Osteoarthritis in the Elderly Population: Preclinical Evidence of Nutrigenomic Activities of Flavonoids
Abstract
:1. Introduction
2. Research Strategies and Results of Collected References on Flavonoids and Osteoarthritis
- -
- Interleukin (IL)-1β (64%, 32/50);
- -
- Lipopolysaccharides—LPSs (8%, 4/50);
- -
- Tumor necrosis factor-α—TNF-α (4%, 2/50);
- -
- H2O2 (2%, 1/50);
- -
- Advanced glycation end products—AGE (2%, 1/50);
- -
- Sodium nitroprusside—SNP (2%, 1/50);
- -
- Angiotensin II—ANG-II (2%, 1/50).
3. Flavonoid Classes and Activities on OA
Flavonoid Subgroup | Compound | Study Type | In Vitro/In Vivo Model | Doses | Analysed Pathways/Process | Effects of Administration | Ref |
---|---|---|---|---|---|---|---|
Anthocyanins | Cyanidin (C3G) | In vivo | CIA model in Sprague Dawley (SD) rats | 25 mg/kg, twice per week for six weeks, via tail vein | cytokine concentrations; SIRT-6 pathway; | ↓ Pro-inflammatory cytokines; ↑ IL-10; Alteration of white cell sub-populations. | [31] |
In vitro | Human adipose MSC; | 25 μM, 50 μM, 100 μM, 200 μM | - | ↑ Chondrocyte differentiation. | [30] | ||
Delphinidin | In vitro | Human adipose MSC; | 25 μM, 50 μM, 100 μM, 200 μM | - | ↓ Adipocytic differentiation; ↑ Chondrocyte differentiation. | ||
Malvidin | In vitro | Human adipose MSCs; | 25 μM, 50 μM, 100 μM, 200 μM | BMP pathway | ↑ OB differentiation. | ||
Pelargonidin (PG) | In vitro | Mouse chondrocytes exposed to IL-1β (10 ng/mL) | 0.5 μM, 1 μM, 5 μM, 10 μM, 20 μM, 40 μM, 80 μM, 160 μM | cytokine concentrations; NF-kB pathway | ↓ Pro-inflammatory cytokines; ↑ ECM production; ↓ ECM degradation; ↓ Degradation of cartilage in mouse OA model | [32] | |
In vivo | DMM in Male C57BL/6 mice | 10 mg/kg/day; 20 mg/kg/day; orally | |||||
Procyanidin B2 (PCB2) | In vitro | SD rat chondrocytes exposed to IL-1β (10 ng/mL) | 5 μM, 10 μM, 20 μM, 40 μM, 80 μM | Apoptosis; Nrf-2 pathway; NF-κB pathway; p16(INK4A)/p21(CIP) expression | ↓ Chondrocyte senescence; ↓ ECM degradation; ↓ Pro-inflammatory cytokines; | [33] | |
In vivo | Destabilization of the medial meniscus (DMM) in male SD rats | 40 mg/kg twice per week for six weeks | |||||
Chalcone | Butein | In vitro | OA chondrocytes treated with IL-1β (1 ng/mL) | 2.25 μM, 4.5 μM, 9 μM, 18 μM, 36 μM | mTOR Pathway; IL-6 concentrations; Autophagy; | ↓ IL-6; ↑ Autophagy; ↓ mTOR. | [34] |
Cardamonin | In vitro | Human chondrocyte line (CHON-001) exposed to IL-1β (10 ng/mL) | 1 μM, 3 μM, 10 μM, 30 μM, 100 μM | Apoptosis; cytokine concentrations; Nrf2 pathway; | ↓ ECM degradation; ↓ Apoptosis; ↓ Pro-inflammatory cytokines. | [35] | |
Isoliquiritigenin (ISL) | In vitro | Human subconjunctival fibroblasts or mouse peritoneal macrophages exposed to angiotensin (1 μg/mL) | 1.25 μM, 2.5 μM, 5 μM, 10 μM, 20 μM, 40 μM | NF-κB pathway; cytokine concentrations; PPAR-γ COX-2; | ↓ Pro-inflammatory cytokines; ↓ PPAR-γ degradation; ↓ Fibrosis | [36] | |
In vivo | Anterior cruciate ligament transection (ACLT) in C57BL/6 J mice | 10 mg/kg/day; 20 mg/kg/day; 40 mg/kg/day; 80 mg/kg/day | RANKL pathway; | ↓ ECM degradation; ↓ Osteoclastogenesis; ↓ TGF-β release in subchondral bone; ↓ Angiogenesis in subchondral bone | [37] | ||
Licochalcone A (Lico A) | In vitro | chondrocytes of male C57BL/6 mice exposed to LPS (1 μg/mL) | 5 μM, 25 μM, 50 μM; 100 μM | Apoptosis; Nrf-2 pathway; NF-κB pathway; cytokine concentrations; | ↓ ECM degradation; ↓ Apoptosis; ↓ Pro-inflammatory cytokines; | [38] | |
In vivo | DMM in male C57BL/6 mice | intragastric administration of 10 mg/kg/day for 8 weeks | |||||
Safflower yellow (SY) | In vitro | Rat chondrocytes exposed to TNF-α (no concentration) | 1 μM, 5 μM, 10 μM, 20 μM | Apoptosis; NF-κB pathway; ERK pathway | ↓ ECM degradation; ↓ Pro-inflammatory cytokines; ↓ Degradation of cartilage in rat OA model | [39] | |
In vivo | ACLT in SD rats | 1 mM SY (in sterile saline solution; 200 μL) injected intra-articular route in the knee | |||||
Xanthohumol (XN) | In vitro | chondrocytes of male C57BL/6 mice exposed to IL-1β (10 ng/mL) | 10 μM, 25 μM, 50 μM, 100 μM, 200 μM | cytokine concentrations; NF-κB pathway; Nrf-2 pathway; | ↓ pro-inflammatory cytokines; ↓ ECM degradation; | [40] | |
In vivo | DMM in Male C57BL/6 mice | 40 mg/kg/day intragastric administration for 8 weeks | |||||
Flavanols | epigallocatechin (EGCG) | In vitro | Human chondrocyte line (CHON-001) exposed to IL-1β (5 ng/mL) | 20 μM, 50 μM | Apoptosis; ERK pathway | ↓ pro-inflammatory cytokines; ↓ ECM degradation; ↑ PTEN | [41] |
Theaflavin-3,3’-Digallate (TFDG) | In vitro | Rat chondrocytes exposed to IL-1β (10 ng/mL) | 1 μM, 10 μM, 20 μM, 40 μM, 80 μM, 120 μM | Nrf-2 pathway; NF-κB pathway; ERK pathway; JNK pathway; P38 pathway; | ↓ Pro-inflammatory cytokines; ↓ Oxidative stress; ↓ ECM degradation. | [42] | |
