Microvascular Function, Inflammatory Status, and Oxidative Stress in Post-Bariatric Patients with Weight Regain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Research Design
2.3. Ethical Approval
2.4. Anthropometric Measurement
2.5. Functional Assessment of Forearm Endothelial Reactivity by Venous Occlusion Plethysmography (VOP)
2.6. Functional Assessment of Cutaneous Microvascular Reactivity Using Laser Speckle Contrast Imaging (LSCI)
2.7. Biochemical and Hormonal Analysis
2.8. Analysis of Inflammatory, Endothelial Injury, and Oxidative Stress Biomarkers
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adams, T.D.; Davidson, L.E.; Litwin, S.E.; Kim, J.; Kolotkin, R.L.; Nanjee, M.N.; Gutierrez, J.M.; Frogley, S.J.; Ibele, A.R.; Brinton, E.A.; et al. Weight and Metabolic Outcomes 12 Years after Gastric Bypass. N. Engl. J. Med. 2017, 377, 1143–1155. [Google Scholar] [CrossRef] [PubMed]
- Buchwald, H.; Avidor, Y.; Braunwald, E.; Jensen, M.D.; Pories, W.; Fahrbach, K.; Schoelles, K. Bariatric surgery: A systematic review and meta-analysis. JAMA 2004, 292, 1724–1737. [Google Scholar] [CrossRef] [PubMed]
- Aleassa, E.M.; Khorgami, Z.; Kindel, T.L.; Tu, C.; Tang, W.H.W.; Schauer, P.R.; Brethauer, S.A.; Aminian, A. Impact of bariatric surgery on heart failure mortality. Surg. Obes. Relat. Dis. 2019, 15, 1189–1196. [Google Scholar] [CrossRef] [PubMed]
- Aminian, A.; Aleassa, E.M.; Bhatt, D.L.; Tu, C.; Khorgami, Z.; Schauer, P.R.; Brethauer, S.A.; Daigle, C.R. Bariatric surgery is associated with a lower rate of death after myocardial infarction and stroke: A nationwide study. Diabetes Obes. Metab. 2019, 21, 2058–2067. [Google Scholar] [CrossRef]
- Benotti, P.N.; Wood, G.C.; Carey, D.J.; Mehra, V.C.; Mirshahi, T.; Lent, M.R.; Petrick, A.T.; Still, C.; Gerhard, G.S.; Hirsch, A.G. Gastric Bypass Surgery Produces a Durable Reduction in Cardiovascular Disease Risk Factors and Reduces the Long-Term Risks of Congestive Heart Failure. J. Am. Heart Assoc. 2017, 6, e005126. [Google Scholar] [CrossRef]
- Johnson, B.L.; Blackhurst, D.W.; Latham, B.B.; Cull, D.L.; Bour, E.S.; Oliver, T.L.; Williams, B.; Taylor, S.M.; Scott, J.D. Bariatric surgery is associated with a reduction in major macrovascular and microvascular complications in moderately to severely obese patients with type 2 diabetes mellitus. J. Am. Coll. Surg. 2013, 216, 545–556. [Google Scholar] [CrossRef]
- Sjöström, L.; Narbro, K.; Sjöström, C.D.; Karason, K.; Larsson, B.; Wedel, H.; Lystig, T.; Sullivan, M.; Bouchard, C.; Carlsson, B.; et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N. Engl. J. Med. 2007, 357, 741–752. [Google Scholar] [CrossRef]
- Christou, N.V.; Sampalis, J.S.; Liberman, M.; Look, D.; Auger, S.; McLean, A.P.; MacLean, L.D. Surgery decreases long-term mortality, morbidity, and health care use in morbidly obese patients. Ann. Surg. 2004, 240, 416–423. [Google Scholar] [CrossRef]
