Effects of Free Linoleic Acid and Oleic Acid in Sesame Meal Extract as Pancreatic Lipase Inhibitors on Postprandial Triglyceridemia: A Randomized, Double-Blind, Placebo-Controlled, Crossover Study in Healthy Volunteers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sesame Meal Extract
2.2. Quantification of Free LA and OA in the Sesame Meal Extract
2.3. Lipase Inhibition Assay
2.4. Experimental Food and the Standardized High-Fat Meal
2.5. Ethics Statement
2.6. Participants
2.7. Study Design and Procedures
2.8. Blood Specimen Collection
2.9. Biochemical Analysis
2.10. Statistical Analysis
3. Results
3.1. In Vitro Pancreatic Lipase Inhibitory Activity of the Sesame Meal Extract
3.2. Subject Demographics
3.3. Postprandial TG Responses
3.4. Postprandial RLP Cholesterol Responses
3.5. Other Postprandial Lipidemic Parameters
3.6. Safety Endpoint
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Joyce, P.; Meola, T.R.; Schultz, H.B.; Clive, A.; Prestidge, C.A. Biomaterials that regulate fat digestion for the treatment of obesity. Trends Food. Sci. Technol. 2020, 100, 235–245. [Google Scholar] [CrossRef]
- Ginsberg, H.N.; Packard, C.J.; Chapman, M.J.; Borén, J.; Aguilar-Salinas, C.A.; Averna, M.; Ference, B.A.; Gaudet, D.; Hegele, R.A.; Kersten, S.; et al. Triglyceride-rich lipoproteins and their remnants: Metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society. Eur. Heart J. 2021, 42, 4791–4806. [Google Scholar] [CrossRef] [PubMed]
- Birari, R.B.; Bhutani, K.K. Pancreatic lipase inhibitors from natural sources: Unexplored potential. Drug Discov. Today 2007, 12, 879–889. [Google Scholar] [CrossRef] [PubMed]
- Lunagariya, N.A.; Patel, N.K.; Jagtap, S.C.; Bhutani, K.K. Inhibitors of pancreatic lipase: State of the art and clinical perspectives. EXCLI J. 2014, 13, 897–921. [Google Scholar] [PubMed]
- Liu, T.; Liu, X.; Chen, Q.; Shi, Y. Lipase inhibitors for obesity: A review. Biomed. Pharmacother. 2020, 128, 110314. [Google Scholar] [CrossRef]
- Heck, A.M.; Yanovski, J.A.; Calis, K.A. Orlistat, a new lipase inhibitor for the management of obesity. Pharmacotherapy 2000, 20, 270–279. [Google Scholar] [CrossRef]
- Pathak, N.; Rai, A.K.; Kumari, R.; Bhat, K.V. Value addition in sesame: A perspective on bioactive components for enhancing utility and profitability. Pharmacogn. Rev. 2014, 8, 147–155. [Google Scholar]
- Li, X.; Morita, S.; Yamada, H.; Koga, K.; Ota, W.; Furuta, T.; Yamatsu, A.; Kim, M. Free linoleic acid and oleic acid reduce fat digestion and absorption in vivo as potent pancreatic lipase inhibitors derived from sesame meal. Molecules 2022, 27, 4910. [Google Scholar] [CrossRef]
- Kumar, A.; Chauhan, S. Pancreatic lipase inhibitors: The road voyaged and successes. Life Sci. 2021, 271, 119115. [Google Scholar] [CrossRef]
- Sugiyama, H.; Akazome, Y.; Shoji, T.; Yamaguchi, A.; Yasue, M.; Kanda, T.; Ohtake, Y. Oligomeric procyanidins in apple polyphenol are main active components for inhibition of pancreatic lipase and triglyceride absorption. J. Agric. Food Chem. 2007, 55, 4604–4609. [Google Scholar] [CrossRef]
- Kianbakht, S.; Abasi, B.; Perham, M.; Hashem Dabaghian, F. Antihyperlipidemic effects of Salvia officinalis L. leaf extract in patients with hyperlipidemia: A randomized double-blind placebo-controlled clinical trial. Phytother. Res. 2011, 25, 1849–1853. [Google Scholar] [CrossRef]