In vivo | DMM in male SD rats | 100 μL of saline solution, containing 4 mM TFDG, into knee joint every 2 days for 6 weeks | |||||
Flavanones | Baicalein | In vitro | rat chondrocytes exposed to IL-1β (10 ng/mL) | 10 μM, 20 μM, 40 μM | mTOR pathway; mitophagy | ↓ Apoptosis; ↑ Autophagy; ↑ Mitophagy; | [43] |
In vitro | Human OA chondrocytes | 50 ng/mL | AKT pathway | ↓ Apoptosis; ↓ Pro-inflammatory cytokines; ↑ Anti-inflammatory cytokines; | [44] | ||
In vitro | Human OA chondrocytes exposed to IL-1β (10 ng/mL); Mouse chondrocytes; | 1 μM, 5 μM, 10 μM | Nrf-2 pathway; | ↓ Apoptosis; ↓ Ferroptosis; ↓ ECM degradation; ↓ Oxidative stress; | [45] | ||
In vivo | DMM in C57BL/6 mice | 1 mg/kg once weekly for 10 weeks | |||||
In vitro | SD rat Osteoblasts; SD rat Fibroblast-like synovial cells | 2.5 μM, 5 μM, 10 μM, 20 μM, 50 μM | osteogenic markers; | ↓ Subchondral ossification; ↓ FLS proliferation; ↓ Angiogenesis of subchondral bone; | [46] | ||
In vivo | DMM in male SD rats | intra-articular injection of 0.1 mg (50 µl) once weekly for 10 weeks | |||||
In vivo | DMM in male SD rats | 0.8 μg/L (50 μL), 1.6 μg/L (50 μL), 3.2 μg/L (50 μL), once a week for 6 weeks | Oxidative stress; cytokine concentrations; | ↑ ECM production; ↓ ECM degradation; ↓ Pro-inflammatory cytokines. | [48] | ||
In vitro | human OA chondrocytes exposed to IL-1β (10 ng/mL) | 20 μM | Apoptosis; Autophagy; | ↓ Apoptosis; ↓ ECM degradation; ↑ Autophagy; | [47] | ||
Naringenin | In vitro | Mouse chondrocytes exposed to IL-1β (10 ng/mL) | 5 μM, 10 μM, 20 μM, 40 μM, 80 μM | Apoptosis; Oxidative stress; Nrf-2 pathway; | ↓ Apoptosis; ↓ ECM degradation; | [49] | |
In vivo | DMM in Male C57BL/6 mice | 100 mg/kg/day; 60 mg/kg/day by oral gavage | |||||
Sappanone A | In vitro | Human OA Chondrocytes from patients exposed to IL-1β (10 ng/mL) | 5 μM, 10 μM, 20 μM | Nrf-2 pathway; Oxidative stress; NF-κB pathway; | ↓ ECM degradation; ↓ pro-inflammatory cytokines | [50] | |
Wogonoside | In vitro | mice primary chondrocyte exposed to IL-1β (10 ng/ml) | 12.5 μM, 25 μM, 50 μM, 100 μM, 200 μM | NF-κB pathway; Oxidative stress; cytokine concentrations ERK pathway; | ↓ Pro-inflammatory cytokines; ↓ Chondral hypertrophy; ↓ ECM degradation ↓ Angiogenesis of subchondral bone; | [51] | |
In vivo | DMM in C57BL/6 mice | 40 mg/kg/day for 8 weeks | |||||
Flavones | Acacetin | In vitro | Primary murine articular chondrocytes exposed to IL-1β (10 ng/mL) | 3.125 μM, 6.25 μM, 12.5 μM, 25 μM, 50 μM, 100 μM, 200 μM | NF-κB pathway; ERK pathway; JNK pathway; P38 pathway; cytokine concentrations | ↓ ECM degradation; ↓ pro-inflammatory cytokines | [52] |
In vivo | ACLT in C57BL/6 mice | 3.125 μM, 6.25 μM intra-articular injections twice per week for six weeks | |||||
Apigenin | In vitro | Mouse chondrocytes, Raw 264.7 cell line exposed to LPS (100 ng/mL) | 10 μM | Apoptosis; mTOR pathway; M1 to M2 macrophage transition; | ↓ Pro-inflammatory cytokines; ↓ Apoptosis; Alteration of Macrofage sub-populations. | [53] | |
In vivo | ACLT in C57BL/6 mice | 30 mg/kg/day gavaged daily for 4 weeks | |||||
In vivo | ACLT in male SD rats | 0.1 μM, 0.3 μM (50 μL) intra-articular injections once a week for 3 weeks | Oxidative stress; cytokine concentrations | ↓ Pro-inflammatory cytokines; ↑ ECM production; ↓ ECM degradation; | [54] | ||
Chrysin | In vitro | Rat FLSs exposed to LPS (5 μg/mL) | 1 μg/mL, 2 μg/mL, 2.5 μg/mL, 5 μg/mL, 10 μg/mL, 20 μg/mL, 40 μg/mL | cytokine concentrations; NLRP-3 Inflammasome Activation | ↓ Pro-inflammatory cytokines; ↓ MIA-induced synovitis | [55] | |
In vivo | MIA-induced OA in SD rats | 10 mg/kg/day intragastric administration for 14 days | |||||
In vivo | ACLT in SD rats | 10 mg/kg/day; 25 mg/kg/day; intragastric administration for 28 days | NLRP-3 Inflammasome Activation | ↓ synovial fibrosis; ↓ Pro-inflammatory cytokines; ↓ synovitis; | [56] | ||
Diosmetin | In vitro | BMM cells | 1.25 μM, 2.5 μM, 5 μM, 10 μM, 20 μM | ERK pathway; JNK pathway; P38 pathway; | ↓ osteoclastogenesis; ↓ subchondral bone loss | [57] | |
In vivo | DMM in C57BL/6 mice | 1 mg/kg/day; 5 mg/kg/day; for 30 or 60 days | |||||
Luteolin | In vitro | Rat chondrocytes exposed to IL-1β (10 ng/mL) | 25 μM, 50 μM, 100 μM, 200 μM | NF-κB pathway; Oxidative stress; cytokine concentration | ↓ ECM degradation; ↓ Pro-inflammatory cytokines | [58] | |
In vivo | MIA-induced OA in SD rats | 10 mg/kg/day for 45 days | |||||
In vitro | murine chondrocytes exposed to H2O2 (300 μM) | 1 μM, 5 μM, 10 μM, 20 μM, 50 μM | Nrf-2 pathway; Apoptosis; Oxidative stress; cytokine concentrations | ↓ H2O2-Induced Apoptosis; ↓ Pro-inflammatory cytokines | [59] | ||
In vivo | DMM in C57BL/6 mice | 10 mg/kg/day; intragastric administration for 8 weeks | |||||