- Gokce, N.; Vita, J.A.; McDonnell, M.; Forse, A.R.; Istfan, N.; Stoeckl, M.; Lipinska, I.; Keaney, J.F., Jr.; Apovian, C.M. Effect of medical and surgical weight loss on endothelial vasomotor function in obese patients. Am. J. Cardiol. 2005, 95, 266–268. [Google Scholar] [CrossRef]
- Lupoli, R.; Di Minno, M.N.; Guidone, C.; Cefalo, C.; Capaldo, B.; Riccardi, G.; Mingrone, G. Effects of bariatric surgery on markers of subclinical atherosclerosis and endothelial function: A meta-analysis of literature studies. Int. J. Obes. 2016, 40, 395–402. [Google Scholar] [CrossRef]
- Sjöström, L.; Peltonen, M.; Jacobson, P.; Sjöström, C.D.; Karason, K.; Wedel, H.; Ahlin, S.; Anveden, Å.; Bengtsson, C.; Bergmark, G.; et al. Bariatric surgery and long-term cardiovascular events. JAMA 2012, 307, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Bonetti, P.O.; Lerman, L.O.; Lerman, A. Endothelial dysfunction: A marker of atherosclerotic risk. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Habib, P.; Scrocco, J.D.; Terek, M.; Vanek, V.; Mikolich, J.R. Effects of bariatric surgery on inflammatory, functional and structural markers of coronary atherosclerosis. Am. J. Cardiol. 2009, 104, 1251–1255. [Google Scholar] [CrossRef] [PubMed]
- João Cabrera, E.; Valezi, A.C.; Delfino, V.D.; Lavado, E.L.; Barbosa, D.S. Reduction in plasma levels of inflammatory and oxidative stress indicators after Roux-en-Y gastric bypass. Obes. Surg. 2010, 20, 42–49. [Google Scholar] [CrossRef]
- Karmali, S.; Brar, B.; Shi, X.; Sharma, A.M.; de Gara, C.; Birch, D.W. Weight recidivism post-bariatric surgery: A systematic review. Obes. Surg. 2013, 23, 1922–1933. [Google Scholar] [CrossRef]
- Van Gaal, L.F.; Mertens, I.L.; De Block, C.E. Mechanisms linking obesity with cardiovascular disease. Nature 2006, 444, 875–880. [Google Scholar] [CrossRef]
- Vlasova, M.; Purhonen, A.K.; Jarvelin, M.R.; Rodilla, E.; Pascual, J.; Herzig, K.H. Role of adipokines in obesity-associated hypertension. Acta Physiol. 2010, 200, 107–127. [Google Scholar] [CrossRef]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef]
- Kraemer-Aguiar, L.G.; de Miranda, M.L.; Bottino, D.A.; Lima Rde, A.; de Souza, M.; Balarini Mde, M.; Villela, N.R.; Bouskela, E. Increment of body mass index is positively correlated with worsening of endothelium-dependent and independent changes in forearm blood flow. Front. Physiol. 2015, 6, 223. [Google Scholar] [CrossRef]
- Maranhão, P.A.; de Souza, M.; Kraemer-Aguiar, L.G.; Bouskela, E. Dynamic nailfold videocapillaroscopy may be used for early detection of microvascular dysfunction in obesity. Microvasc. Res. 2016, 106, 31–35. [Google Scholar] [CrossRef]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E., Jr.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2018, 71, e127–e248. [Google Scholar] [CrossRef] [PubMed]