- Bumrungpert, A.; Chongsuwat, R. The effect of oolong tea consumption on postprandial triglyceride levels: A randomized, double-blind, placebo-controlled crossover study. J. Public Health 2015, 45, 6–17. [Google Scholar]
- Unno, T.; Tago, M.; Suzuki, Y.; Nozawa, A.; Sagesaka, Y.; Kakuda, T.; Egawa, K.; Kondo, K. Effect of tea catechins on postprandial plasma lipid responses in human subjects. Br. J. Nutr. 2005, 93, 543–547. [Google Scholar] [CrossRef] [Green Version]
- Chantre, P.; Lairon, D. Recent findings of green tea extract AR25 (Exolise) and its activity for the treatment of obesity. Phytomedicine 2002, 9, 3–8. [Google Scholar] [CrossRef]
- Lambert, J.E.; Parks, E.J. Postprandial metabolism of meal triglyceride in humans. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2012, 1821, 721–726. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Liu, L.; Yang, S.; Liu, G.; Pan, L.; Gu, C.; Wang, Y.; Li, D.; Zhao, R.; Wu, M. Mechanisms of atherosclerosis induced by postprandial lipemia. Front. Cardiovasc. Med. 2021, 8, 636947. [Google Scholar] [CrossRef]
- Chapman, M.J.; Ginsberg, H.N.; Amarenco, P.; Andreotti, F.; Borén, J.; Catapano, A.L.; Descamps, O.S.; Fisher, E.; Kovanen, P.T.; Kuivenhoven, J.A.; et al. for the European Atherosclerosis Society Consensus Panel. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: Evidence and guidance for management. Eur. Heart J. 2011, 32, 1345–1361. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.; Stone, N.J.; Ballantyne, C.; Bittner, V.; Criqui, M.H.; Ginsberg, H.N.; Goldberg, A.C.; Howard, W.J.; Jacobson, M.S.; Kris-Etherton, P.M.; et al. Triglycerides and cardiovascular disease: A scientific statement from the American Heart Association. Circulation 2011, 123, 2292–2333. [Google Scholar] [CrossRef] [Green Version]
- Nordestgaard, B.G.; Benn, M.; Schnohr, P.; Tybjærg-Hansen, A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 2007, 298, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, M.; Varbo, A.; Tybjærg-Hansen, A.; Nordestgaard, B.G. Low nonfasting triglycerides and reduced all-cause mortality: A mendelian randomization study. Clin. Chem. 2014, 60, 737–746. [Google Scholar] [CrossRef] [Green Version]
- Langsted, A.; Freiberg, J.J.; Tybjærg-Hansen, A.; Schnohr, P.; Jensen, G.B.; Nordestgaard, B.G. Nonfasting cholesterol and triglycerides and association with risk of myocardial infarction and total mortality: The Copenhagen City Heart Study with 31 years of follow-up. J. Intern. Med. 2011, 270, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Syvänne, M.; Taskinen, M.R. Lipids and lipoproteins as coronary risk factors in non-insulin-dependent diabetes mellitus. Lancet 1997, 350 (Suppl. 1), SI20–SI23. [Google Scholar] [CrossRef] [PubMed]
- Taskinen, M.R. Diabetic dyslipidaemia: From basic research to clinical practice. Diabetologia 2003, 46, 733–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McPherson, R. Remnant cholesterol: “Non-(HDL-C+LDL-C)” as a coronary artery disease risk factor. J. Am. Coll. Cardiol. 2013, 61, 437–439. [Google Scholar] [CrossRef] [Green Version]
- Berneis, K.K.; Krauss, R.M. Metabolic origins and clinical significance of LDL heterogeneity. J. Lipid Res. 2002, 43, 1363–1379. [Google Scholar] [CrossRef] [Green Version]