Nepetin | In vitro | murine chondrocytes exposed to IL-1β (10 ng/mL) | 2.5 μM, 5 μM, 10 μM, 20 μM | Oxidative stress; cytokine concentrations; NF-κB pathway; | ↓ Pro-inflammatory cytokines; ↓ Oxidative stress; ↓ ECM degradation; | [60] | |
In vivo | DMM in C57BL/6 mice | 20 mg/kg/day for 14 days (oral administration) | |||||
Orientin | In vitro | Mouse chondrocytes exposed to IL-1β (10 ng/mL) | 10 µM, 25 µM, 50 µM, 100 µM, 200 µM. | Oxidative stress; cytokine concentrations; NF-κB pathway; SIRT-6 pathway; | ↓ Pro-inflammatory cytokines; ↓ Oxidative stress; ↑ ECM production; ↓ ECM degradation; | [61] | |
In vivo | DMM in C57BL/6 mice | 30 mg/kg; once every 2 days for eight weeks | |||||
Oroxylin A | In vitro | human chondrocytes exposed to IL-1β (10 ng/mL) | 2.5 μM, 5 μM, 10 μM, 20 μM, 50 μM | NF-κB pathway; Oxidative stress; | ↓ Pro-inflammatory cytokines; ↓ Oxidative stress; ↓ ECM degradation; ↓ Chondrocyte hypertrophy | [62] | |
In vivo | DMM in C57BL/6 mice | 10 mg/kg/day by oral gavage for 4 weeks | |||||
Rhoifolin (ROF) | In vitro | Rat primary chondrocytes | 5 μM, 10 μM, 20 μM, 100 μM, 200 μM, 400 μM | NF-κB pathway; Nrf-2 pathway; cytokine concentrations; | ↑ ECM production; ↓ ECM degradation; ↓ Pro-inflammatory cytokines | [63] | |
In vivo | ACLT in male SD rats | 20 mg/kg; intragastric administration once 2 days for 8 weeks | |||||
Scutellarin | In vitro | SW1353 cell line exposed to IL-1β (10 ng/mL) | 5 μM, 10 μM, 20 μM, 40 μM, 80 μM, 100 μM | mTOR pathway; cholesterol-related proteins; | ↑ ECM production; ↓ ECM degradation; ↓ Pro-inflammatory cytokines | [64] | |
In vitro | Mouse ATDC5 cell line exposed to IL-1β (10 ng/mL) | 1.56 μM, 3.12 μM, 6.25 μM, 12.5 μM, 25 μM, 50 μM, 100 μM, 200 μM | NF-κB pathway; ERK pathway; JNK pathway; P38 pathway; Apoptosis; | ↓ ECM degradation; ↓ Apoptosis | [65] | ||
In vivo | DMM in C57BL/6 mice | 25 μM, 50 μM, twice a week for 12 weeks | |||||
In vivo | OVX in C57BL/6 mice | 25 mg/kg; 50 mg/kg; intraperitoneal injection twice a week for 8 weeks. | |||||
Velutin | In vitro | murine chondrocytes exposed to IL-1β (10 ng/mL) | 32 μM | Oxidative stress; cytokine concentrations; osteoclastogenesis; P38 pathway; | ↑ ECM production; ↓ ECM degradation; ↓ Pro-inflammatory cytokines; ↓ Osteoclastogenesis; ↓ Subchondral bone deterioration; | [66] | |
In vivo | DMM in C57BL/6 mice | 32 μM (5 μL) once a week for 8 weeks | |||||
Flavonols | Astilbin | In vitro | Primary human chondrocyte exposed to LPS (1 μg/mL) | 10 μM, 20 μM, 40 μM | Oxidative stress; cytokine concentrations; NF-κB pathway | ↑ ECM production; ↓ ECM degradation; ↓ Pro-inflammatory cytokines; ↓ Oxidative stress | [67] |
In vivo | DMM in C57BL/6 mice | 20 mg/kg/day by gastric perfusion for 8 weeks | |||||
Galangin | In vitro | Human OA primary chondrocytes | 0.01 μM, 0.1 μM, 1 μM, 10 μM, 100 μM | ERK pathway; Oxidative stress | ↑ ECM production; ↓ ECM degradation; ↓ Oxidative stress; | [68] | |
In vivo | DMM in male SD rats | 20 mg/kg, 40 mg/kg, 60 mg/kg, twice a week for 4 weeks | |||||
Hyperoside | In vitro | murine C57BL/6 chondrocytes exposed to IL-1β (10 ng/mL) | 10 μM, 20 μM, 40 μM | Oxidative stress; Apoptosis; NF-κB pathway; ERK pathway; JNK pathway; P38 pathway; | ↓ ECM degradation; ↓ Apoptosis | [69] | |
In vivo | DMM in C57BL/6 mice | 20 mg/kg/day Injected intraperitoneally for 4 or 8 weeks | |||||
Icaarin | In vitro | SW1353 cell line exposed to IL-1β (5 ng/mL, 10 ng/mL) | 5 μM, 10 μM, 20 μM, 40 μM, 80 μM, 100 μM | mTOR pathway; Autophagy; | ↑ ECM production; ↓ ECM degradation; ↑ Autophagy | [70] | |
In vitro | CHON-001 cell line and ATDC5 cell line exposed to IL-1β (1 ng/mL, 5 ng/mL, 10 ng/mL, 20 ng/mL) | 10 μM, 20 μM, 30 μM | cytokine concentrations; apoptosis; | ↓ Pro-inflammatory cytokines; ↑ Proliferation; ↓ Apoptosis | [71] | ||
In vitro | ADTC5 cell line exposed to TNF-α (20 ng/mL) | 0.1 μM, 1 μM, 10 μM | NF-κB pathway; | ↓ ECM degradation; | [72] | ||
In vivo | Articular cartilage defect model in C57BL/6 mice | 1 μM implanted in alginate-gelfoam complexes | |||||
In vitro | SW1353 cell line exposed to IL-1β (10 ng/mL) | 1 μM, 5 μM, 10 μM, 20 μM, 40 μM, 80 μM, 100 μM | Apoptosis; mTOR pathway; Autophagy; | ↓ Apoptosis; ↓ Cartilage degeneration | [73] | ||
In vivo | ACLT in male SD rats | 20 mg/kg/day; 40 mg/kg/day; 80 mg/kg/day; intraperitoneal injection for 4 weeks | |||||
In vivo | Articular cartilage defect model in New Zealand white rabbits | 0.94 g/kg/day; intra-articular injection | - | ↑ Articula cartilage repair; ↑ ECM production; ↓ ECM degradation; | [74] | ||
Quercetin | In vitro | Primary rat chondrocyte exposed to IL-1β (10 ng/mL) | 4 μM, 8 μM | mTOR pathway; Autophagy; | ↑ ECM production; ↓ ECM degradation; ↑ Autophagy; ↓ Apoptosis; | [75] | |
In vivo | ACLT in male SD rats | 6 μM or 8 μM (100 μL) in articular cavity once a week for 6 weeks | |||||
