Fluid Balance, Sodium Losses and Hydration Practices of Elite Squash Players during Training
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Participants
2.3. Fluid Balance
2.4. Sweat Sodium Collection and Analysis
2.5. Post Session Fluid and Sodium Consumption
2.6. Perceived Sweat Rate and Sweat Sodium Concentration Measures
2.7. Statistical Analysis
3. Results
3.1. Environmental Conditions
3.2. Pre-Session Urine Osmolarity
3.3. Training Load
3.4. Fluid Balance, Sweat Rate and Sweat Sodium Composition
3.5. Differences in Sweat Rates and Sweat (Na+) between Males and Females
3.6. Post Session Fluid and Na+ Intake
3.7. Relationship between Players Perceived Sweat Rate and Sweat (Na+)
4. Discussion
4.1. Pre-Session Hydration Status
4.2. Fluid Balance
4.3. Sweat (Na+) Losses
4.4. Differences between Males and Females
4.5. Post-Session Fluid and Na+ Consumption
4.6. Players’ Perceived Sweat Rate, Sweat (Na+) and Perceived Incidence of Cramps
4.7. Limitations
4.8. Practical Applications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, T.W.; Williams, B.K.; Kilgallen, C.; Horobeanu, C.; Shillabeer, B.C.; Murray, A.; Cardinale, M. A review of the performance requirements of squash. Int. J. Sports Sci. Coach. 2018, 13, 1223–1232. [Google Scholar] [CrossRef]
- Girard, O.; Chevalier, R.; Habrard, M.; Sciberra, P.; Hot, P.; Millet, G.P. Game analysis and energy requirements of elite squash. J. Strength Cond. Res. 2007, 21, 909–914. [Google Scholar] [CrossRef] [PubMed]
- James, C.; Dhawan, A.; Jones, T.; Girard, O. Quantifying Training Demands of a 2-Week In-Season Squash Microcycle. Int. J. Sports Physiol. Perform. 2021, 16, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Gibson, N.; Bell, P.; Clyne, A.; Lobban, G.; Aitken, L.; Gibbon, K. Physical Preparation for Elite-Level Squash Players: Monitoring, Assessment, and Training Practices for the Strength and Conditioning Coach. Strength Cond. J. 2019, 41, 51–62. [Google Scholar] [CrossRef]
- Gleeson, M. Temperature regulation during exercise. Int. J. Sports Med. 1998, 19, 96–99. [Google Scholar] [CrossRef]
- Blanksby, B.A.; Elliott, B.C.; Davis, K.H.; Mercer, M.D. Blood pressure and rectal temperature responses of middle-aged sedentary, middle-aged active and “A”-grade competitive male squash players. Br. J. Sports Med. 1980, 14, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Sawka, M.N.; Cheuvront, S.N.; Kenefick, R.W. Hypohydration and Human Performance: Impact of Environment and Physiological Mechanisms. Sports Med. 2015, 45, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Dill, D.B.; Costill, D.L. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J. Appl. Physiol. 1974, 37, 247–248. [Google Scholar] [CrossRef] [Green Version]
- Trangmar, S.J.; Chiesa, S.T.; Stock, C.G.; Kalsi, K.K.; Secher, N.H.; González-Alonso, J. Dehydration affects cerebral blood flow but not its metabolic rate for oxygen during maximal exercise in trained humans. J. Physiol. 2014, 592, 3143–3160. [Google Scholar] [CrossRef]
- González-Alonso, J.; Calbet, J.A.; Nielsen, B. Muscle blood flow is reduced with dehydration during prolonged exercise in humans. J. Physiol. 1998, 513, 895–905. [Google Scholar] [CrossRef]
- Montain, S.J.; Smith, S.A.; Mattot, R.P.; Zientara, G.P.; Jolesz, F.A.; Sawka, M.N. Hypohydration effects on skeletal muscle performance and metabolism: A 31P-MRS study. J. Appl. Physiol. 1998, 84, 1889–1894. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, L.E.; Costil, D.L.; Fink, W.J. Influence of diuretic-induced dehydration on competitive running performance. Med. Sci. Sports Exerc. 1985, 17, 456–461. [Google Scholar] [CrossRef]
- Walsh, R.M.; Noakes, T.D.; Hawley, J.A.; Dennis, S.C. Impaired high-intensity cycling performance time at low levels of dehydration. Int. J. Sports Med. 1994, 15, 392–398. [Google Scholar] [CrossRef]
- McConell, G.K.; Burge, C.M.; Skinner, S.L.; Hargreaves, M. Influence of ingested fluid volume on physiological responses during prolonged exercise. Acta Physiol. Scand. 1997, 160, 149–156. [Google Scholar] [CrossRef]
- Cheuvront, S.N.; Carter, R.; Castellani, J.W.; Sawka, M.N. Hypohydration impairs endurance exercise performance in temperate but not cold air. J. Appl. Physiol. 2005, 99, 1972–1976. [Google Scholar] [CrossRef] [Green Version]
- Ebert, T.R.; Martin, D.T.; Bullock, N.; Mujika, I.; Quod, M.J.; Farthing, L.A.; Burke, L.M.; Withers, R.T. Influence of hydration status on thermoregulation and cycling hill climbing. Med. Sci. Sports Exerc. 2007, 39, 323–329. [Google Scholar] [CrossRef]