- Basevi, V.; Di Mario, S.; Morciano, C.; Nonino, F.; Magrini, N. Comment on: American Diabetes Association. Standards of medical care in diabetes—2011. Diabetes Care 2011, 34 (Suppl. S1), S11–S61. [Google Scholar] [CrossRef]
- Faludi, A.A.; Izar, M.C.O.; Saraiva, J.F.K.; Chacra, A.P.M.; Bianco, H.T.; Afiune, A.N.; Bertolami, A.; Pereira, A.C.; Lottenberg, A.M.; Sposito, A.C.; et al. Atualização da Diretriz Brasileira de Dislipidemias e Prevenção da Aterosclerose—2017. Arq. Bras. Cardiol. 2017, 109, 1–76. [Google Scholar] [CrossRef]
- Lopes, K.G.; Romagna, E.C.; da Silva, D.S.; da Costa Tavares Bezerra, M.; Leal, P.R.F.; da Silva Soares Pinto, J.E.; Bouskela, E.; das Graças Coelho de Souza, M.; Kraemer-Aguiar, L.G. Metabolic and Inflammatory Profiles of Post-Bariatric Patients with Weight Recidivism. Obes. Surg. 2022, 32, 1849–1855. [Google Scholar] [CrossRef] [PubMed]
- Lopes, K.G.; Farinatti, P.; Bottino, D.A.; de Souza, M.; Maranhão, P.A.; Bouskela, E.; Lourenço, R.A.; de Oliveira, R.B. Sarcopenia in the elderly versus microcirculation, inflammation status, and oxidative stress: A cross-sectional study. Clin. Hemorheol. Microcirc. 2022, 80, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Souza, E.G.; De Lorenzo, A.; Huguenin, G.; Oliveira, G.M.; Tibiriçá, E. Impairment of systemic microvascular endothelial and smooth muscle function in individuals with early-onset coronary artery disease: Studies with laser speckle contrast imaging. Coron. Artery Dis. 2014, 25, 23–28. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Bruun, J.M.; Lihn, A.S.; Verdich, C.; Pedersen, S.B.; Toubro, S.; Astrup, A.; Richelsen, B. Regulation of adiponectin by adipose tissue-derived cytokines: In vivo and in vitro investigations in humans. Am. J. Physiol. Endocrinol. Metab. 2003, 285, E527–E533. [Google Scholar] [CrossRef] [PubMed]
- Fasshauer, M.; Kralisch, S.; Klier, M.; Lossner, U.; Bluher, M.; Klein, J.; Paschke, R. Adiponectin gene expression and secretion is inhibited by interleukin-6 in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 2003, 301, 1045–1050. [Google Scholar] [CrossRef]
- Zhao, S.; Kusminski, C.M.; Scherer, P.E. Adiponectin, Leptin and Cardiovascular Disorders. Circ. Res. 2021, 128, 136–149. [Google Scholar] [CrossRef]
- Fang, H.; Judd, R.L. Adiponectin Regulation and Function. Compr. Physiol. 2018, 8, 1031–1063. [Google Scholar] [CrossRef] [PubMed]
- Straub, L.G.; Scherer, P.E. Metabolic Messengers: Adiponectin. Nat. Metab. 2019, 1, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Doumatey, A.P.; Bentley, A.R.; Zhou, J.; Huang, H.; Adeyemo, A.; Rotimi, C.N. Paradoxical Hyperadiponectinemia is Associated With the Metabolically Healthy Obese (MHO) Phenotype in African Americans. J. Endocrinol. Metab. 2012, 2, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Sjöström, L.; Lindroos, A.K.; Peltonen, M.; Torgerson, J.; Bouchard, C.; Carlsson, B.; Dahlgren, S.; Larsson, B.; Narbro, K.; Sjöström, C.D.; et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N. Engl. J. Med. 2004, 351, 2683–2693. [Google Scholar] [CrossRef]