In vivo | ACLT in SD rats | 50 mg/kg/day; 100 mg/kg/day; 200 mg/kg/day | mTOR pathway; | ↓ Pro-inflammatory cytokines; ↓ ECM degradation; | [76] | ||
In vivo | MIA-induced OA in SD rats | 25 mg/kg/day; 50 mg/kg/day; 100 mg/kg/day; Intragastric administration | - | ↓ Pro-inflammatory cytokines; ↓ ECM degradation; ↑ ECM production; ↓ subchondral bone damage; ↓ bone loss | [77] | ||
Rutin | In vitro | Primary human chondrocyte exposed to advanced glycation end products (AGEs, 50 μg/mL) | 10 μM, 20 μM, 40 μM | Oxidative stress; Apoptosis; NF-κB pathway; ERK pathway; JNK pathway; P38 pathway; | ↑ ECM production; ↓ ECM degradation; ↓ Pro-inflammatory cytokines | [78] | |
In vivo | DMM in C57BL/6 mice | 40 mg/kg/day; via oral route for 8 weeks | |||||
Isoflavones | Biochanin A (BCA) | In vivo | DMM in C57BL/6 mice | 20 mg/kg; 40 mg/kg; Intragastrically once a week for 8 weeks | Nrf-2 pathway; | ↓ Apoptosis; ↓ Oxidative stress; ↑ ECM production; ↓ ECM degradation; | [79] |
Calycosin | In vitro | Human primary chondrocytes exposed to IL-1β (10 ng/mL) | 1 μM, 5 μM, 10 μM, 20 μM, | mTOR pathway; cytokine concentrations; Apoptosis; | ↓ Pro-inflammatory cytokines; ↓ Apoptosis | [80] | |
In vitro | Primary mouse chondrocyte exposed to IL-1β (10 ng/mL) | 12.5 μM, 50 μM, 100 μM, 200 μM, 400 μM | NF-κB pathway; cytokine concentrations; Oxidative stress; Apoptosis; | ↑ ECM production; ↓ ECM degradation; ↓ Pro-inflammatory cytokines | [81] | ||
In vivo | DMM in C57BL/6 mice | 40 mg/kg/day intraperitoneally for 8 weeks | |||||
Caviunin glycoside (CAFG) | In vitro | Primary rat chondrocyte exposed to IL-1β (10 ng/mL) | 100 pM, 1 nM, 10 nM, 100 nM, 1 μM | Apoptosis; Oxidative stress; | ↓ ECM degradation; ↓ Pro-inflammatory cytokines; ↓ Apoptosis; ↓ ROS generation; | [82] | |
In vivo | MIA-induced OA in SD rats | 250 mg/kg/day; 500 mg/kg/day; oral gavage for 28 days | |||||
S-Equol | In vitro | rat primary chondrocytes exposed to sodium nitroprusside (SNP; 0.8 mM) | 1 μM, 3 μM, 10 μM, 30 μM, 50 μM, | Apoptosis; Oxidative stress; | ↑ Proliferation; ↓ Apoptosis; Attenuated ↓ ECM degradation; ↓ NO and H2O2 production | [83] | |
Glabridin | In vitro | Human OA chondrocytes | 0.01 μM, 0.1 μM, 1 μM, 5 μM | Oxidative stress; Apoptosis; mTOR pathway; Autophagy; Cytokine concentrations; | ↑ ECM production; ↓ ECM degradation; ↓ Pro-inflammatory cytokines; ↓ ROS generation; ↑ Autophagy; | [84] | |
In vivo | ACLT in male SD rats | 1 mg/kg, 5 mg/kg, 10 mg/kg twice a week for 4 or 8 weeks | |||||
Neobavaisoflavone (NBIF) | In vitro | Rat chondrocytes exposed to IL-1β (20 ng/mL) | 0.25 µM, 0.5 µM, 1 µM, 5 µM, 25 µM, 50 µM, 100 µM, 200 µM | Apoptosis; Cytokine concentrations; Oxidative stress; NF-κB pathway; | ↓ Apoptosis; ↓ Pro-inflammatory cytokines; ↓ ROS generation; | [85] | |
In vivo | DMM in rats | 30 mg/kg/day oral gavage for 7 days | |||||
Ononin | In vitro | rat primary chondrocytes exposed to IL-1β (10 ng/mL) | 1 nM, 10 nM, 100 nM, 1 μM, 10 μM, 100 μM | cytokine concentrations; Oxidative stress; Apoptosis; NF-κB pathway; ERK pathway; JNK pathway; P38 pathway; | ↑ ECM production; ↓ ECM degradation; ↓ Pro-inflammatory cytokines | [86] |
4. The Perspectives on the Use of Flavonoids in Osteoarthritis of Aged Population
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Di Nicola, V. Degenerative osteoarthritis a reversible chronic disease. Regen. Ther. 2020, 15, 149–160. [Google Scholar] [CrossRef]
- Krakowski, P.; Karpiński, R.; Jojczuk, M.; Nogalska, A.; Jonak, J. Knee MRI Underestimates the Grade of Cartilage Lesions. Appl. Sci. 2021, 11, 1552. [Google Scholar] [CrossRef]
- Jang, S.; Lee, K.; Ju, J.H. Recent Updates of Diagnosis, Pathophysiology, and Treatment on Osteoarthritis of the Knee. Int. J. Mol. Sci. 2021, 22, 2619. [Google Scholar] [CrossRef]
- Vincent, T.L.; McClurg, O.; Troeberg, L. The Extracellular Matrix of Articular Cartilage Controls the Bioavailability of Pericellular Matrix-Bound Growth Factors to Drive Tissue Homeostasis and Repair. Int. J. Mol. Sci. 2022, 23, 6003. [Google Scholar] [CrossRef]
- Maldonado, M.; Nam, J. The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology of osteoarthritis. Biomed. Res. Int. 2013, 2013, 284873. [Google Scholar] [CrossRef]
- Duan, M.; Wang, Q.; Liu, Y.; Xie, J. The role of TGF-β2 in cartilage development and diseases. Bone Joint Res. 2021, 10, 474–487. [Google Scholar] [CrossRef]
- Sigafoos, A.N.; Paradise, B.D.; Fernandez-Zapico, M.E. Hedgehog/GLI Signaling Pathway: Transduction, Regulation, and Implications for Disease. Cancers 2021, 13, 3410. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, V.; Angelozzi, M.; Haseeb, A. SOX9 in cartilage development and disease. Curr. Opin. Cell. Biol. 2019, 61, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Yano, F.; Ohba, S.; Murahashi, Y.; Tanaka, S.; Saito, T.; Chung, U.I. Runx1 contributes to articular cartilage maintenance by enhancement of cartilage matrix production and suppression of hypertrophic differentiation. Sci. Rep. 2019, 9, 7666. [Google Scholar] [CrossRef] [PubMed]
