat and carbohydrate. Diabetologia 2001, 44, 805–817. [Google Scholar] [CrossRef]
- Jegatheesan, P.; De Bandt, J. Fructose and NAFLD: The multifaceted aspects of fructose metabolism. Nutrients 2017, 9, 230. [Google Scholar] [CrossRef] [Green Version]
- Busnatu, S.-S.; Salmen, T.; Pana, M.-A.; Rizzo, M.; Stallone, T.; Papanas, N.; Popovic, D.; Tanasescu, D.; Serban, D.; Stoian, A.P. The Role of Fructose as a Cardiovascular Risk Factor: An Update. Metabolites 2022, 12, 67. [Google Scholar] [CrossRef]
- Hayashi, N.; Yamada, T.; Takamine, S.; Iida, T.; Okuma, K.; Tokuda, M. Weight reducing effect and safety evaluation of rare sugar syrup by a randomized double-blind, parallel-group study in human. J. Funct. Foods 2014, 11, 152–159. [Google Scholar] [CrossRef] [Green Version]
- Holub, I.; Gostner, A.; Theis, S.; Nosek, L.; Kudlich, T.; Melcher, R.; Scheppach, W. Novel findings on the metabolic effects of the low glycaemic carbohydrate isomaltulose (Palatinose™). Br. J. Nutr. 2010, 103, 1730–1737. [Google Scholar] [CrossRef]
- Chakravarthy, M.V.; Siddiqui, M.S.; Forsgren, M.F.; Sanyal, A.J. Harnessing muscle–liver crosstalk to treat nonalcoholic steatohepatitis. Front. Endocrinol. 2020, 11, 592373. [Google Scholar] [CrossRef]
- Altajar, S.; Baffy, G. Skeletal muscle dysfunction in the development and progression of nonalcoholic fatty liver disease. J. Clin. Transl. Hepatol. 2020, 8, 414–423. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, K.; Whaley-Connell, A.T.; Stump, C.S.; Ibdah, J.A.; Sowers, J.R. Skeletal muscle insulin resistance: Role of inflammatory cytokines and reactive oxygen species. Am. J. Physiol. Integr. Comp. Physiol. 2008, 294, R673–R680. [Google Scholar] [CrossRef] [Green Version]
- Feraco, A.; Gorini, S.; Armani, A.; Camajani, E.; Rizzo, M.; Caprio, M. Exploring the role of skeletal muscle in insulin resistance: Lessons from cultured cells to animal models. Int. J. Mol. Sci. 2021, 22, 9327. [Google Scholar] [CrossRef]
- Abdul-Ghani, M.A.; Tripathy, D.; DeFronzo, R.A. Contributions of β-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care 2006, 29, 1130–1139. [Google Scholar] [CrossRef]
- Sylow, L.; Kleinert, M.; Richter, E.A.; Jensen, T.E. Exercise-stimulated glucose uptake—Regulation and implications for glycaemic control. Nat. Rev. Endocrinol. 2016, 13, 133–148. [Google Scholar] [CrossRef]
- Kim, J.; Wei, Y.; Sowers, J.R. Role of mitochondrial dysfunction in insulin resistance. Circ. Res. 2008, 102, 401–414. [Google Scholar] [CrossRef]
- Nisr, R.B.; Affourtit, C. Insulin acutely improves mitochondrial function of rat and human skeletal muscle by increasing coupling efficiency of oxidative phosphorylation. Biochim. Biophys. Acta (BBA)-Bioenerg. 2013, 1837, 270–276. [Google Scholar] [CrossRef] [Green Version]
- Corpeleijn, E.; Saris, W.H.M.; Blaak, E.E. Metabolic flexibility in the development of insulin resistance and type 2 diabetes: Effects of lifestyle. Obes. Rev. 2009, 10, 178–193. [Google Scholar] [CrossRef] [PubMed]
- Biocompare. Measuring Cellular Bioenergetics in Real Time. Available online: https://www.nxtbook.com/nxtbooks/biocompare/bioenergetics_2020///index.php#/1 (accessed on 21 February 2023).