- Engin, A. Endothelial Dysfunction in Obesity. Adv. Exp. Med. Biol. 2017, 960, 345–379. [Google Scholar] [CrossRef]
- Davignon, J.; Ganz, P. Role of endothelial dysfunction in atherosclerosis. Circulation 2004, 109, III27–III32. [Google Scholar] [CrossRef]
- Nijhuis, J.; van Dielen, F.M.; Fouraschen, S.M.; van den Broek, M.A.; Rensen, S.S.; Buurman, W.A.; Greve, J.W. Endothelial activation markers and their key regulators after restrictive bariatric surgery. Obesity 2007, 15, 1395–1399. [Google Scholar] [CrossRef]
- Blankenberg, S.; Barbaux, S.; Tiret, L. Adhesion molecules and atherosclerosis. Atherosclerosis 2003, 170, 191–203. [Google Scholar] [CrossRef]
- Thorin, E.; Clozel, M. The cardiovascular physiology and pharmacology of endothelin-1. Adv. Pharmacol. 2010, 60, 1–26. [Google Scholar] [CrossRef]
- Lerman, A.; Holmes, D.R., Jr.; Bell, M.R.; Garratt, K.N.; Nishimura, R.A.; Burnett, J.C., Jr. Endothelin in coronary endothelial dysfunction and early atherosclerosis in humans. Circulation 1995, 92, 2426–2431. [Google Scholar] [CrossRef]
- Jankowich, M.; Choudhary, G. Endothelin-1 levels and cardiovascular events. Trends Cardiovasc. Med. 2020, 30, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ho, E.; Karimi Galougahi, K.; Liu, C.C.; Bhindi, R.; Figtree, G.A. Biological markers of oxidative stress: Applications to cardiovascular research and practice. Redox Biol. 2013, 1, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Walter, M.F.; Jacob, R.F.; Jeffers, B.; Ghadanfar, M.M.; Preston, G.M.; Buch, J.; Mason, R.P. Serum levels of thiobarbituric acid reactive substances predict cardiovascular events in patients with stable coronary artery disease: A longitudinal analysis of the PREVENT study. J. Am. Coll. Cardiol. 2004, 44, 1996–2002. [Google Scholar] [CrossRef] [PubMed]
- Salonen, J.T.; Nyyssönen, K.; Salonen, R.; Porkkala-Sarataho, E.; Tuomainen, T.P.; Diczfalusy, U.; Björkhem, I. Lipoprotein oxidation and progression of carotid atherosclerosis. Circulation 1997, 95, 840–845. [Google Scholar] [CrossRef] [PubMed]
- Tarzia, P.; Lanza, G.A.; Sestito, A.; Villano, A.; Russo, G.; Figliozzi, S.; Lamendola, P.; De Vita, A.; Crea, F. Long-term effects of bariatric surgery on peripheral endothelial function and coronary microvascular function. Obes. Res. Clin. Pract. 2017, 11, 114–117. [Google Scholar] [CrossRef]
- Tschoner, A.; Sturm, W.; Gelsinger, C.; Ress, C.; Laimer, M.; Engl, J.; Laimer, E.; Mühlmann, G.; Mittermair, R.; Kaser, S.; et al. Long-term effects of weight loss after bariatric surgery on functional and structural markers of atherosclerosis. Obesity 2013, 21, 1960–1965. [Google Scholar] [CrossRef]
- Brethauer, S.A.; Heneghan, H.M.; Eldar, S.; Gatmaitan, P.; Huang, H.; Kashyap, S.; Gornik, H.L.; Kirwan, J.P.; Schauer, P.R. Early effects of gastric bypass on endothelial function, inflammation, and cardiovascular risk in obese patients. Surg. Endosc. 2011, 25, 2650–2659. [Google Scholar] [CrossRef]
- Welbourn, R.; Pournaras, D.J.; Dixon, J.; Higa, K.; Kinsman, R.; Ottosson, J.; Ramos, A.; van Wagensveld, B.; Walton, P.; Weiner, R.; et al. Bariatric Surgery Worldwide: Baseline Demographic Description and One-Year Outcomes from the Second IFSO Global Registry Report 2013-2015. Obes. Surg. 2018, 28, 313–322. [Google Scholar] [CrossRef]
- Welbourn, R.; Hollyman, M.; Kinsman, R.; Dixon, J.; Liem, R.; Ottosson, J.; Ramos, A.; Våge, V.; Al-Sabah, S.; Brown, W.; et al. Bariatric Surgery Worldwide: Baseline Demographic Description and One-Year Outcomes from the Fourth IFSO Global Registry Report 2018. Obes. Surg. 2019, 29, 782–795. [Google Scholar] [CrossRef]
- Lopes, K.G.; Dos Santos, G.P.; Romagna, E.C.; Mattos, D.M.F.; Braga, T.G.; Cunha, C.B.; Maranhão, P.A.; Kraemer-Aguiar, L.G. Changes in appetite, taste, smell, and food aversion in post-bariatric patients and their relations with surgery time, weight loss and regain. Eat. Weight Disord. 2022, 27, 1679–1686. [Google Scholar] [CrossRef]
Variable | Bariatric Group (n = 32) | Non-Surgical Group (n = 30) | p Value |
---|---|---|---|
Demographic characteristics | |||
Age (years) | 44 ± 8 | 44 ± 11 | 0.88 |
Female (n, %) | 28 (87.5) | 25 (83.3) | 0.64 |
BMI (kg/m2) | 40.1 ± 7.7 | 41.0 ± 5.3 | 0.23 |
Neck circumference (cm) | 36.4 ± 4.4 * | 39.1 ± 4.8 | 0.02 |
Waist circumference (cm) | 109.9 ± 16.2 | 113.5 ± 12.6 | 0.34 |
Hip circumference (cm) | 126 [119.0–140.3] | 129 [120.0–136.0] | 0.84 |
Clinical history—(n, %) | |||
T2DM | 6 (18.8) | 10 (33.3) | 0.19 |
Hypertension | 13 (40.6) | 17 (56.7) | 0.20 |
Dyslipidemia | 6 (18.8) | 10 (33.3) | 0.19 |
Bariatric surgery data | |||
Preoperative BMI (kg/m2) | 48.0 ± 6.7 | – | – |
EWL (%) | 84.1 ± 17.9 | – | – |
RWR (%) | 58.7 ± 24.3 | – | – |
Nadir weight (kg) | 78.5 ± 17.8 | – | – |
Time since surgery (years) | 10.8 ± 4.7 | – | – |
Metabolic/hormonal profile | |||
Fasting glucose (mg/dL) | 92 [86.5–102.7] * | 100 [92.7–131.0] | 0.03 |
HbA1c (%) | 5.3 [5.2–5.7] | 5.5 [5.2–6.2] | 0.06 |
Total cholesterol (mg/dL) | 184.0 ± 46.6 | 186.7 ± 40.8 | 0.82 |
HDL-cholesterol (mg/dL) | 58.2 ± 14.0 * | 46.7 ± 12.3 | <0.001 |
LDL-cholesterol (mg/dL) | 101.0 [78.6–122.9] | 107.9 [88.9–134.7] | 0.26 |
Triglycerides (mg/dL) | 91.5 [67.2–102.0] * | 120 [94.0–145.0] | <0.001 |
Uric acid (mg/dL) | 4.22 ± 1.29 | 4.77 ± 1.77 | 0.40 |
Urea (mg/dL) | 31.4 ± 6.9 | 27.7 ± 9.2 | 0.15 |
Creatinine (mg/dL) | 0.78 ± 0.20 | 0.77 ± 0.18 | 0.81 |
AST (U/mL) | 22.1 ± 7.1 | 21.8 ± 9.8 | 0.90 |
ALT (U/mL) | 20.0 [14.5–25.0] | 22.0 [14.7–32.7] | 0.15 |
TSH (ng/dL) | 3.10 ± 1.89 | 2.16 ± 1.07 | 0.06 |
FT4 (ng/dL) | 1.09 ± 0.27 | 1.13 ± 0.14 | 0.64 |
Variable | Bariatric Group (n = 32) | Non-Surgical Group (n = 30) | p Value |
---|---|---|---|
Hemodynamic parameters | |||
Heart rate (bpm) | 63 [58–68] | 64 [57–77] | 0.52 |
Systolic BP (mmHg) | 126.2 [116.3–136.0] | 125.0 [118.5–142.5] | 0.58 |
Diastolic BP (mmHg) | 82.0 ± 9.5 | 77.1 ± 13.1 | 0.10 |
Endothelial reactivity by Venous Occlusion Plethysmography | |||
FBF-bas 1 (mL/min/100 mL) | 1.70 ± 0.84 | 2.07 ± 0.60 | 0.06 |
FBF-hyper (mL/min/100 mL) | 7.10 [5.84–10.45] | 8.94 [6.43–10.29] | 0.52 |
FBF-bas 2 (mL/min/100 mL) | 1.26 [0.92–1.60] | 1.55 [1.19–1.90] | 0.13 |
FBF-nitro (mL/min/100 mL) | 1.38 [1.12–1.82] | 1.49 [1.22–1.79] | 0.34 |
Microvascular reactivity by Laser Speckle Contrast Imaging | |||
Baseline flow (APU) | 35.40 ± 11.83 | 35.36 ± 10.36 | 0.98 |
Peak flow during PORH (APU) | 76.69 ± 22.14 | 77.78 ± 18.58 | 0.83 |
Post-occlusive flow (APU) | 34.79 ± 15.31 | 35.18 ± 10.75 | 0.90 |
Duration of PORH (s) | 0.51 [0.38–0.90] | 0.46 [0.31–0.55] | 0.25 |
Blood biomarkers | |||
Adiponectin (μg/mL) | 6.07 [3.97–8.61] * | 3.10 [2.50–3.78] | <0.001 |
Leptin (ng/mL) | 51.38 ± 23.76 | 49.05 ± 20.45 | 0.68 |
Resistin (ng/mL) | 8.48 ± 2.90 | 7.40 ± 2.76 | 0.14 |
IL-6 (pg/mL) | 2.02 [1.26–2.93] * | 3.00 [2.34–4.06] | <0.001 |
TNF-α (pg/mL) | 0.769 [0.636–1.034] | 0.834 [0.730–1.053] | 0.56 |
ET-1 (pg/mL) | 1.42 [1.24–1.76] | 1.31 [1.16–1.55] | 0.20 |
sICAM-1 (ng/mL) | 982.2 ± 278.2 | 934.6 ± 268.2 | 0.51 |
sVCAM-1 (ng/mL) | 634.5 [559.5–709.3] | 591.9 [498.5–666.2] | 0.09 |
TBARS (µM) | 1.129 [0.957–1.304] | 1.073 [0.984–1.294] | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, K.G.; de Souza, M.d.G.C.; Bouskela, E.; Kraemer-Aguiar, L.G. Microvascular Function, Inflammatory Status, and Oxidative Stress in Post-Bariatric Patients with Weight Regain. Nutrients 2023, 15, 2135. https://doi.org/10.3390/nu15092135
Lopes KG, de Souza MdGC, Bouskela E, Kraemer-Aguiar LG. Microvascular Function, Inflammatory Status, and Oxidative Stress in Post-Bariatric Patients with Weight Regain. Nutrients. 2023; 15(9):2135. https://doi.org/10.3390/nu15092135
Chicago/Turabian StyleLopes, Karynne Grutter, Maria das Graças Coelho de Souza, Eliete Bouskela, and Luiz Guilherme Kraemer-Aguiar. 2023. "Microvascular Function, Inflammatory Status, and Oxidative Stress in Post-Bariatric Patients with Weight Regain" Nutrients 15, no. 9: 2135. https://doi.org/10.3390/nu15092135
APA StyleLopes, K. G., de Souza, M. d. G. C., Bouskela, E., & Kraemer-Aguiar, L. G. (2023). Microvascular Function, Inflammatory Status, and Oxidative Stress in Post-Bariatric Patients with Weight Regain. Nutrients, 15(9), 2135. https://doi.org/10.3390/nu15092135