- Fujii, Y.; Liu, L.; Yagasaki, L.; Inotsume, M.; Chiba, T.; Asahara, H. Cartilage Homeostasis and Osteoarthritis. Int. J. Mol. Sci. 2022, 23, 6316. [Google Scholar] [CrossRef]
- Mokuda, S.; Nakamichi, R.; Matsuzaki, T.; Ito, Y.; Sato, T.; Miyata, K.; Inui, M.; Olmer, M.; Sugiyama, E.; Lotz, M.; et al. Wwp2 maintains cartilage homeostasis through regulation of Adamts5. Nat. Commun. 2019, 10, 2429. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Qin, S.; Yi, C.; Ma, G.; Zhu, H.; Zhou, W.; Xiong, Y.; Zhu, X.; Wang, Y.; He, L.; et al. MiR-140 is co-expressed with Wwp2-C transcript and activated by Sox9 to target Sp1 in maintaining the chondrocyte proliferation. FEBS Lett. 2011, 585, 2992–2997. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; He, X.; Hua, Y.; Li, Q.; Wang, J.; Gan, X. The E3 ubiquitin ligase WWP2 facilitates RUNX2 protein transactivation in a mono-ubiquitination manner during osteogenic differentiation. J. Biol. Chem. 2017, 292, 11178–11188. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Chubinskaya, S.; Liao, W.; Loeser, R.F. Wnt5a induces catabolic signaling and matrix metalloproteinase production in human articular chondrocytes. Osteoarthr. Cartil. 2017, 25, 1505–1515. [Google Scholar] [CrossRef]
- Rashid, H.; Chen, H.; Javed, A. Runx2 is required for hypertrophic chondrocyte mediated degradation of cartilage matrix during endochondral ossification. Matrix Biol. Plus 2021, 12, 100088. [Google Scholar] [CrossRef]
- Chawla, S.; Mainardi, A.; Majumder, N.; Dönges, L.; Kumar, B.; Occhetta, P.; Martin, I.; Egloff, C.; Ghosh, S.; Bandyopadhyay, A.; et al. Chondrocyte Hypertrophy in Osteoarthritis: Mechanistic Studies and Models for the Identification of New Therapeutic Strategies. Cells 2022, 11, 4034. [Google Scholar] [CrossRef]
- Hosaka, Y.; Saito, T.; Sugita, S.; Hikata, T.; Kobayashi, H.; Fukai, A.; Taniguchi, Y.; Hirata, M.; Akiyama, H.; Chung, U.I.; et al. Notch signaling in chondrocytes modulates endochondral ossification and osteoarthritis development. Proc. Natl. Acad. Sci. USA 2013, 110, 1875–1880. [Google Scholar] [CrossRef]
- Orfanidou, T.; Iliopoulos, D.; Malizos, K.N.; Tsezou, A. Involvement of SOX-9 and FGF-23 in RUNX-2 regulation in osteoarthritic chondrocytes. J. Cell. Mol. Med. 2009, 9B, 3186–3194. [Google Scholar] [CrossRef]
- Molnar, V.; Matišić, V.; Kodvanj, I.; Bjelica, R.; Jeleč, Ž.; Hudetz, D.; Rod, E.; Čukelj, F.; Vrdoljak, T.; Vidović, D.; et al. Cytokines and Chemokines Involved in Osteoarthritis Pathogenesis. Int. J. Mol. Sci. 2021, 22, 9208. [Google Scholar] [CrossRef]
- Rim, Y.A.; Nam, Y.; Ju, J.H. The Role of Chondrocyte Hypertrophy and Senescence in Osteoarthritis Initiation and Progression. Int. J. Mol. Sci. 2020, 21, 2358. [Google Scholar] [CrossRef]
- He, Y.; Fan, L.; Aaron, N.; Feng, Y.; Fang, Q.; Zhang, Y.; Zhang, D.; Wang, H.; Ma, T.; Sun, J.; et al. Reduction of Smad2 caused by oxidative stress leads to necrotic death of hypertrophic chondrocytes associated with an endemic osteoarthritis. Rheumatology 2021, 61, 440–451. [Google Scholar] [CrossRef] [PubMed]
- Bellavia, D.; Dimarco, E.; Costa, V.; Carina, V.; De Luca, A.; Raimondi, L.; Fini, M.; Gentile, C.; Caradonna, F.; Giavaresi, G. Flavonoids in Bone Erosive Diseases: Perspectives in Osteoporosis Treatment. Trends Endocrinol. Metab. 2021, 32, 76–94. [Google Scholar] [CrossRef] [PubMed]
- Bellavia, D.; Caradonna, F.; Dimarco, E.; Costa, V.; Carina, V.; De Luca, A.; Raimondi, L.; Fini, M.; Gentile, C.; Giavaresi, G. Non-flavonoid polyphenols in osteoporosis: Preclinical evidence. Trends Endocrinol. Metab. 2021, 32, 515–529. [Google Scholar] [CrossRef] [PubMed]
- Bellavia, D.; Caradonna, F.; Dimarco, E.; Costa, V.; Carina, V.; De Luca, A.; Raimondi, L.; Gentile, C.; Alessandro, R.; Fini, M.; et al. Terpenoid treatment in osteoporosis: This is where we have come in research. Trends Endocrinol. Metab. 2021, 32, 846–861. [Google Scholar] [CrossRef] [PubMed]
- Henrotin, Y.; Mobasheri, A. Natural Products for Promoting Joint Health and Managing Osteoarthritis. Curr. Rheumatol. Rep. 2018, 20, 72. [Google Scholar] [CrossRef] [PubMed]
- Colletti, A.; Cicero, A.F.G. Nutraceutical Approach to Chronic Osteoarthritis: From Molecular Research to Clinical Evidence. Int. J. Mol. Sci. 2021, 22, 12920. [Google Scholar] [CrossRef] [PubMed]
- Caradonna, F.; Consiglio, O.; Luparello, C.; Gentile, C. Science and Healthy Meals in the World: Nutritional Epigenomics and Nutrigenetics of the Mediterranean Diet. Nutrients 2020, 12, 1748. [Google Scholar] [CrossRef] [PubMed]
- Caradonna, F.; Cruciata, I.; Luparello, C. Nutrigenetics, nutrigenomics and phenotypic outcomes of dietary low-dose alcohol consumption in the suppression and induction of cancer development: Evidence from. Crit. Rev. Food Sci. Nutr. 2022, 62, 2122–2139. [Google Scholar] [CrossRef]
- Saulite, L.; Jekabsons, K.; Klavins, M.; Muceniece, R.; Riekstina, U. Effects of malvidin, cyanidin and delphinidin on human adipose mesenchymal stem cell differentiation into adipocytes, chondrocytes and osteocytes. Phytomedicine 2019, 53, 86–95. [Google Scholar] [CrossRef]
- Wang, H.; Li, S.; Zhang, G.; Wu, H.; Chang, X. Potential therapeutic effects of cyanidin-3-O-glucoside on rheumatoid arthritis by relieving inhibition of CD38+ NK cells on Treg cell differentiation. Arthritis Res. Ther. 2019, 21, 220. [Google Scholar] [CrossRef]
- Zeng, Z.; Li, H.; Luo, C.; Hu, W.; Weng, T.J.; Shuang, F. Pelargonidin ameliorates inflammatory response and cartilage degeneration in osteoarthritis via suppressing the NF-κB pathway. Arch. Biochem. Biophys. 2023, 743, 109668. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Zhang, Y.; Jin, W.; Wei, S.; Chen, J.; Zhong, C.; Zhong, Y.; Tu, C.; Peng, H. Procyanidin B2 ameliorates the progression of osteoarthritis: An in vitro and in vivo study. Int. Immunopharmacol. 2022, 113, 109336. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.Y.; Ahmad, N.; Haqqi, T.M. Butein Activates Autophagy Through AMPK/TSC2/ULK1/mTOR Pathway to Inhibit IL-6 Expression in IL-1β Stimulated Human Chondrocytes. Cell. Physiol. Biochem. 2018, 49, 932–946. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Cai, M. Cardamonin Inhibited IL-1β Induced Injury by Inhibition of NLRP3 Inflammasome via Activating Nrf2/NQO-1 Signaling Pathway in Chondrocyte. J. Microbiol. Biotechnol. 2021, 31, 794–802. [Google Scholar] [CrossRef]
- Ye, H.; Yang, X.; Chen, X.; Shen, L.; Le, R. Isoliquiritigenin protects against angiotensin II-induced fibrogenesis by inhibiting NF-κB/PPARγ inflammatory pathway in human Tenon’s capsule fibroblasts. Exp. Eye Res. 2020, 199, 108146. [Google Scholar] [CrossRef] [PubMed]
- Ji, B.; Zhang, Z.; Guo, W.; Ma, H.; Xu, B.; Mu, W.; Amat, A.; Cao, L. Isoliquiritigenin blunts osteoarthritis by inhibition of bone resorption and angiogenesis in subchondral bone. Sci. Rep. 2018, 8, 1721. [Google Scholar] [CrossRef]
- Yan, Z.; Qi, W.; Zhan, J.; Lin, Z.; Lin, J.; Xue, X.; Pan, X.; Zhou, Y. Activating Nrf2 signalling alleviates osteoarthritis development by inhibiting inflammasome activation. J. Cell. Mol. Med. 2020, 24, 13046–13057. [Google Scholar] [CrossRef]
- Wang, C.; Gao, Y.; Zhang, Z.; Chi, Q.; Liu, Y.; Yang, L.; Xu, K. Safflower yellow alleviates osteoarthritis and prevents inflammation by inhibiting PGE2 release and regulating NF-κB/SIRT1/AMPK signaling pathways. Phytomedicine 2020, 78, 153305. [Google Scholar] [CrossRef]
- Chen, X.; Li, Z.; Hong, H.; Wang, N.; Chen, J.; Lu, S.; Zhang, H.; Zhang, X.; Bei, C. Xanthohumol suppresses inflammation in chondrocytes and ameliorates osteoarthritis in mice. Biomed. Pharm. 2021, 137, 111238. [Google Scholar] [CrossRef]
- Yang, D.; Cao, G.; Ba, X.; Jiang, H. Epigallocatechin-3-O-gallate promotes extracellular matrix and inhibits inflammation in IL-1β stimulated chondrocytes by the PTEN/miRNA-29b pathway. Pharm. Biol. 2022, 60, 589–599. [Google Scholar] [CrossRef]
- Teng, Y.; Jin, Z.; Ren, W.; Lu, M.; Hou, M.; Zhou, Q.; Wang, W.; Yang, H.; Zou, J. Theaflavin-3,3′-Digallate Protects Cartilage from Degradation by Modulating Inflammation and Antioxidant Pathways. Oxid. Med. Cell. Longev. 2022, 2022, 3047425. [Google Scholar] [CrossRef] [PubMed]
- He, J.; He, J. Baicalin mitigated IL-1β-Induced osteoarthritis chondrocytes damage through activating mitophagy. Chem. Biol. Drug. Des. 2023, 101, 1322–1334. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, J.; Sun, Y.; Wen, J.; Zhou, Q.; Ding, X.; Zhang, X. Correlation analysis of differentially expressed long non-coding RNA HOTAIR with PTEN/PI3K/AKT pathway and inflammation in patients with osteoarthritis and the effect of baicalin intervention. J. Orthop. Surg. Res. 2023, 18, 34. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Shen, K.; Yu, H.; Fan, W. Baicalein limits osteoarthritis development by inhibiting chondrocyte ferroptosis. Free Radic. Biol. Med. 2023, 196, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Chen, K.; Qian, N.; Huang, P.; Hu, F.; Ding, T.; Xu, X.; Zhou, Q.; Chen, B.; Deng, L.; et al. Baicalein alleviates osteoarthritis by protecting subchondral bone, inhibiting angiogenesis and synovial proliferation. J. Cell. Mol. Med. 2021, 25, 5283–5294. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, J.; Liu, J. Baicalin Protects Human OA Chondrocytes Against IL-1β-Induced Apoptosis and ECM Degradation by Activating Autophagy via MiR-766-3p/AIFM1 Axis. Drug Des. Dev. Ther. 2020, 14, 2645–2655. [Google Scholar] [CrossRef]
- Bai, H.; Yuan, R.; Zhang, Z.; Liu, L.; Wang, X.; Song, X.; Ma, T.; Tang, J.; Liu, C.; Gao, L. Intra-articular Injection of Baicalein Inhibits Cartilage Catabolism and NLRP3 Inflammasome Signaling in a Posttraumatic OA Model. Oxid. Med. Cell. Longev. 2021, 2021, 6116890. [Google Scholar] [CrossRef]
- Pan, Z.; He, Q.; Zeng, J.; Li, S.; Li, M.; Chen, B.; Yang, J.; Xiao, J.; Zeng, C.; Luo, H.; et al. Naringenin protects against iron overload-induced osteoarthritis by suppressing oxidative stress. Phytomedicine 2022, 105, 154330. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, N.Z.; Li, M.; Zhang, D.F.; Ma, X.; Zhou, S.L.; Qiu, Y.S. Sappanone A Alleviated IL-1β-Induced Inflammation in OA Chondrocytes through Modulating the NF-κB and Nrf2/HO-1 Pathways. Dis. Mrk. 2022, 2022, 2380879. [Google Scholar] [CrossRef]
- Tang, Q.; Zheng, G.; Feng, Z.; Tong, M.; Xu, J.; Hu, Z.; Shang, P.; Chen, Y.; Wang, C.; Lou, Y.; et al. Wogonoside inhibits IL-1β induced catabolism and hypertrophy in mouse chondrocyte and ameliorates murine osteoarthritis. Oncotarget 2017, 8, 61440–61456. [Google Scholar] [CrossRef]
- Chen, J.; Wang, C.; Huang, K.; Chen, S.; Ma, Y. Acacetin Suppresses IL-1β-Induced Expression of Matrix Metalloproteinases in Chondrocytes and Protects against Osteoarthritis in a Mouse Model by Inhibiting NF-κB Signaling Pathways. Biomed. Res. Int. 2020, 2020, 2328401. [Google Scholar] [CrossRef]
- Ji, X.; Du, W.; Che, W.; Wang, L.; Zhao, L. Apigenin Inhibits the Progression of Osteoarthritis by Mediating Macrophage Polarization. Molecules 2023, 28, 2915. [Google Scholar] [CrossRef]
- Estakhri, F.; Reza Panjehshahin, M.; Tanideh, N.; Gheisari, R.; Azarpira, N.; Gholijani, N. Efficacy of Combination Therapy with Apigenin and Synovial Membrane-Derived Mesenchymal Stem Cells on Knee Joint Osteoarthritis in a Rat Model. Iran. J. Med. Sci. 2021, 46, 383–394. [Google Scholar] [CrossRef]
- Liao, T.; Ding, L.; Wu, P.; Zhang, L.; Li, X.; Xu, B.; Zhang, H.; Ma, Z.; Xiao, Y.; Wang, P. Chrysin Attenuates the NLRP3 Inflammasome Cascade to Reduce Synovitis and Pain in KOA Rats. Drug Des. Dev. Ther. 2020, 14, 3015–3027. [Google Scholar] [CrossRef]
- Ding, L.; Liao, T.; Yang, N.; Wei, Y.; Xing, R.; Wu, P.; Li, X.; Mao, J.; Wang, P. Chrysin ameliorates synovitis and fibrosis of osteoarthritic fibroblast-like synoviocytes in rats through PERK/TXNIP/NLRP3 signaling. Front. Pharmacol. 2023, 14, 1170243. [Google Scholar] [CrossRef]
- Ding, H.; Ding, H.; Mu, P.; Lu, X.; Xu, Z. Diosmetin inhibits subchondral bone loss and indirectly protects cartilage in a surgically-induced osteoarthritis mouse model. Chem. Biol. Interact. 2023, 370, 110311. [Google Scholar] [CrossRef]
- Fei, J.; Liang, B.; Jiang, C.; Ni, H.; Wang, L. Luteolin inhibits IL-1β-induced inflammation in rat chondrocytes and attenuates osteoarthritis progression in a rat model. Biomed. Pharm. 2019, 109, 1586–1592. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, L.; Liu, Y.; Huang, C.; Xia, W.; Zhou, H.; Zhou, X. Luteolin Protects Chondrocytes from H2O2-Induced Oxidative Injury and Attenuates Osteoarthritis Progression by Activating AMPK-Nrf2 Signaling. Oxid. Med. Cell. Longev. 2022, 2022, 5635797. [Google Scholar] [CrossRef]
- Xu, Z.; Shen, Z.H.; Wu, B.; Gong, S.L.; Chen, B. Small molecule natural compound targets the NF-κB signaling and ameliorates the development of osteoarthritis. J. Cell. Physiol. 2021, 236, 7298–7307. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Xiao, J.; Tong, J.L.; Lu, J.; Tu, Y.; Li, S.; Ni, L.; Shi, Y.; Luo, P.; Zhang, X.; et al. Orientin inhibits inflammation in chondrocytes and attenuates osteoarthritis through Nrf2/NF-κB and SIRT6/NF-κB pathway. J. Orthop. Res. 2023, 41, 2405–2417. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.H.; Zheng, G.; Zhong, X.Y.; Lin, Z.H.; Yang, S.W.; Liu, H.X.; Shang, P. Oroxylin A attenuates osteoarthritis progression by dual inhibition of cell inflammation and hypertrophy. Food Funct. 2021, 12, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Qin, J.; Shi, H.; Li, Q.; Zhou, S.; Chen, L. Rhoifolin ameliorates osteoarthritis via the Nrf2/NF-κB axis: In vitro and in vivo experiments. Osteoarthr. Cartil. 2022, 30, 735–745. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, Z.; Wang, L.; Li, Y.; Guo, J.; Yang, X.; Zhao, J.; Rong, K.; Zhang, P.; Ye, B.; et al. Scutellarin ameliorates osteoarthritis by protecting chondrocytes and subchondral bone microstructure by inactivating NF-κB/MAPK signal transduction. Biomed. Pharm. 2022, 155, 113781. [Google Scholar] [CrossRef] [PubMed]
- Ju, S.H.; Tan, L.R.; Liu, P.W.; Tan, Y.L.; Zhang, Y.T.; Li, X.H.; Wang, M.J.; He, B.X. Scutellarin regulates osteoarthritis in vitro by inhibiting the PI3K/AKT/mTOR signaling pathway. Mol. Med. Rep. 2021, 23, 83. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Lu, X.; Li, X.; Zhang, Y.; Xu, R.; Lou, Y.; Wang, Y.; Zhang, T.; Qian, Y. Dual protective role of velutin against articular cartilage degeneration and subchondral bone loss via the p38 signaling pathway in murine osteoarthritis. Front. Endocrinol. 2022, 13, 926934. [Google Scholar] [CrossRef]
- Sun, S.; Yan, Z.; Shui, X.; Qi, W.; Chen, Y.; Xu, X.; Hu, Y.; Guo, W.; Shang, P. Astilbin prevents osteoarthritis development through the TLR4/MD-2 pathway. J. Cell. Mol. Med. 2020, 24, 13104–13114. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Zhang, Y.; Hong, W.; Miao, H.; Dai, J.; Sun, Y. Galangin ameliorates osteoarthritis progression by attenuating extracellular matrix degradation in chondrocytes via the activation of PRELP expression. Eur. J. Pharm. 2022, 936, 175347. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Luo, J.; Jing, X.; Xiang, W.; Guo, J.; Yao, X.; Liang, S.; Guo, F.; Xu, T. Hyperoside ameliorates the progression of osteoarthritis: An in vitro and in vivo study. Phytomedicine 2021, 80, 153387. [Google Scholar] [CrossRef]
- Chen, Y.; Pan, X.; Zhao, J.; Li, C.; Lin, Y.; Wang, Y.; Liu, X.; Tian, M. Icariin alleviates osteoarthritis through PI3K/Akt/mTOR/ULK1 signaling pathway. Eur. J. Med. Res. 2022, 27, 204. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, L.; Shen, H.; Hao, Q.; Fu, S.; Liu, X. Up-regulation of long non-coding RNA CYTOR induced by icariin promotes the viability and inhibits the apoptosis of chondrocytes. BMC Complement. Med. Ther. 2021, 21, 152. [Google Scholar] [CrossRef]
- Wang, P.; Meng, Q.; Wang, W.; Zhang, S.; Xiong, X.; Qin, S.; Zhang, J.; Li, A.; Liu, Z. Icariin inhibits the inflammation through down-regulating NF-κB/HIF-2α signal pathways in chondrocytes. Biosci. Rep. 2020, 40, BSR20203107. [Google Scholar] [CrossRef]
- Tang, Y.; Li, Y.; Xin, D.; Chen, L.; Xiong, Z.; Yu, X. Icariin alleviates osteoarthritis by regulating autophagy of chondrocytes by mediating PI3K/AKT/mTOR signaling. Bioengineered 2021, 12, 2984–2999. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fan, F.; Zhang, C.; Liu, A.; Shang, M.; Meng, L. Icariin-conditioned serum combined with chitosan attenuates cartilage injury in rabbit knees with osteochondral defect. J. Orthop. Surg. Res. 2023, 18, 125. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.; Wang, X.; Jin, S.; Shen, S.; Wang, R.; Tong, P. Quercetin mediates TSC2-RHEB-mTOR pathway to regulate chondrocytes autophagy in knee osteoarthritis. Gene 2022, 820, 146209. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Huang, W. Effect and mechanisms of quercetin on the treatment of osteoarthritis: A preliminary pre-clinical study. Asian J. Surg. 2023, 46, 2132–2134. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yan, Y.; Pathak, J.L.; Hong, W.; Zeng, J.; Qian, D.; Hao, B.; Li, H.; Gu, J.; Jaspers, R.T.; et al. Quercetin prevents osteoarthritis progression possibly via regulation of local and systemic inflammatory cascades. J. Cell. Mol. Med. 2023, 27, 515–528. [Google Scholar] [CrossRef]
- Chen, X.; Yu, M.; Xu, W.; Zou, L.; Ye, J.; Liu, Y.; Xiao, Y.; Luo, J. Rutin inhibited the advanced glycation end products-stimulated inflammatory response and extra-cellular matrix degeneration via targeting TRAF-6 and BCL-2 proteins in mouse model of osteoarthritis. Aging 2021, 13, 22134–22147. [Google Scholar] [CrossRef]
- He, Q.; Yang, J.; Pan, Z.; Zhang, G.; Chen, B.; Li, S.; Xiao, J.; Tan, F.; Wang, Z.; Chen, P.; et al. Biochanin A protects against iron overload associated knee osteoarthritis via regulating iron levels and NRF2/System xc-/GPX4 axis. Biomed. Pharmacother. 2023, 157, 113915. [Google Scholar] [CrossRef]
- Guo, X.; Pan, X.; Wu, J.; Li, Y.; Nie, N. Calycosin prevents IL-1β-induced articular chondrocyte damage in osteoarthritis through regulating the PI3K/AKT/FoxO1 pathway. Vitr. Cell. Dev. Biol. Anim. 2022, 58, 491–502. [Google Scholar] [CrossRef]
- Shi, X.; Jie, L.; Wu, P.; Zhang, N.; Mao, J.; Wang, P.; Yin, S. Calycosin mitigates chondrocyte inflammation and apoptosis by inhibiting the PI3K/AKT and NF-κB pathways. J. Ethnopharmacol. 2022, 297, 115536. [Google Scholar] [CrossRef]
- Kothari, P.; Tripathi, A.K.; Girme, A.; Rai, D.; Singh, R.; Sinha, S.; Choudhary, D.; Nagar, G.K.; Maurya, R.; Hingorani, L.; et al. Caviunin glycoside (CAFG) from Dalbergia sissoo attenuates osteoarthritis by modulating chondrogenic and matrix regulating proteins. J. Ethnopharmacol. 2022, 282, 114315. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.W.; Huang, T.C.; Hu, Y.C.; Hsieh, B.S.; Cheng, H.L.; Chiu, P.R.; