Skin Autofluorescence Mirrors Surrogate Parameters of Vascular Aging: An Enable Study
Abstract
:1. Introduction
2. Methods
2.1. Ethics Statement
2.2. Study Design
2.3. Data Collection
2.3.1. Anthropometric Measurements
2.3.2. Blood Samples
2.3.3. Pulse Wave Velocity of the Aorta (PWVao)
2.3.4. Skin SAF Measurement
2.3.5. Intima–Media Thickness (IMT)
2.3.6. Oral Glucose Tolerance Test (OGTT)
2.3.7. Questionnaires
2.3.8. Data Analysis
3. Results
3.1. Age with PWVao, Skin SAF Value, and IMT
3.2. Interrelationship between Skin SAF Value and PWVao and IMT
3.3. Relationship between Skin SAF Value and Other Parameters
3.4. Seasonal Effect on Skin SAF Values
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldin, A.; Beckman, J.A.; Schmidt, A.M.; Creager, M.A. Advanced glycation end products: Sparking the development of diabetic vascular injury. Circulation 2006, 114, 597–605. [Google Scholar] [CrossRef] [Green Version]
- Passarelli, M.; Machado, U.F. AGEs-Induced and Endoplasmic Reticulum Stress/Inflammation-Mediated Regulation of GLUT4 Expression and Atherogenesis in Diabetes Mellitus. Cells 2021, 11, 104. [Google Scholar] [CrossRef]
- Yang, X.; Mostafa, A.J.; Appleford, M.; Sun, L.W.; Wang, X. Bone Formation is Affected by Matrix Advanced Glycation End Products (AGEs) In Vivo. Calcif. Tissue Int. 2016, 99, 373–383. [Google Scholar] [CrossRef]
- Takeuchi, M.; Kikuchi, S.; Sasaki, N.; Suzuki, T.; Watai, T.; Iwaki, M.; Bucala, R.; Yamagishi, S. Involvement of advanced glycation end-products (AGEs) in Alzheimer’s disease. Curr. Alzheimer Res. 2004, 1, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Viana, S.D.; Valero, J.; Rodrigues-Santos, P.; Couceiro, P.; Silva, A.M.; Carvalho, F.; Ali, S.F.; Fontes-Ribeiro, C.A.; Pereira, F.C. Regulation of striatal astrocytic receptor for advanced glycation end-products variants in an early stage of experimental Parkinson’s disease. J. Neurochem. 2016, 138, 598–609. [Google Scholar] [CrossRef] [Green Version]
- Perrone, A.; Giovino, A.; Benny, J.; Martinelli, F. Advanced glycation end products (AGEs): Biochemistry, signaling, analytical methods, and epigenetic effects. Oxidative Med. Cell. Longev. 2020, 2020, 3818196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zieman, S.J.; Kass, D.A. Advanced Glycation End Product Cross-Linking: Pathophysiologic Role and Therapeutic Target in Cardiovascular Disease. Congest. Heart Fail. 2004, 10, 144–151. [Google Scholar] [CrossRef]
- Waqas, K.; Chen, J.; Trajanoska, K.; Ikram, M.A.; Uitterlinden, A.G.; Rivadeneira, F.; Zillikens, M.C. Skin Autofluorescence, a Noninvasive Biomarker for Advanced Glycation End-products, Is Associated with Sarcopenia. J. Clin. Endocrinol. Metab. 2022, 107, e793–e803. [Google Scholar] [CrossRef] [PubMed]
- Birukov, A.; Cuadrat, R.; Polemiti, E.; Eichelmann, F.; Schulze, M.B. Advanced glycation end-products, measured as skin autofluorescence, associate with vascular stiffness in diabetic, pre-diabetic and normoglycemic individuals: A cross-sectional study. Cardiovasc. Diabetol. 2021, 20, 110. [Google Scholar] [CrossRef] [PubMed]
- Noordzij, M.J.; Lefrandt, J.D.; Graaff, R.; Smit, A.J. Dermal factors influencing measurement of skin autofluorescence. Diabetes Technol. Ther. 2011, 13, 165–170. [Google Scholar] [CrossRef]
- Sandby-Møller, J.; Poulsen, T.; Wulf, H.C. Influence of Epidermal Thickness, Pigmentation and Redness on Skin Autofluorescence. Photochem. Photobiol. 2003, 77, 616–620. [Google Scholar] [CrossRef]
- Baynes, J.W. The role of AGEs in aging: Causation or correlation. Exp. Gerontol. 2001, 36, 1527–1537. [Google Scholar] [CrossRef] [PubMed]
- Ishizu, T.; Ishimitsu, T.; Yanagi, H.; Seo, Y.; Obara, K.; Moriyama, N.; Watanabe, S.; Yamaguchi, I. Effect of age on carotid arterial intima-media thickness in childhood. Heart Vessel. 2004, 19, 189–195. [Google Scholar] [CrossRef]
- Medda, E.; Fagnani, C.; Schillaci, G.; Tarnoki, A.D.; Tarnoki, D.L.; Baracchini, C.; Meneghetti, G.; Fanelli, F.; Alaeddin, A.; Pucci, G.; et al. Heritability of arterial stiffness and carotid intima-media thickness: An Italian twin study. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Jandeleit-Dahm, K.; Cooper, M.E. The role of AGEs in cardiovascular disease. Curr. Pharm. Des. 2008, 14, 979–986. [Google Scholar] [CrossRef] [PubMed]
- North, B.J.; Sinclair, D.A. The intersection between aging and cardiovascular disease. Circ. Res. 2012, 110, 1097–1108. [Google Scholar] [CrossRef] [PubMed]
- Zamorano, J.L.; Lancellotti, P.; Rodriguez Muñoz, D.; Aboyans, V.; Asteggiano, R.; Galderisi, M.; Habib, G.; Lenihan, D.J.; Lip, G.Y.H.; Lyon, A.R.; et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur. Heart J. 2016, 37, 2768–2801. [Google Scholar] [CrossRef]
- McQuail, J.A.; Dunn, A.R.; Stern, Y.; Barnes, C.A.; Kempermann, G.; Rapp, P.R.; Kaczorowski, C.C.; Foster, T.C. Cognitive reserve in model systems for mechanistic discovery: The importance of longitudinal studies. Front. Aging Neurosci. 2021, 12, 607685. [Google Scholar] [CrossRef]
- Van Waateringe, R.P.; Fokkens, B.T.; Slagter, S.N.; van der Klauw, M.M.; van Vliet-Ostaptchouk, J.V.; Graaff, R.; Paterson, A.D.; Smit, A.J.; Lutgers, H.L.; Wolffenbuttel, B.H. Skin autofluorescence predicts incident type 2 diabetes, cardiovascular disease and mortality in the general population. Diabetologia 2019, 62, 269–280. [Google Scholar] [CrossRef] [Green Version]
- Genuth, S.; Sun, W.; Cleary, P.; Sell, D.R.; Dahms, W.; Malone, J.; Sivitz, W.; Monnier, V.M.; Group, D.S.C.A.S. Glycation and carboxymethyllysine levels in skin collagen predict the risk of future 10-year progression of diabetic retinopathy and nephropathy in the diabetes control and complications trial and epidemiology of diabetes interventions and complications participants with type 1 diabetes. Diabetes 2005, 54, 3103–3111. [Google Scholar]
- Monnier, V.M.; Bautista, O.; Kenny, D.; Sell, D.R.; Fogarty, J.; Dahms, W.; Cleary, P.A.; Lachin, J.; Genuth, S. Skin collagen glycation, glycoxidation, and crosslinking are lower in subjects with long-term intensive versus conventional therapy of type 1 diabetes: Relevance of glycated collagen products versus HbA1c as markers of diabetic complications. DCCT Skin Collagen Ancillary Study Group. Diabetes Control and Complications Trial. Diabetes 1999, 48, 870–880. [Google Scholar]
- Brandl, B.; Skurk, T.; Rennekamp, R.; Hannink, A.; Kiesswetter, E.; Freiherr, J.; Ihsen, S.; Roosen, J.; Klingenspor, M.; Haller, D.; et al. A Phenotyping Platform to Characterize Healthy Individuals Across Four Stages of Life–The Enable Study. Front. Nutr. 2020, 7, 582387. [Google Scholar] [CrossRef]
- Brandl, B.; Rennekamp, R.; Reitmeier, S.; Pietrynik, K.; Dirndorfer, S.; Haller, D.; Hofmann, T.; Skurk, T.; Hauner, H. Offering Fiber-Enriched Foods Increases Fiber Intake in Adults with or Without Cardiometabolic Risk: A Randomized Controlled Trial. Front. Nutr. 2022, 9, 816299. [Google Scholar] [CrossRef] [PubMed]
- Van Rossum, G.; Drake, F.L., Jr. Python Reference Manual; Centrum voor Wiskunde en Informatica Amsterdam: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Seabold, S.; Perktold, J. Statsmodels: Econometric and statistical modeling with python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; p. 61. [Google Scholar]
- Vallat, R. Pingouin: Statistics in Python. J. Open Source Softw. 2018, 3, 1026. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach; Guilford Publications: New York, NY, USA, 2017. [Google Scholar]
- Hudson, B.I.; Lippman, M.E. Targeting RAGE Signaling in Inflammatory Disease. Annu. Rev. Med. 2018, 69, 349–364. [Google Scholar] [CrossRef]
- Georgianos, P.I.; Vaios, V.; Eleftheriadis, T.; Zebekakis, P.E.; Liakopoulos, V. Pulse wave velocity assessment for cardiovascular risk prognostication in ESKD: Weighting recent evidence. Curr. Vasc. Pharmacol. 2021, 19, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Sang, T.; Lv, N.; Dang, A.; Cheng, N.; Zhang, W. Brachial-ankle pulse wave velocity and prognosis in patients with atherosclerotic cardiovascular disease: A systematic review and meta-analysis. Hypertens. Res. 2021, 44, 1175–1185. [Google Scholar] [CrossRef]
- Willeit, P.; Tschiderer, L.; Allara, E.; Reuber, K.; Seekircher, L.; Gao, L.; Liao, X.; Lonn, E.; Gerstein, H.C.; Yusuf, S. Carotid intima-media thickness progression as surrogate marker for cardiovascular risk: Meta-analysis of 119 clinical trials involving 100 667 patients. Circulation 2020, 142, 621–642. [Google Scholar] [CrossRef] [PubMed]
- Baulmann, J.; Nürnberger, J.; Slany, J.; Schmieder, R.; Schmidt-Trucksäss, A.; Baumgart, D.; Cremerius, P.; Hess, O.; Mortensen, K.; Weber, T. Arterielle gefäßsteifigkeit und pulswellenanalyse. DMW-Dtsch. Med. Wochenschr. 2010, 135, S4–S14. [Google Scholar] [CrossRef]
- Hametner, B.; Wassertheurer, S.; Kropf, J.; Mayer, C.; Eber, B.; Weber, T. Oscillometric estimation of aortic pulse wave velocity: Comparison with intra-aortic catheter measurements. Blood Press. Monit. 2013, 18, 173–176. [Google Scholar] [CrossRef] [PubMed]
- D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV radiation and the skin. Int. J. Mol. Sci. 2013, 14, 12222–12248. [Google Scholar] [CrossRef] [Green Version]
- Togsverd-Bo, K.; Philipsen, P.A.; Hædersdal, M.; Wulf, H.C.O. Skin autofluorescence reflects individual seasonal UV exposure, skin photodamage and skin cancer development in organ transplant recipients. J. Photochem. Photobiol. B Biol. 2018, 178, 577–583. [Google Scholar] [CrossRef]
- Graaff, R.; Meerwaldt, R.; Lutgers, H.L.; Baptist, R.; de Jong, E.D.; Zijp, J.R.; Links, T.P.; Smit, A.J.; Rakhorst, G. Instrumentation for the measurement of autofluorescence in human skin. In Proceedings of Advanced Biomedical and Clinical Diagnostic Systems III; SPIE: Bellingham, WS, USA, 2005; pp. 111–118. [Google Scholar]
- Meerwaldt, R.; Links, T.; Graaff, R.; Thorpe, S.R.; Baynes, J.W.; Hartog, J.; Gans, R.; Smit, A. Simple noninvasive measurement of skin autofluorescence. Ann. New York Acad. Sci. 2005, 1043, 290–298. [Google Scholar] [CrossRef]
- Gelžinský, J.; Mayer, O., Jr.; Seidlerová, J.; Mateřánková, M.; Mareš, Š.; Kordíkova, V.; Trefil, L.; Cífková, R.; Filipovský, J. Serum biomarkers, skin autofluorescence and other methods. Which parameter better illustrates the relationship between advanced glycation end products and arterial stiffness in the general population? Hypertens. Res. 2021, 44, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Sharp, P.S.; Rainbow, S.; Mukherjee, S. Serum levels of low molecular weight advanced glycation end products in diabetic subjects. Diabet. Med. 2003, 20, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Stam, F.; Schalkwijk, C.G.; van Guldener, C.; ter Wee, P.M.; Stehouwer, C.D.A. Advanced glycation end-product peptides are associated with impaired renal function, but not with biochemical markers of endothelial dysfunction and inflammation, in non-diabetic individuals. Nephrol. Dial. Transplant. 2005, 21, 677–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Hou, F.; Guo, Z.; Shan, Y.; Zhang, X.; Liu, Z. Advanced glycation end products upregulate C-reactive protein synthesis by human hepatocytes through stimulation of monocyte IL-6 and IL-1 beta production. Scand. J. Immunol. 2007, 66, 555–562. [Google Scholar] [CrossRef]
PWVao-SAF | ||||||
---|---|---|---|---|---|---|
Age | Effect | SE | T | p-Value | LLCI | ULCI |
2.85 × 101 | −3.40 × 10−3 | 1.78 × 10−2 | −1.93 × 10−1 | 8.47 × 10−1 | −3.83 × 10−2 | 3.14 × 10−2 |
4.75 × 101 | 2.80 × 10−3 | 1.24 × 10−2 | 2.23 × 10−1 | 8.24 × 10−1 | −2.16 × 10−2 | 2.71 × 10−2 |
6.65 × 101 | 9.00 × 10−3 | 1.26 × 10−2 | 7.16 × 10−1 | 4.75 × 10−1 | −1.56 × 10−2 | 3.36 × 10−2 |
A: IMT-SAF | ||||||
Age | Effect | SE | T | p-Value | LLCI | ULCI |
4.67 × 101 | 1.34 × 10−1 | 5.00 × 10−1 | 2.68 × 10−1 | 7.90 × 10−1 | −8.47 × 10 −1 | 1.11 × 100 |
5.28 × 101 | 1.21 × 10 −1 | 3.48 × 10−1 | 3.48 × 10 −1 | 7.29 × 10 −1 | −5.61 × 10 −1 | 8.03 × 10−1 |
5.89 × 10 1 | 1.08 × 10 −1 | 2.78 × 10−1 | 3.88 × 10−1 | 6.99 × 10−1 | −4.38 × 10−1 | 6.53 × 10−1 |
B: PWVao-SAF | ||||||
Age | Effect | SE | T | p-Value | LLCI | ULCI |
4.67 × 101 | −2.28 × 10−2 | 3.39 × 10−2 | −6.73 × 10−1 | 5.03 × 10−1 | −8.92 × 10−2 | 4.36 × 10−2 |
5.28 × 101 | 5.80 × 10−3 | 2.14 × 10−2 | 2.71 × 10−1 | 7.87 × 10−1 | −3.62 × 10−2 | 4.78 × 10−2 |
5.89 × 101 | 3.44 × 10−2 | 2.03 × 10−2 | 1.69 × 100 | 9.46 × 10−2 | −5.40 × 10−3 | 7.42 × 10−2 |
Independent Variable | Coefficient | SE | T | p-Value | VIF |
---|---|---|---|---|---|
Age | 1.42 × 10−2 | 1.00 × 10−3 | 1.07 × 101 | 0.00 × 100 | 1.91 × 100 |
BMI | 1.90 × 10−3 | 6.00 × 10−3 | 3.42 × 10−1 | 7.33 × 10−1 | 1.91 × 100 |
Cholesterol | 7.00 × 10−4 | 1.00 × 10−3 | 1.26 × 100 | 2.09 × 10−1 | 1.61 × 100 |
Const a | 5.05 × 10−1 | 3.20 × 10−1 | 1.58 × 100 | 1.16 × 10−1 | 0.00 × 100 |
Creatinine | 3.69 × 10−1 | 1.59 × 10−1 | 2.31 × 100 | 2.10 × 10−2 | 1.49 × 100 |
CRP | 4.29 × 10−2 | 1.80 × 10−2 | 2.33 × 100 | 2.00 × 10−2 | 1.04 × 100 |
Exercise b | −8.70 × 10−3 | 1.40 × 10−2 | −6.18 × 10−1 | 5.37 × 10−1 | 1.04 × 100 |
Insulin | 2.00 × 10−4 | 5.00 × 10−3 | 4.60 × 10−2 | 9.63 × 10−1 | 1.45 × 100 |
Month | −9.50 × 10−3 | 5.00 × 10−3 | −1.78 × 100 | 7.60 × 10−2 | 1.02 × 100 |
OGTT_AUC | −3.48 × 10−6 | 5.27 × 10−6 | −6.59 × 10−1 | 5.10 × 10−1 | 1.30 × 100 |
Sex b | 3.34 × 10−2 | 5.80 × 10−2 | 5.78 × 10−1 | 5.64 × 10−1 | 2.52 × 100 |
Triglyceride | 7.21 × 10−5 | 0.00 × 100 | 1.80 × 10−1 | 8.58 × 10−1 | 1.48 × 100 |
WHR | 1.15 × 10−1 | 3.28 × 10−1 | 3.51 × 10−1 | 7.25 × 10−1 | 3.07 × 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, T.; Brandl, B.; Hauner, H.; Skurk, T. Skin Autofluorescence Mirrors Surrogate Parameters of Vascular Aging: An Enable Study. Nutrients 2023, 15, 1597. https://doi.org/10.3390/nu15071597
Du T, Brandl B, Hauner H, Skurk T. Skin Autofluorescence Mirrors Surrogate Parameters of Vascular Aging: An Enable Study. Nutrients. 2023; 15(7):1597. https://doi.org/10.3390/nu15071597
Chicago/Turabian StyleDu, Tianxing, Beate Brandl, Hans Hauner, and Thomas Skurk. 2023. "Skin Autofluorescence Mirrors Surrogate Parameters of Vascular Aging: An Enable Study" Nutrients 15, no. 7: 1597. https://doi.org/10.3390/nu15071597
APA StyleDu, T., Brandl, B., Hauner, H., & Skurk, T. (2023). Skin Autofluorescence Mirrors Surrogate Parameters of Vascular Aging: An Enable Study. Nutrients, 15(7), 1597. https://doi.org/10.3390/nu15071597