- Aguer, C.; Gambarotta, D.; Mailloux, R.J.; Moffat, C.; Dent, R.; McPherson, R.; Harper, M.-E. Galactose enhances oxidative metabolism and reveals mitochondrial dysfunction in human primary muscle cells. PLoS ONE 2011, 6, e28536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beerens, K.; De Winter, K.; Van de Walle, D.; Grootaert, C.; Kamiloglu, S.; Miclotte, L.; Van de Wiele, T.; Van Camp, J.; Dewettinck, K.; Desmet, T. Biocatalytic Synthesis of the Rare Sugar Kojibiose: Process Scale-Up and Application Testing. J. Agric. Food Chem. 2017, 65, 6030–6041. [Google Scholar] [CrossRef] [PubMed]
- Franceus, J.; Dhaene, S.; Decadt, H.; Vandepitte, J.; Caroen, J.; Van der Eycken, J.; Beerens, K.; Desmet, T. Rational design of an improved transglucosylase for production of the rare sugar nigerose. Chem. Commun. 2019, 55, 4531–4533. [Google Scholar] [CrossRef]
- Corradini, C.; Cavazza, A.; Bignardi, C. High-performance anion-exchange chromatography coupled with pulsed electrochemical detection as a powerful tool to evaluate carbohydrates of food interest: Principles and applications. Int. J. Carbohydr. Chem. 2012, 2012, 487564. [Google Scholar] [CrossRef] [Green Version]
- Agilent Seahorse XFp Real-Time ATP Rate Assay Kit: User Guide Kit 103591-100. Available online: https://www.agilent.com/cs/library/usermanuals/public/103591-400_Seahorse_XFp_ATP_Rate_Assay_Kit_User_Guide.pdf (accessed on 21 February 2023).
- Quantifying Cellular ATP Production Rate Using Agilent Seahorse XF Technology. Available online: https://seahorseinfo.agilent.com/acton/attachment/10967/f-0643/1/-/-/-/-/5991-9303EN_ATP%20Production%20Rate%20White%20Paper%20042318.pdf (accessed on 21 February 2023).
- Raabo, B.E.; Terkildsen, T.C. On the enzymatic determination of blood glucose. Scand. J. Clin. Lab. Investig. 1960, 12, 402–407. [Google Scholar] [CrossRef]
- Zhang, H.-X.; Du, G.-H.; Zhang, J.-T. Assay of mitochondrial functions by resazurin in vitro. Acta Pharmacol. Sin. 2004, 25, 385–389. [Google Scholar]
- Orellana, E.A.; Kasinski, A.L. Sulforhodamine B (SRB) assay in cell culture to investigate cell proliferation. Bio Protoc. 2016, 6, e1984. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://warwick.ac.uk/fac/sci/chemistry/research/bugg/bugggroup/protocols/protein/biorad_proteinassay.pdf (accessed on 21 February 2023).
- Ahmed, A.; Khan, T.A.; Ramdath, D.D.; Kendall, C.W.C.; Sievenpiper, J.L. Rare sugars and their health effects in humans: A systematic review and narrative synthesis of the evidence from human trials. Nutr. Rev. 2021, 80, 255–270. [Google Scholar] [CrossRef]
- Smith, A.; Avery, A.; Ford, R.; Yang, Q.; Goux, A.; Mukherjee, I.; Neville, D.C.A.; Jethwa, P.H. Rare sugars: Metabolic impacts and mechanisms of action: A scoping review. Br. J. Nutr. 2021, 128, 389–406. [Google Scholar] [CrossRef]
- Legmann, R.; Melito, J.; Belzer, I.; Ferrick, D. Analysis of glycolytic flux as a rapid screen to identify low lactate producing CHO cell lines with desirable monoclonal antibody yield and glycan profile. BMC Proc. 2011, 5, P94. [Google Scholar] [CrossRef] [Green Version]
- Dhaene, S.; Van Laar, A.; De Doncker, M.; De Beul, E.; Beerens, K.; Grootaert, C.; Caroen, J.; Van der Eycken, J.; Van Camp, J.; Desmet, T. Sweet Biotechnology: Enzymatic Production and Digestibility Screening of Novel Kojibiose and Nigerose Analogues. J. Agric. Food Chem. 2022, 70, 3502–3511. [Google Scholar] [CrossRef]
- Lee, B.-H.; Rose, D.R.; Lin, A.H.-M.; Quezada-Calvillo, R.; Nichols, B.L.; Hamaker, B.R. Contribution of the individual small intestinal α-glucosidases to digestion of unusual α-linked glycemic disaccharides. J. Agric. Food Chem. 2016, 64, 6487–6494. [Google Scholar] [CrossRef]
- Cheng, M.W.; Chegeni, M.; Kim, K.H.; Zhang, G.; Benmoussa, M.; Quezada-Calvillo, R.; Nichols, B.L.; Hamaker, B.R. Different sucrose-isomaltase response of Caco-2 cells to glucose and maltose suggests dietary maltose sensing. J. Clin. Biochem. Nutr. 2014, 54, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Meng, H.; Matthan, N.R.; Ausman, L.M.; Lichtenstein, A.H. Effect of prior meal macronutrient composition on postprandial glycemic responses and glycemic index and glycemic load value determinations. Am. J. Clin. Nutr. 2017, 106, 1246–1256. [Google Scholar] [CrossRef] [Green Version]
- Capriles, V.D.; Conti-Silva, A.C.; Arêas, J.A.G. Effects of oligofructose-enriched inulin addition before and after the extrusion process on the quality and postprandial glycemic response of corn-snacks. Food Biosci. 2021, 43, 101263. [Google Scholar] [CrossRef]
- Parada, J.; Perez-Correa, J.; Pérez-Jiménez, J. Design of low glycemic response foods using polyphenols from seaweed. J. Funct. Foods 2019, 56, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Oku, T.; Nakamura, S. Estimation of intestinal trehalase activity from a laxative threshold of trehalose and lactulose on healthy female subjects. Eur. J. Clin. Nutr. 2000, 54, 783–788. [Google Scholar] [CrossRef] [Green Version]
- Woods, H.F.; Krebs, H.A. Lactate production in the perfused rat liver. Biochem. J. 1971, 125, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Topping, D.; Mayes, P. The concentrations of fructose, glucose and lactate in the splanchnic blood vessels of rats absorbing fructose. Ann. Nutr. Metab. 1971, 13, 331–338. [Google Scholar] [CrossRef]
- Wilkens, C.A.; Altamirano, C.; Gerdtzen, Z.P. Comparative metabolic analysis of lactate for CHO cells in glucose and galactose. Biotechnol. Bioprocess Eng. 2011, 16, 714–724. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, L.; Vu, H.; Kuhls, M.; Aslamkhan, A.G.; Liaw, A.; Yu, Y.; Kaczor, A.; Ruth, M.; Wei, C.; et al. Can galactose be converted to glucose in HepG2 cells? Improving the in vitro mitochondrial toxicity assay for the assessment of drug induced liver injury. Chem. Res. Toxicol. 2019, 32, 1528–1544. [Google Scholar] [CrossRef] [PubMed]
- Gogvadze, V.; Orrenius, S.; Zhivotovsky, B. Mitochondria in cancer cells: What is so special about them? Trends Cell Biol. 2008, 18, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Kawano, Y.; Cohen, D.E. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J. Gastroenterol. 2013, 48, 434–441. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, E.J.; Gleason, J.A.; Dansinger, M.L. Dietary fructose and glucose differentially affect lipid and glucose homeostasis. J. Nutr. 2009, 139, 1257S–1262S. [Google Scholar] [CrossRef] [Green Version]
- Jia, G.; Aroor, A.R.; Whaley-Connell, A.T.; Sowers, J.R. Fructose and uric acid: Is there a role in endothelial function? Curr. Hypertens. Rep. 2014, 16, 434. [Google Scholar] [CrossRef] [Green Version]
- Lanaspa, M.A.; Tapia, E.; Soto, V.; Sautin, Y.; Sánchez-Lozada, L.G. Uric acid and fructose: Potential biological mechanisms. Semin. Nephrol. 2011, 31, 426–432. [Google Scholar] [CrossRef]
- Dott, W.; Mistry, P.; Wright, J.; Cain, K.; Herbert, K.E. Modulation of mitochondrial bioenergetics in a skeletal muscle cell line model of mitochondrial toxicity. Redox Biol. 2014, 2, 224–233. [Google Scholar] [CrossRef] [Green Version]
- Pol, K.; de Graaf, K.; Bruin, M.D.-D.; Balvers, M.; Mars, M. The effect of replacing sucrose with L-arabinose in drinks and cereal foods on blood glucose and plasma insulin responses in healthy adults. J. Funct. Foods 2020, 73, 104114. [Google Scholar] [CrossRef]
- Monsénégo, J.; Mansouri, A.; Akkaoui, M.; Lenoir, V.; Esnous, C.; Fauveau, V.; Tavernier, V.; Girard, J.; Prip-Buus, C. Enhancing liver mitochondrial fatty acid oxidation capacity in obese mice improves insulin sensitivity independently of hepatic steatosis. J. Hepatol. 2011, 56, 632–639. [Google Scholar] [CrossRef]
- Hegarty, B.D.; Furler, S.M.; Ye, J.; Cooney, G.J.; Kraegen, E.W. The role of intramuscular lipid in insulin resistance. Acta Physiol. Scand. 2003, 178, 373–383. [Google Scholar] [CrossRef]
- Dassanayaka, S.; Readnower, R.D.; Salabei, J.K.; Long, B.W.; Aird, A.L.; Zheng, Y.-T.; Muthusamy, S.; Facundo, H.T.; Hill, B.G.; Jones, S.P. High glucose induces mitochondrial dysfunction independently of protein O-GlcNAcylation. Biochem. J. 2015, 467, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Vanhorebeek, I.; Ellger, B.; De Vos, R.; Boussemaere, M.; Debaveye, Y.; Perre, S.V.; Rabbani, N.; Thornalley, P.J.; Berghe, G.V.D. Tissue-specific glucose toxicity induces mitochondrial damage in a burn injury model of critical illness. Crit. Care Med. 2009, 37, 1355–1364. [Google Scholar] [CrossRef]
- Kase, E.T.; Nikolić, N.; Bakke, S.S.; Bogen, K.K.; Aas, V.; Thoresen, G.H.; Rustan, A.C. Remodeling of oxidative energy metabolism by galactose improves glucose handling and metabolic switching in human skeletal muscle cells. PLoS ONE 2013, 8, e59972. [Google Scholar] [CrossRef] [Green Version]
- Pratley, R.E.; Hagberg, J.M.; Rogus, E.M.; Goldberg, A.P. Enhanced insulin sensitivity and lower waist-to-hip ratio in master athletes. Am. J. Physiol. Metab. 1995, 268, E484–E490. [Google Scholar] [CrossRef]
- Guo, X.; Li, H.; Xu, H.; Woo, S.; Dong, H.; Lu, F.; Lange, A.J.; Wu, C. Glycolysis in the control of blood glucose homeostasis. Acta Pharm. Sin. B 2012, 2, 358–367. [Google Scholar] [CrossRef] [Green Version]
- Sellick, C.A.; Campbell, R.N.; Reece, R.J. Galactose Metabolism in yeast—Structure and regulation of the leloir pathway enzymes and the genes encoding them. Int. Rev. Cell Mol. Biol. 2008, 269, 111–150. [Google Scholar]
- Davit-Spraul, A.; Pourci, M.; Soni, T.; Lemonnier, A. Metabolic effects of galactose on human HepG2 hepatoblastoma cells. Metabolism 1994, 43, 945–952. [Google Scholar] [CrossRef]
- Feinman, R.D.; Fine, E.J. Fructose in perspective. Nutr. Metab. 2013, 10, 45. [Google Scholar] [CrossRef] [Green Version]
- Hespel, P.; Vergauwen, L.; Vandenberghe, K.; Richter, E.A. Important role of insulin and flow in stimulating glucose uptake in contracting skeletal muscle. Diabetes 1995, 44, 210–215. [Google Scholar] [CrossRef]
- Huang, C.; Somwar, R.; Patel, N.; Niu, W.; Török, D.; Klip, A. Sustained exposure of L6 myotubes to high glucose and insulin decreases insulin-stimulated GLUT4 translocation but upregulates GLUT4 activity. Diabetes 2002, 51, 2090–2098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomás, E.; Lin, Y.-S.; Dagher, Z.; Saha, A.; Luo, Z.; Ido, Y.; Ruderman, N.B. Hyperglycemia and insulin resistance: Possible mechanisms. Ann. N. Y. Acad. Sci. 2006, 967, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Sadri, P.; Lautt, W.W. Blockade of hepatic nitric oxide synthase causes insulin resistance. Am. J. Physiol.-Gastrointest. Liver Physiol. 1999, 277, G101–G108. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.R.; Nachbar, R.T.; Gorjao, R.; Vinolo, M.A.; Festuccia, W.T.; Lambertucci, R.H.; Cury-Boaventura, M.F.; Silveira, L.R.; Curi, R.; Hirabara, S.M. Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: Importance of the mitochondrial function. Lipids Health Dis. 2012, 11, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagliassotti, M.J.; Shahrokhi, K.A.; Moscarello, M. Involvement of liver and skeletal muscle in sucrose-induced insulin resistance: Dose-response studies. Am. J. Physiol. Integr. Comp. Physiol. 1994, 266, R1637–R1644. [Google Scholar] [CrossRef]
- Portincasa, P.; Bonfrate, L.; Vacca, M.; De Angelis, M.; Farella, I.; Lanza, E.; Khalil, M.; Wang, D.Q.-H.; Sperandio, M.; Di Ciaula, A. Gut microbiota and short chain fatty acids: Implications in glucose homeostasis. Int. J. Mol. Sci. 2022, 23, 1105. [Google Scholar] [CrossRef]
- Onyango, S.O.; Beerens, K.; Li, Q.; Van Camp, J.; Desmet, T.; Van de Wiele, T. Glycosidic linkage of rare and new-to-nature disaccharides reshapes gut microbiota in vitro. Food Chem. 2023, 411, 135440. [Google Scholar] [CrossRef]
- Vanaporn, M.; Titball, R.W. Trehalose and bacterial virulence. Virulence 2020, 11, 1192–1202. [Google Scholar] [CrossRef]
- DeBosch, B.J.; Heitmeier, M.R.; Mayer, A.L.; Higgins, C.B.; Crowley, J.R.; Kraft, T.E.; Chi, M.; Newberry, E.P.; Chen, Z.; Finck, B.N.; et al. Trehalose inhibits solute carrier 2A (SLC2A) proteins to induce autophagy and prevent hepatic steatosis. Sci. Signal. 2016, 9, ra21. [Google Scholar] [CrossRef] [Green Version]
- Hossain, A.; Yamaguchi, F.; Matsuo, T.; Tsukamoto, I.; Toyoda, Y.; Ogawa, M.; Nagata, Y.; Tokuda, M. Rare sugar d-allulose: Potential role and therapeutic monitoring in maintaining obesity and type 2 diabetes mellitus. Pharmacol. Ther. 2015, 155, 49–59. [Google Scholar] [CrossRef]
- Razban, V.; Khajeh, S.; Ganjavi, M.; Panahi, G.; Zare, M.; Zare, M.; Tahami, S.M. D-allose: Molecular pathways and therapeutic capacity in cancer. Curr. Mol. Pharmacol. 2022, in press. [Google Scholar] [CrossRef]
- Perry, R.J.; Samuel, V.T.; Petersen, K.F.; Shulman, G.I. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 2014, 510, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Woolnough, J.W.; Monro, J.A.; Brennan, C.S.; Bird, A.R. Simulating human carbohydrate digestion in vitro: A review of methods and the need for standardisation. Int. J. Food Sci. Technol. 2008, 43, 2245–2256. [Google Scholar] [CrossRef]
- Sinha, S.; Perdomo, G.; Brown, N.F.; O’Doherty, R.M. Fatty acid-induced insulin resistance in L6 myotubes is prevented by inhibition of activation and nuclear localization of nuclear factor κB. J. Biol. Chem. 2004, 279, 41294–41301. [Google Scholar] [CrossRef] [Green Version]
- Bailey, C.J.; Turner, S.L. Glucosamine-induced insulin resistance in L6 muscle cells. Diabetes Obes. Metab. 2004, 6, 293–298. [Google Scholar] [CrossRef]
- Ai, J.; Wang, N.; Yang, M.; Du, Z.-M.; Zhang, Y.-C.; Yang, B.-F. Development of wistar rat model of insulin resistance. World J. Gastroenterol. 2005, 11, 3675–3679. [Google Scholar] [CrossRef]
- Abdelmoez, A.M.; Puig, L.S.; Smith, J.; Gabriel, B.M.; Savikj, M.; Dollet, L.; Chibalin, A.V.; Krook, A.; Zierath, J.R.; Pillon, N.J. Comparative profiling of skeletal muscle models reveals heterogeneity of transcriptome and metabolism. Am. J. Physiol. Cell Physiol. 2020, 318, C615–C626. [Google Scholar] [CrossRef] [Green Version]
- Sarabia, V.; Ramlal, T.; Klip, A. Glucose uptake in human and animal muscle cells in culture. Biochem. Cell Biol. 1990, 68, 536–542. [Google Scholar] [CrossRef]
- Mitsumoto, Y.; Burdett, E.; Grant, A.; Klip, A. Differential expression of the GLUT1 and GLUT4 glucose transporters during differentiation of L6 muscle cells. Biochem. Biophys. Res. Commun. 1991, 175, 652–659. [Google Scholar] [CrossRef]
- Evans, P.L.; McMillin, S.L.; Weyrauch, L.A.; Witczak, C.A. Regulation of skeletal muscle glucose transport and glucose metabolism by exercise training. Nutrients 2019, 11, 2432. [Google Scholar] [CrossRef] [Green Version]
- Metter, E.J.; Windham, B.G.; Maggio, M.; Simonsick, E.M.; Ling, S.M.; Egan, J.M.; Ferrucci, L. Glucose and insulin measurements from the oral glucose tolerance test and mortality prediction. Diabetes Care 2008, 31, 1026–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kellett, G.L.; Helliwell, P.A. The diffusive component of intestinal glucose absorption is mediated by glucose-induced recruitment of GLUT2 to the brush-border membrane. Biochem. J. 2000, 350, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Strubbe, J.; Steffens, A. Blood glucose levels in portal and peripheral circulation and their relation to food intake in the rat. Physiol. Behav. 1977, 19, 303–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Chronic Pre-Treatment (5.5 mM) | ||||
---|---|---|---|---|
Glucose | Fructose | Galactose | l-arabinose | |
24 h Exposures | resazurin/SRB ratio % | |||
Mannitol | 100 ± 15 | 118 ± 32 | 146 ± 28 # | 137 ± 42 # |
Glucose | 158 ± 24 * | 204 ± 39 * # | 204 ± 25 * # | 195 ± 40 * # |
Fructose | 150 ± 39 * | 171 ± 32 * | 184 ± 43 * # | 207 ± 45 * # |
Galactose | 105 ± 16 | 128 ± 34 | 180 ± 43 # | 150 ± 26 # |
l-arabinose | 101 ± 19 | 117 ± 26 | 124 ± 27 # | 113 ± 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Laar, A.; Grootaert, C.; Rajkovic, A.; Desmet, T.; Beerens, K.; Van Camp, J. Rare Sugar Metabolism and Impact on Insulin Sensitivity along the Gut–Liver–Muscle Axis In Vitro. Nutrients 2023, 15, 1593. https://doi.org/10.3390/nu15071593
van Laar A, Grootaert C, Rajkovic A, Desmet T, Beerens K, Van Camp J. Rare Sugar Metabolism and Impact on Insulin Sensitivity along the Gut–Liver–Muscle Axis In Vitro. Nutrients. 2023; 15(7):1593. https://doi.org/10.3390/nu15071593
Chicago/Turabian Stylevan Laar, Amar, Charlotte Grootaert, Andreja Rajkovic, Tom Desmet, Koen Beerens, and John Van Camp. 2023. "Rare Sugar Metabolism and Impact on Insulin Sensitivity along the Gut–Liver–Muscle Axis In Vitro" Nutrients 15, no. 7: 1593. https://doi.org/10.3390/nu15071593
APA Stylevan Laar, A., Grootaert, C., Rajkovic, A., Desmet, T., Beerens, K., & Van Camp, J. (2023). Rare Sugar Metabolism and Impact on Insulin Sensitivity along the Gut–Liver–Muscle Axis In Vitro. Nutrients, 15(7), 1593. https://doi.org/10.3390/nu15071593