- Stearns, R.L.; Casa, D.J.; Lopez, R.M.; McDermott, B.P.; Ganio, M.S.; Decher, N.R.; Scruggs, I.C.; West, A.E.; Armstrong, L.E.; Maresh, C.M. Influence of hydration status on pacing during trail running in the heat. J. Strength Cond. Res. 2009, 23, 2533–2541. [Google Scholar] [CrossRef]
- Casa, D.J.; Stearns, R.L.; Lopez, R.M.; Ganio, M.S.; McDermott, B.P.; Walker Yeargin, S.; Yamamoto, L.M.; Mazerolle, S.M.; Roti, M.W.; Armstrong, L.E.; et al. Influence of hydration on physiological function and performance during trail running in the heat. J. Athl. Train. 2010, 45, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Castellani, J.W.; Muza, S.R.; Cheuvront, S.N.; Sils, I.V.; Fulco, C.S.; Kenefick, R.W.; Beidleman, B.A.; Sawka, M.N. Effect of hypohydration and altitude exposure on aerobic exercise performance and acute mountain sickness. J. Appl. Physiol. 2010, 109, 1792–1800. [Google Scholar] [CrossRef] [Green Version]
- Kenefick, R.W.; Cheuvront, S.N.; Palombo, L.J.; Ely, B.R.; Sawka, M.N. Skin temperature modifies the impact of hypohydration on aerobic performance. J. Appl. Physiol. 2010, 109, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Merry, T.L.; Ainslie, P.N.; Cotter, J.D. Effects of aerobic fitness on hypohydration-induced physiological strain and exercise impairment. Acta Physiol. 2010, 198, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Lopez, R.M.; Casa, D.J.; Jensen, K.A.; DeMartini, J.K.; Pagnotta, K.D.; Ruiz, R.C.; Roti, M.W.; Stearns, R.L.; Armstrong, L.E.; Maresh, C.M. Examining the influence of hydration status on physiological responses and running speed during trail running in the heat with controlled exercise intensity. J. Strength Cond. Res. 2011, 25, 2944–2954. [Google Scholar] [CrossRef] [PubMed]
- Bardis, C.N.; Kavouras, S.A.; Kosti, L.; Markousi, M.; Sidossis, L.S. Mild hypohydration decreases cycling performance in the heat. Med. Sci. Sports Exerc. 2013, 45, 1782–1789. [Google Scholar] [CrossRef] [PubMed]
- Davis, B.A.; Thigpen, L.K.; Hornsby, J.H.; Green, J.M.; Coates, T.E.; O’Neal, E.K. Hydration kinetics and 10-km outdoor running performance following 75% versus 150% between bout fluid replacement. Eur. J. Sport Sci. 2014, 14, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Fleming, J.; James, L.J. Repeated familiarisation with hypohydration attenuates the performance decrement caused by hypohydration during treadmill running. Appl. Physiol. Nutr. Metab. 2014, 39, 124–129. [Google Scholar] [CrossRef]
- Logan-Sprenger, H.M.; Heigenhauser, G.J.F.; Jones, G.L.; Spriet, L.L. The effect of dehydration on muscle metabolism and time trial performance during prolonged cycling in males. Physiol. Rep. 2015, 3, e12483. [Google Scholar] [CrossRef]
- James, L.J.; Moss, J.; Henry, J.; Papadopoulou, C.; Mears, S.A. Hypohydration impairs endurance performance: A blinded study. Physiol. Rep. 2017, 5, e13315. [Google Scholar] [CrossRef]
- Adams, J.D.; Sekiguchi, Y.; Suh, H.; Seal, A.D.; Sprong, C.A.; Kirkland, T.W.; Kavouras, S.A. Dehydration impairs cycling performance, independently of thirst: A blinded study. Med. Sci. Sports Exerc. 2018, 50, 1697–1703. [Google Scholar] [CrossRef]
- Adams, J.D.; Scott, D.M.; Brand, N.A.; Suh, H.; Seal, A.D.; McDermott, B.P.; Ganio, M.S.; Kavouras, S.A. Mild hypohydration impairs cycle ergometry performance in the heat: A blinded study. Scand. J. Med. Sci. Sports 2019, 29, 686–695. [Google Scholar] [CrossRef]
- Deshayes, T.A.; Jeker, D.; Goulet, E.D.B. Impact of pre-exercise hypohydration on aerobic exercise performance, peak oxygen consumption and oxygen consumption at lactate threshold: A systematic review with meta-analysis. Sports Med. 2019, 50, 581–596. [Google Scholar] [CrossRef]
- Funnell, M.P.; Mears, S.A.; Bergin-Taylor, K.; James, L.J. Blinded and unblinded hypohydration similarly impair cycling time trial performance in the heat in trained cyclists. J. Appl. Physiol. 2019, 126, 870–879. [Google Scholar] [CrossRef]
- Savoie, F.; Kenefick, R.W.; Ely, B.R.; Cheuvront, S.N.; Goulet, E.D.B. Effect of Hypohydration on Muscle Endurance, Strength, Anaerobic Power and Capacity and Vertical Jumping Ability: A Meta-Analysis. Sports Med. 2015, 45, 1207–1227. [Google Scholar] [CrossRef]
- Jones, L.C.; Cleary, M.A.; Lopez, R.M.; Zuri, R.E.; Lopez, R. Active dehydration impairs upper and lower body anaerobic muscular power. J. Strength Cond. Res. 2008, 22, 455–463. [Google Scholar] [CrossRef]
- Nuccio, R.P.; Barnes, K.A.; Carter, J.M.; Baker, L.B. Fluid Balance in Team Sport Athletes and the Effect of Hypohydration on Cognitive, Technical, and Physical Performance. Sports Med. 2017, 47, 1951–1982. [Google Scholar] [CrossRef] [Green Version]
- Caterisano, A.; Camaione, D.N.; Murphy, R.T.; Gonino, V.J. The effect of differential training on isokinetic muscular endurance during acute thermally induced hypohydration. Am. J. Sports Med. 1988, 16, 269–273. [Google Scholar] [CrossRef]
- Bigard, A.; Sanchez, H.; Claveyrolas, G.; Martin, S.; Thimonier, B.; Arnaud, M.J. Effects of dehydration and rehydration on EMG changes during fatiguing contractions. Med. Sci. Sports Exerc. 2001, 33, 1694–1700. [Google Scholar] [CrossRef] [Green Version]
- Kraft, J.A.; Green, J.M.; Bishop, P.A.; Richardson, M.T.; Neggers, Y.H.; Leeper, J.D. Impact of dehydration on a full body resistance exercise protocol. Eur. J. Appl. Physiol. 2010, 109, 259–267. [Google Scholar] [CrossRef]
- Wilson, G.; Hawken, M.B.; Poole, I.; Sparks, A.; Bennett, S.; Drust, B.; Morton, J.; Close, G.L. Rapid weight-loss impairs simulated riding performance and strength in jockeys: Implications for making-weight. J. Sports Sci. 2014, 32, 383–391. [Google Scholar] [CrossRef]
- Ftaiti, F.; Grélot, L.; Coudreuse, J.M.; Nicol, C. Combined effect of heat stress, dehydration and exercise on neuromuscular function in humans. Eur. J. Appl. Physiol. 2001, 84, 87–94. [Google Scholar] [CrossRef]
- Hayes, L.D.; Morse, C.I. The effects of progressive dehydration on strength and power: Is there a dose response? Eur J. Appl. Physiol. 2010, 108, 701–707. [Google Scholar] [CrossRef]
- Minshull, C.; James, L. The effects of hypohydration and fatigue on neuromuscular activation performance. Appl. Physiol. Nutr. Metab. 2013, 38, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Bowtell, J.L.; Avenell, G.; Hunter, S.P.; Mileva, K.N. Effect of hypohydration on peripheral and corticospinal excitability and voluntary activation. PLoS ONE 2013, 8, e77004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Judelson, D.A.; Maresh, C.M.; Farrell, M.J.; Yamamoto, L.M.; Armstrong, L.E.; Kraemer, W.J.; Volek, J.S.; Spiering, B.A.; Casa, D.J.; Anderson, J.M. Effect of hydration state on strength, power, and resistance exercise performance. Med. Sci. Sports Exerc. 2007, 39, 1817–1824. [Google Scholar] [CrossRef] [PubMed]
- Baker, L.B.; Conroy, D.E.; Kenney, W.L. Dehydration impairs vigilance-related attention in male basketball players. Med. Sci. Sports Exerc. 2007, 39, 976–983. [Google Scholar] [CrossRef] [Green Version]
- D’Anci, K.E.; Mahoney, C.R.; Vibhakar, A.; Kanter, J.H.; Taylor, H.A. Voluntary dehydration and cognitive performance in trained college athletes. Percept. Mot. Ski. 2009, 109, 251–269. [Google Scholar] [CrossRef]
- MacLeod, H.; Sunderland, C. Previous-day hypohydration impairs skill performance in elite female field hockey players. Scand. J. Med. Sci. Sports 2012, 22, 430–438. [Google Scholar] [CrossRef]
- Smith, M.F.; Newell, A.J.; Baker, M.R. Effect of acute mild dehydration on cognitive-motor performance in golf. J. Strength Cond. Res. 2012, 26, 3075–3080. [Google Scholar] [CrossRef]
- Wittbrodt, M.T.; Millard-Stafford, M. Dehydration impairs cognitive performance: A meta-analysis. Med. Sci. Sports Exerc. 2018, 50, 2360–2368. [Google Scholar] [CrossRef]
- McGregor, S.J.; Nicholas, C.W.; Lakomy, H.K.A.; Williams, C. The influence of intermittent high-intensity shuttle running and fluid ingestion on the performance of a soccer skill. J. Sports Sci. 1999, 17, 895–903. [Google Scholar] [CrossRef]
- Devlin, L.H.; Fraser, S.F.; Barras, N.S.; Hawley, J.A. Moderate levels of hypohydration impairs bowling accuracy but not bowling velocity in skilled cricket players. J. Sci. Med. Sport 2001, 4, 179–187. [Google Scholar] [CrossRef]
- Dougherty, K.A.; Baker, L.B.; Chow, M.; Larry-Kenney, W. Two percent dehydration impairs and six percent carbohydrate drink improves boys basketball skills. Med. Sci. Sports Exerc. 2006, 38, 1650–1658. [Google Scholar] [CrossRef]
- Baker, L.B.; Dougherty, K.A.; Chow, M.; Larry-Kenney, W. Progressive dehydration causes a progressive decline in basketball skill performance. Med. Sci. Sports Exerc. 2007, 39, 1114–1123. [Google Scholar] [CrossRef] [Green Version]
- Gamage, J.P.; De Silva, A.P.; Nalliah, A.K.; Galloway, S.D.R. Effects of dehydration on cricket specific skill performance in hot and humid conditions. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 531–541. [Google Scholar] [CrossRef]
- Sawka, M.N.; Burke, L.M.; Randy-Eichner, E.; Maughan, R.J.; Montain, S.J.; Stachenfeld, N.S. American College of Sports Medicine Position Stand. Exercise and fluid replacement. Med. Sci. Sports Exerc. 2007, 39, 377–390. [Google Scholar]
- Baker, L.B.; Barnes, K.A.; Anderson, M.L.; Passe, D.H.; Stofan, J.R. Normative data for regional sweat sodium concentration and whole-body sweating rate in athletes. J. Sports Sci. 2016, 34, 358–368. [Google Scholar] [CrossRef]
- Barnes, K.A.; Anderson, M.L.; Stofan, J.R.; Dalrymple, K.J.; Reimel, A.J.; Roberts, T.J.; Randell, R.K.; Ungaro, C.T.; Baker, L.B. Normative data for sweating rate, sweat sodium concentration, and sweat sodium loss in athletes: An update and analysis by sport. J. Sports Sci. 2019, 37, 2356–2366. [Google Scholar] [CrossRef] [Green Version]
- Shirreffs, S.M.; Maughan, R.J. Volume repletion after exercise-induced volume depletion in humans: Replacement of water and sodium losses. Am. J. Phys. 1998, 43, 868–875. [Google Scholar] [CrossRef]
- Evans, G.H.; James, L.J.; Shirreffs, S.M.; Maughan, R.J. Optimizing the restoration and maintenance of fluid balance after exercise-induced dehydration. J. Appl. Physiol. 2017, 122, 945–951. [Google Scholar] [CrossRef]
- Ranchordas, M.K.; Tiller, N.B.; Ramchandani, G.; Jutley, R.; Blow, A.; Tye, J.; Drury, B. Normative data on regional sweat-sodium concentrations of professional male team-sport athletes. J. Int. Soc. Sports Nutr. 2017, 14, 40. [Google Scholar] [CrossRef] [Green Version]
- Bergeron, M.F.; Maresh, C.M.; Armstrong, L.E.; Signorile, J.F.; Castellani, J.W.; Kenefick, R.W.; LaGasse, K.E.; Riebe, D.A. Fluid-electrolyte balance associated with tennis match play in a hot environment. Int. J. Sport Nutr. 1995, 5, 180–193. [Google Scholar] [CrossRef] [Green Version]
- Bergeron, M.F. Heat cramps: Fluid and electrolyte challenges during tennis in the heat. J. Sci. Med. Sport 2003, 6, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Tippet, M.L.; Stofan, J.R.; Lacambra, M.; Horswill, C.A. Core temperature and sweat responses in professional women’s tennis players during tournament play in the heat. J. Athl. Train. 2011, 46, 55–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lott, M.J.E.; Galloway, S.D.R. Fluid balance and sodium losses during indoor tennis match play. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 492–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abián-Vicén, J.; Del Coso, J.; González-Millán, C.; Salinero, J.J.; Abián, P. Analysis of dehydration and strength in elite badminton players. PLoS ONE 2012, 7, e37821. [Google Scholar] [CrossRef] [Green Version]
- Maughan, R.J.; Merson, S.J.; Broad, N.P.; Shirreffs, S.M. Fluid and electrolyte intake and loss in elite soccer players during training. Int. J. Sport Nutr. Exerc. Metab. 2004, 14, 333–346. [Google Scholar] [CrossRef]
- Maughan, R.J.; Shirreffs, S.M.; Merson, S.J.; Horswill, C.A. Fluid and electrolyte balance in elite male football (soccer) players training in a cool environment. J. Sports Sci. 2005, 23, 73–79. [Google Scholar] [CrossRef]
- Shirreffs, S.M.; Aragon-Vargas, L.; Chamorro, M.; Maughan, R.J.; Serratosa, L.; Zachwieja, J.J. The sweating response of elite professional soccer players to training in the heat. Int. J. Sports Med. 2005, 26, 90–95. [Google Scholar] [CrossRef]
- Maughan, R.J.; Watson, P.; Evans, G.H.; Broad, N.; Shirreffs, S.M. Water balance and salt losses in competitive football. Int. J. Sport Nutr. Exerc. Metab. 2007, 17, 583–594. [Google Scholar] [CrossRef]
- Aragón-Vargas, L.F.; Moncada-Jiménez, J.; Hernández-Elizondo, J.; Barrenechea, A.; Monge-Alvarado, M. Evaluation of pre-game hydration status, heat stress, and fluid balance during professional soccer competition in the heat. Eur. J. Sport Sci. 2009, 9, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Horswill, C.A.; Stofan, J.R.; Lacambra, M.; Toriscelli, T.A.; Eichner, E.R.; Murray, R. Sodium balance during U. S. football training in the heat: Cramp-prone vs. reference players. Int. J. Sports Med. 2009, 30, 789–794. [Google Scholar] [CrossRef]
- Kilding, A.E.; Tunstall, H.; Wraith, E.; Good, M.; Gammon, C.; Smith, C. Sweat rate and sweat electrolyte composition in international female soccer players during game specific training. Int. J. Sports Med. 2009, 30, 443–447. [Google Scholar] [CrossRef]
- Shirreffs, S.M.; Maughan, R.J. Water and salt balance in young male football players in training during the holy month of ramadan. J. Sports Sci. 2008, 26, 47–54. [Google Scholar] [CrossRef]
- Kurdak, S.S.; Shirreffs, S.M.; Maughan, R.J.; Ozgünen, K.T.; Zeren, Ç.; Korkmaz, S.; Yazici, Z.; Ersoz, G.; Binnet, M.S.; Dvorak, J. Hydration and sweating responses to hot-weather football competition. Scand. J. Med. Sci. Sports 2010, 20, 133–139. [Google Scholar] [CrossRef]
- Da Silva, R.P.; Mündel, T.; Natali, A.J.; Bara Filho, M.G.; Alfenas, R.C.G.; Lima, J.R.P.; Belfort, F.G.; Lopez, P.R.N.R.; Marins, J.C.B. Pre-game hydration status, sweat loss, and fluid intake in elite brazilian young male soccer players during competition. J. Sports Sci. 2012, 30, 37–42. [Google Scholar] [CrossRef]
- Duffield, R.; McCall, A.; Coutts, A.J.; Peiffer, J.J. Hydration, sweat and thermoregulatory responses to professional football training in the heat. J. Sports Sci. 2012, 30, 957–965. [Google Scholar] [CrossRef]
- Phillips, S.M.; Sykes, D.; Gibson, N. Hydration status and fluid balance of elite european youth soccer players during consecutive training sessions. J. Sports Sci. Med. 2014, 13, 817–822. [Google Scholar]
- Gibson, J.C.; Stuart-Hill, L.; Pethick, W.; Gaul, C.A. Hydration status and fluid and sodium balance in elite canadian junior women’s soccer players in a cool environment. Appl. Physiol. Nutr. Metab. 2012, 37, 931–937. [Google Scholar] [CrossRef]
- Rollo, I.; Randell, R.K.; Baker, L.; Leyes, J.Y.; Leal, D.M.; Lizarraga, A.; Mesalles, J.; Jeukendrup, A.E.; James, L.J.; Carter, J.M. Fluid Balance, Sweat Na + Losses, and Carbohydrate Intake of Elite Male Soccer Players in Response to Low and High Training Intensities in Cool and Hot Environments. Nutrients 2021, 13, 401. [Google Scholar] [CrossRef]
- Tarnowski, C.A.; Rollo, I.; Carter, J.M.; Lizarraga-Dallo, M.; Oliva, M.P.; Clifford, T.; James, L.; Randell, R.K. Fluid balance and carbohydrate intake of elite female soccer players during training and competition. Nutrients 2022, 14, 3188. [Google Scholar] [CrossRef]
- Godek, S.F.; Godek, J.J.; Bartolozzi, A.R. Hydration status in college football players during consecutive days of twice-a-day preseason practices. Am. J. Sports Med. 2005, 33, 843–851. [Google Scholar] [CrossRef]
- Godek, S.F.; Bartolozzi, A.R.; Godek, J.J. Sweat rate and fluid turnover in american football players compared with runners in a hot and humid environment. Br. J. Sports Med. 2005, 39, 205–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stover, E.A.; Zachwieja, J.; Stofan, J.; Murray, R.; Horswill, C.A. Consistently high urine specific gravity in adolescent american football players and the impact of an acute drinking strategy. Int. J. Sports Med. 2006, 27, 330–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godek, S.F.; Bartolozzi, A.R.; Burkholder, R.; Sugarman, E.; Dorshimer, G. Core temperature and percentage of dehydration in professional football linemen and backs during preseason practices. J. Athl. Train. 2006, 41, 8–14. [Google Scholar] [PubMed]
- Yeargin, S.W.; Casa, D.J.; Armstrong, L.E.; Watson, G.; Judelson, D.A.; Psathas, E.; Sparrow, S.L. Heat acclimatization and hydration status of american football players during initial summer workouts. J. Strength Cond. Res. 2006, 20, 463. [Google Scholar] [PubMed]
- Stofan, J.R.; Osterberg, K.L.; Horswill, C.A.; Lacambra, M.; Eichner, E.R.; Anderson, S.A.; Murray, R. Daily fluid turnover during preseason training in U.S. college football. Int. J. Sport Nutr. Exerc. Metab. 2007, 17, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Godek, S.F.; Peduzzi, C.; Burkholder, R.; Condon, S.; Dorshimer, G.; Bartolozzi, A.R. Sweat rates, sweat sodium concentrations, and sodium losses in 3 groups of professional football players. J. Athl. Train. 2010, 45, 364–371. [Google Scholar] [CrossRef] [Green Version]
- Godek, S.F.; Bartolozzi, A.R.; Peduzzi, C.; Heinerichs, S.; Garvin, E.; Sugarman, E.; Burkholder, R. Fluid consumption and sweating in national football league and collegiate football players with different access to fluids during practice. J. Athl. Train. 2010, 45, 128–135. [Google Scholar] [CrossRef] [Green Version]
- Yeargin, S.W.; Casa, D.J.; Judelson, D.A.; McDermott, B.P.; Ganio, M.S.; Lee, E.C.; Lopez, R.M.; Stearns, R.L.; Anderson, J.M.; Armstrong, L.E.; et al. Thermoregulatory responses and hydration practices in heat-acclimatized adolescents during preseason high school football. J. Athl. Train. 2010, 45, 136–146. [Google Scholar] [CrossRef] [Green Version]
- Osterberg, K.L.; Horswill, C.A.; Baker, L.B. Pregame urine specific gravity and fluid intake by national basketball association players during competition. J. Athl. Train. 2009, 44, 53–57. [Google Scholar] [CrossRef] [Green Version]
- Brandenburg, J.P.; Gaetz, M. Fluid balance of elite female basketball players before and during game play. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 347–352. [Google Scholar] [CrossRef]
- Thigpen, L.K.; Green, J.M.; OʼNeal, E.K. Hydration profile and sweat loss perception of male and female division II basketball players during practice. J. Strength Cond. Res. 2014, 28, 3425–3431. [Google Scholar] [CrossRef]
- Vukasinovic-Vesic, M.; Andjelkovic, M.; Stojmenovic, T.; Dikic, N.; Kostic, M.; Curcic, D. Sweat rate and fluid intake in young elite basketball players on the FIBA europe U20 championship. Vojnosanit. Pregl. 2015, 72, 1063–1068. [Google Scholar] [CrossRef]
- MacLeod, H.; Sunderland, C. Fluid balance and hydration habits of elite female field hockey players during consecutive international matches. J. Strength Cond. Res. 2009, 23, 1245–1251. [Google Scholar] [CrossRef]
- Palmer, M.S.; Spriet, L.L. Sweat rate, salt loss, and fluid intake during an intense on-ice practice in elite canadian male junior hockey players. Appl. Physiol. Nutr. Metab. 2008, 33, 263–271. [Google Scholar] [CrossRef]
- Palmer, M.S.; Logan, H.M.; Spriet, L.L. On-ice sweat rate, voluntary fluid intake, and sodium balance during practice in male junior ice hockey players drinking water or a carbohydrate-electrolyte solution. Appl. Physiol. Nutr. Metab. 2010, 35, 328–335. [Google Scholar] [CrossRef]
- Logan-Sprenger, H.; Palmer, M.S.; Spriet, L.L. Estimated fluid and sodium balance and drink preferences in elite male junior players during an ice hockey game. Appl. Physiol. Nutr. Metab. 2011, 36, 145–152. [Google Scholar] [CrossRef]
- Gamble, A.S.D.; Bigg, J.L.; Vermeulen, T.F.; Boville, S.M.; Eskedjian, G.S.; Jannas-Vela, S.; Whitfield, J.; Palmer, M.S.; Spriet, L.L. Estimated sweat loss, fluid and carbohydrate intake, and sodium balance of male major junior, AHL, and NHL players during on-ice practices. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 612–619. [Google Scholar] [CrossRef]
- Newell, M.; Newell, J.; Grant, S. Fluid and electrolyte balance in elite gaelic football players. Ir. Med. J. 2008, 101, 236–239. [Google Scholar]
- Meir, R.; Brooks, L.; Shield, T. Body weight and tympanic temperature change in professional rugby league players during night and day games: A study in the field. J. Strength Cond. Res. 2003, 17, 566–572. [Google Scholar]
- O’Hara, J.P.; Jones, B.L.; Tsakirides, C.; Carroll, S.; Cooke, C.B.; King, R.F.G.J. Hydration status of rugby league players during home match play throughout the 2008 super league season. Appl. Physiol. Nutr. Metab. 2010, 35, 790–796. [Google Scholar] [CrossRef]
- Cosgrove, S.D.; Love, T.D.; Brown, R.C.; Baker, D.F.; Howe, A.S.; Black, K.E. Fluid and electrolyte balance during two different preseason training sessions in elite rugby union players. J. Strength Cond. Res. 2014, 28, 520–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, B.L.; OʼHara, J.P.; Till, K.; King, R.F.G.J. Dehydration and Hyponatremia in Professional Rugby Union Players: A Cohort Study Observing English Premiership Rugby Union Players During Match Play, Field, and Gym Training in Cool Environmental Conditions. J. Strength Cond. Res. 2015, 29, 107–115. [Google Scholar] [CrossRef] [PubMed]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. Bull. World Health Organ. 2001, 79, 373–374. [Google Scholar]
- Shirreffs, S.M.; Maughan, R.J. Urine osmolality and conductivity as indices of hydration status in athletes in the heat. Med. Sci. Sports Exerc. 1998, 30, 1598–1602. [Google Scholar] [CrossRef]
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Haddad, M.; Stylianides, G.; Djaoui, L.; Dellal, A.; Chamari, K. Session-RPE Method for Training Load Monitoring: Validity, Ecological Usefulness, and Influencing Factors. Front. Neurosci. 2017, 11, 612. [Google Scholar] [CrossRef] [Green Version]
- Cram, J.R.; Rommen, D. Effects of skin preparation on data collected using an EMG muscle-scanning procedure. Biofeedback Self-Regul. 1989, 14, 75–82. [Google Scholar] [CrossRef]
- Mastella, G.; Di Cesare, G.; Borruso, A.; Menin, L.L.; Zanolla, L. Reliability of sweat-testing by the macroduct? collection method combined with conductivity analysis in comparison with the classic gibson and cooke technique. Acta Paediatr. 2000, 89, 933–937. [Google Scholar] [CrossRef]
- Riedi, C.A.; Zavadniak, A.F.; Silva, D.; Franco, A.; Rosario, F.N. Comparison of conductivity with sodium determination in the same sweat sample. J. Pediatr. 2000, 76, 443–446. [Google Scholar] [CrossRef] [Green Version]
- Hammond, K.B.; Turcios, N.L.; Gibson, L.E. Clinical evaluation of the macroduct sweat collection system and conductivity analyzer in the diagnosis of cystic fibrosis. J. Pediatr. 1994, 124, 255–260. [Google Scholar] [CrossRef]
- Goulet, E.D.B.; Asselin, A.; Gosselin, J.; Baker, L.B. Measurement of sodium concentration in sweat samples: Comparison of 5 analytical techniques. Appl. Physiol. Nutr. Metab. 2017, 42, 861–868. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; L. Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Schober, P.; Boer, C.; Lothar, A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- McLean, A.; Brown, R.C.; Black, K.E. The fluid and electrolyte balance of new zealand european and Māori/Pacific island athletes: An observational study. Eur. J. Sport Sci. 2016, 16, 336–343. [Google Scholar] [CrossRef]
- Arnaoutis, G.; Kavouras, S.A.; Angelopoulou, A.; Skoulariki, C.; Bismpikou, S.; Mourtakos, S.; Sidossis, L.S. Fluid balance during training in elite young athletes of different sports. J. Strength Cond. Res. 2015, 29, 3447–3452. [Google Scholar] [CrossRef] [Green Version]
- Baker, L.B. Sweating rate and sweat sodium concentration in athletes: A review of methodology and Intra/Interindividual variability. Sports Med. 2017, 47, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Gagnon, D.; Jay, O.; Kenny, G.P. The evaporative requirement for heat balance determines whole-body sweat rate during exercise under conditions permitting full evaporation. J. Physiol. 2013, 591, 2925–2935. [Google Scholar] [CrossRef]
- Professional Squash Association. Available online: https://www.psaworldtour.com/tournaments/ (accessed on 16 January 2023).
- Professional Squash Association. Available online: https://www.psaworldtour.com/tournament/cib-psa-world-championships-cairo-2022/ (accessed on 16 January 2023).
- Sato, K.; Dobson, R.L. Regional and individual variations in the function of the human eccrine sweat gland. J. Investig. Dermatol. 1970, 54, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Sato, F. Individual variations in structure and function of human eccrine sweat gland. Am. J. Physiol. 1983, 245, 203–208. [Google Scholar] [CrossRef]
- Vučković, G.; Dežman, B.; Erčulj, F.; Kovačič, S.; Perš, J. Comparative movement analysis of winning and losing players in men’s elite squash. Kinesiol. Slov. 2003, 9, 74–84. [Google Scholar]
- Buono, M.J.; Ball, K.D.; Kolkhorst, F.W. Sodium ion concentration vs. sweat rate relationship in humans. J. Appl. Physiol. 2007, 103, 990–994. [Google Scholar] [CrossRef]
- Chinevere, T.D.; Kenefick, R.W.; Cheuvront, S.N.; Lukaski, H.C.; Sawka, M.N. Effect of heat acclimation on sweat minerals. Med. Sci. Sports Exerc. 2008, 40, 886–891. [Google Scholar] [CrossRef] [Green Version]
- Kirby, C.R. Plasma aldosterone and sweat sodium concentrations after exercise and heat acclimation. J. Appl. Physiol. 1986, 61, 967–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sigal, C.B.; Dobson, R.L. The effect of salt intake on sweat gland function. J. Investig. Dermatol. 1968, 50, 451–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allsopp, A.J.; Sutherland, R.; Wood, P.; Wootton, S.A. The effect of sodium balance on sweat sodium secretion and plasma aldosterone concentration. Eur. J. Appl. Physiol. Occup. Physiol. 1998, 78, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Giersch, G.E.W.; Charkoudian, N.; Stearns, R.L.; Casa, D.J. Fluid balance and hydration considerations for women: Review and future directions. Sports Med. 2020, 50, 253–261. [Google Scholar] [CrossRef]
- Rodriguez-Giustiniani, P.; Rodriguez-Sanchez, N.; Galloway, S.D.R. Fluid and electrolyte balance considerations for female athletes. Eur. J. Sport Sci. 2022, 22, 697–708. [Google Scholar] [CrossRef]
- Stachenfeld, N.S.; Keefe, D.L.; Palter, S.F. Estrogen and progesterone effects on transcapillary fluid dynamics. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 281, 1319–1329. [Google Scholar] [CrossRef]
- Stachenfeld, N.S.; Keefe, D.L. Estrogen effects on osmotic regulation of AVP and fluid balance. Am. J. Physiol.-Endocrinol. Metab. 2002, 283, 711–721. [Google Scholar] [CrossRef]
- Stachenfeld, N.S. Sex hormone effects on body fluid regulation. Exerc. Sport Sci. Rev. 2008, 36, 152–159. [Google Scholar] [CrossRef] [Green Version]
- Maughan, R.J.; Shirreffs, S.M. Muscle Cramping During Exercise: Causes, Solutions, and Questions Remaining. Sports Med. 2019, 49, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Hew-Butler, T.; Eskin, C.; Bickham, J.; Rusnak, M.; VanderMeulen, M. Dehydration is how you define it: Comparison of 318 blood and urine athlete spot checks. BMJ Open Sport Exerc. Med. 2018, 4, e000297. [Google Scholar] [CrossRef] [Green Version]
- Taylor, N.A.; Machado-Moreira, C. Regional variations in transepidermal water loss, eccrine sweat gland density, sweat secretion rates and electrolyte composition in resting and exercising humans. Extrem Physiol. Med. 2013, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Shirreffs, S.M.; Maughan, R.J. Whole body sweat collection in humans: An improved method with preliminary data on electrolyte content. J. Appl. Physiol. 1997, 82, 336–341. [Google Scholar] [CrossRef]
- Baker, L.B.; Stofan, J.R.; Hamilton, A.A.; Horswill, C.A. Comparison of regional patch collection vs. whole body washdown for measuring sweat sodium and potassium loss during exercise. J. Appl. Physiol. 2009, 107, 887–895. [Google Scholar] [CrossRef] [Green Version]
- Patterson, M.J.; Galloway, S.D.R.; Nimmo, M.A. Variations in regional sweat composition in normal human males. Exp. Physiol. 2000, 85, 869–875. [Google Scholar] [CrossRef]
- Vimieiro-Gomes, A.; Magalhães, F.C.; Amorim, F.T.; Machado-Moreira, C.; Rosa, M.S.; Lima, N.R.V.; Rodrigues, L.O.C. Comparison of sweat rate during graded exercise and the local rate induced by pilocarpine. Braz. J. Med. Biol. Res. 2005, 38, 1133–1139. [Google Scholar] [CrossRef] [Green Version]
- Shibasaki, M.; Crandall, C.G. Mechanisms and controllers of eccrine sweating in humans. Front. Biosci. 2010, 2, 685–696. [Google Scholar]
- Shibasaki, M.; Kondo, N.; Crandall, C.G. Non-thermoregulatory modulation of sweating in humans. Exerc. Sport Sci. Rev. 2003, 31, 34–39. [Google Scholar] [CrossRef]
- Sato, K.; Feibleman, C.; Dobson, R.L. The electrolyte composition of pharmacologically and thermally stimulated sweat: A comparative study. J. Investig. Dermatol. 1970, 55, 433–438. [Google Scholar] [CrossRef] [Green Version]
- Shwachman, H.; Mahmoodian, A. The sweat test in cystic fibrosis. A comparison of overnight sweat collection versus the pilocarpine iontophoresis method. J. Pediatr. 1966, 69, 285–287. [Google Scholar] [CrossRef]
Participant (n) | Sex (M/F) | Duration (min) | Mean Heart Rate (Beats.min−1) | Mean % of Age Predicted Heart Rate Maximum (%) | Maximum Heart Rate (Beats.min−1) | Maximum % of Age Predicted Heart Rate Maximum (%) | RPE (n/10) | sRPE (AU) |
---|---|---|---|---|---|---|---|---|
1 | M | 90 | 153 | 78 | 190 | 97 | 7 | 630 |
2 | M | 90 | 151 | 77 | 185 | 94 | 7 | 630 |
3 | M | 90 | 149 | 75 | 189 | 95 | 6 | 540 |
4 | F | 90 | 144 | 76 | 188 | 99 | 5 | 450 |
5 | F | 90 | 132 | 69 | 173 | 91 | 5 | 450 |
6 | F | 90 | 162 | 81 | 189 | 95 | 7 | 630 |
7 | F | 90 | 131 | 68 | 175 | 91 | 6 | 540 |
8 | M | 90 | 157 | 82 | 191 | 100 | 6 | 540 |
9 | M | 90 | 145 | 78 | 178 | 96 | 4 | 360 |
10 | M | 90 | 124 | 63 | 161 | 81 | 7 | 630 |
11 | M | 90 | 157 | 79 | 184 | 92 | 6 | 540 |
12 | F | 90 | 158 | 79 | 185 | 93 | 7 | 630 |
13 | F | 90 | 121 | 61 | 161 | 82 | 3 | 270 |
14 | F | 90 | 162 | 82 | 191 | 96 | 4 | 360 |
Mean ± SD | - | 90 | 146 ± 14 | 75 ± 7 | 181 ± 10 | 93 ± 6 | 6 ± 1 | 514 ± 119 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turner, O.; Mitchell, N.; Ruddock, A.; Purvis, A.; Ranchordas, M.K. Fluid Balance, Sodium Losses and Hydration Practices of Elite Squash Players during Training. Nutrients 2023, 15, 1749. https://doi.org/10.3390/nu15071749
Turner O, Mitchell N, Ruddock A, Purvis A, Ranchordas MK. Fluid Balance, Sodium Losses and Hydration Practices of Elite Squash Players during Training. Nutrients. 2023; 15(7):1749. https://doi.org/10.3390/nu15071749
Chicago/Turabian StyleTurner, Ollie, Nigel Mitchell, Alan Ruddock, Alison Purvis, and Mayur K. Ranchordas. 2023. "Fluid Balance, Sodium Losses and Hydration Practices of Elite Squash Players during Training" Nutrients 15, no. 7: 1749. https://doi.org/10.3390/nu15071749
APA StyleTurner, O., Mitchell, N., Ruddock, A., Purvis, A., & Ranchordas, M. K. (2023). Fluid Balance, Sodium Losses and Hydration Practices of Elite Squash Players during Training. Nutrients, 15(7), 1749. https://doi.org/10.3390/nu15071749