- Cromwell, W.C.; Otvos, J.D.; Keyes, M.J.; Pencina, M.J.; Sullivan, L.; Vasan, R.S.; Wilson, P.W.; D’Agostino, R.B. LDL particle number and risk of future cardiovascular disease in the Framingham offspring study—Implications for LDL management. J. Clin. Lipidol. 2007, 1, 583–592. [Google Scholar] [CrossRef] [Green Version]
- Rohatgi, A.; Khera, A.; Berry, J.D.; Givens, E.G.; Ayers, C.R.; Wedin, K.E.; Neeland, I.J.; Yuhanna, I.S.; Rader, D.R.; de Lemos, J.A.; et al. HDL cholesterol efflux capacity and incident cardiovascular events. N. Engl. J. Med. 2014, 371, 2383–2393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basu, D.; Bornfeldt, K.E. Hypertriglyceridemia and atherosclerosis: Using human research to guide mechanistic studies in animal models. Front. Endocrinol. 2020, 11, 504. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, E.A.; Myasoedova, V.A.; Melnichenko, A.A.; Grechko, A.V.; Orekhov, A.N. Small dense low-density lipoprotein as biomarker for atherosclerotic diseases. Oxidative Med. Cell. Longev. 2017, 2017, 1273042. [Google Scholar] [CrossRef] [Green Version]
- Murota, K. Digestion and absorption of dietary glycerophospholipids in the small intestine: Their significance as carrier molecules of choline and N-3 polyunsaturated fatty acids. Biocatal. Agric. Biotechnol. 2020, 26, 101633. [Google Scholar] [CrossRef]
- Meikle, P.J.; Barlow, C.K.; Mellett, N.A.; Mundra, P.A.; Bonham, M.P.; Larsen, A.; Cameron-Smith, D.; Sinclair, A.; Nestel, P.J.; Wong, G. Postprandial plasma phospholipids in men are influenced by the source of dietary fat. J. Nutr. 2015, 145, 2012–2018. [Google Scholar] [CrossRef] [Green Version]
Nutritional Value per Serving | ||
---|---|---|
Experimental Food | Placebo | |
Carbohydrate (g) | 0.791 | 0.849 |
Protein (g) | 0.043 | <0.001 |
Fat (g) | 0.008 | <0.001 |
Dietary fiber (g) | <0.005 | <0.005 |
Water (g) | 0.053 | 0.051 |
Sodium (mg) | 0.032 | 0.067 |
Ash * (g) | 0.005 | <0.001 |
Free linoleic acid (LA) (mg) | 2.100 | – |
Free oleic acid (OA) (mg) | 1.900 | – |
Energy (kcal) | 3.411 | 3.393 |
Item | Manufacturer | Quantity | Nutritional Value per Unit of Item | |||
---|---|---|---|---|---|---|
Fat (g) | Protein (g) | Carbohydrate (g) | Energy (kcal) | |||
Tasmanian beef Japanese-style hamburger | Aeon Topvalu, Japan | 1 | 17.0 | 20.6 | 14.8 | 288 |
Neo Butter Roll | Fujipan, Japan | 2 | 9.3 | 2.8 | 17.0 | 163 |
Hashed potatoes | Heinz, Japan | 1 | 8.2 | 1.4 | 14.0 | 136 |
Total | 43.8 | 27.6 | 62.8 | 750 |
Characteristics | All Randomized and Exposed (n = 30) | All Analyzed (n = 26) |
---|---|---|
Gender, n (%) | ||
Male | 18 (60%) | 14 (54%) |
Female | 12 (40%) | 12 (46%) |
Age (years) | 35.7 ± 8.3 (min 24, max 55) | 36.0 ± 8.1 (min 24, max 55) |
Body Mass Index (BMI, kg/m2) | 23.1 ± 2.3 | 22.8 ± 2.2 |
Fasting lipidemic parameters | ||
TG (mg/dL) | 91.8 ± 44.6 | 81.8 ± 37.9 |
RLP-C (mg/dL) | 4.5 ± 2.5 | 3.9 ± 2.1 |
FFAs (μEq/L) | 409.7 ± 143.8 | 338.7 ± 128.0 |
Total cholesterol (mg/dL) | 185.1 ± 27.0 | 182.2 ± 27.5 |
Phospholipids (mg/dL) | 189.9 ± 19.1 | 187.0 ± 18.5 |
βLPs (mg/dL) | 311.2 ± 83.6 | 293.9 ± 75.4 |
HDL cholesterol (mg/dL) | 56.9 ± 9.3 | 57.8 ± 9.25 |
LDL cholesterol (mg/dL) | 111.0 ± 25.6 | 108.3 ± 26.5 |
Fasting blood glucose (mg/dL) | 90.2 ± 7.0 | 89.6 ± 5.7 |
Parameter | Intervention | Serum Concentration | ||||
---|---|---|---|---|---|---|
0 h | 2 h | 3 h | 4 h | 6 h | ||
FFAs (μEq/L) | Placebo | 362.9 ± 24.4 | 257.1 ± 20.2 | 404.7 ± 36.3 | 458.4 ± 37.0 | 646.5 ± 42.4 |
Experimental food | 388.2 ± 22.4 | 245.0 ± 16.1 | 379.8 ± 24.9 | 451.3 ± 27.4 | 654.4 ± 28.3 | |
Total cholesterol (mg/dL) | Placebo | 182.2 ± 5.0 | 176.8 ± 4.6 | 181.9 ± 4.8 | 182.8 ± 4.9 | 183.5 ± 4.8 |
Experimental food | 181.4 ± 5.4 | 176.5 ± 5.1 | 179.5 ± 4.7 | 180.9 ± 4.8 | 182.5 ± 4.8 | |
Phospholipids (mg/dL) | Placebo | 189.7 ± 3.9 | 193.1 ± 3.8 | 201.0 ± 4.2 | 204.4 ± 4.7 | 209.9 ± 5.0 |
Experimental food | 187.5 ± 3.6 | 190.3 ± 3.8 | 196.2 ± 3.6 * (p-value = 0.03) | 201.8 ± 3.6 | 204.2 ± 4.0 * (p-value = 0.02) | |
βLPs (mg/dL) | Placebo | 303.9 ± 16.3 | 379.3 ± 19.8 | 400.2 ± 25.2 | 382.7 ± 26.8 | 340.5 ± 22.8 |
Experimental food | 291.5 ± 13.8 | 359.8 ± 17.3 * (p-value = 0.01) | 367.8 ± 19.8 * (p-value = 0.01) | 356.9 ± 20.5 * (p-value = 0.03) | 313.3 ± 17.4 * (p-value = 0.003) | |
HDL cholesterol (mg/dL) | Placebo | 57.4 ± 1.7 | 52.6 ± 1.7 | 53.5 ± 1.8 | 54.2 ± 1.9 | 56.2 ± 1.8 |
Experimental food | 58.2 ± 1.6 | 53.8 ± 1.6 | 54.7 ± 1.6 | 55.4 ± 1.5 | 57.9 ± 1.7 * (p-value = 0.03) | |
LDL cholesterol (mg/dL) | Placebo | 107.4 ± 5.0 | 101.5 ± 4.5 | 100.8 ± 4.3 | 102.0 ± 4.3 | 105.3 ± 4.5 |
Experimental food | 107.8 ± 5.1 | 101.8 ± 4.6 | 101.2 ± 4.2 | 102.6 ± 4.4 | 106.7 ± 4.6 | |
Glucose (mg/dL) | Placebo | 90.4 ± 1.2 | 86.3 ± 2.3 | 88.1 ± 1.8 | 89.3 ± 1.3 | 87.2 ± 1.0 |
Experimental food | 89.1 ± 1.1 | 84.3 ± 2.7 | 88.5 ± 1.8 | 88.4 ± 1.2 | 87.3 ± 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Yamada, H.; Morita, S.; Yamashita, Y.; Kim, Y.; Kometani, T.; Narang, N.; Furuta, T.; Kim, M. Effects of Free Linoleic Acid and Oleic Acid in Sesame Meal Extract as Pancreatic Lipase Inhibitors on Postprandial Triglyceridemia: A Randomized, Double-Blind, Placebo-Controlled, Crossover Study in Healthy Volunteers. Nutrients 2023, 15, 1748. https://doi.org/10.3390/nu15071748
Li X, Yamada H, Morita S, Yamashita Y, Kim Y, Kometani T, Narang N, Furuta T, Kim M. Effects of Free Linoleic Acid and Oleic Acid in Sesame Meal Extract as Pancreatic Lipase Inhibitors on Postprandial Triglyceridemia: A Randomized, Double-Blind, Placebo-Controlled, Crossover Study in Healthy Volunteers. Nutrients. 2023; 15(7):1748. https://doi.org/10.3390/nu15071748
Chicago/Turabian StyleLi, Xuan, Hiroaki Yamada, Sayo Morita, Yusuke Yamashita, Youngil Kim, Takashi Kometani, Nikesh Narang, Toma Furuta, and Mujo Kim. 2023. "Effects of Free Linoleic Acid and Oleic Acid in Sesame Meal Extract as Pancreatic Lipase Inhibitors on Postprandial Triglyceridemia: A Randomized, Double-Blind, Placebo-Controlled, Crossover Study in Healthy Volunteers" Nutrients 15, no. 7: 1748. https://doi.org/10.3390/nu15071748
APA StyleLi, X., Yamada, H., Morita, S., Yamashita, Y., Kim, Y., Kometani, T., Narang, N., Furuta, T., & Kim, M. (2023). Effects of Free Linoleic Acid and Oleic Acid in Sesame Meal Extract as Pancreatic Lipase Inhibitors on Postprandial Triglyceridemia: A Randomized, Double-Blind, Placebo-Controlled, Crossover Study in Healthy Volunteers. Nutrients, 15(7), 1748. https://doi.org/10.3390/nu15071748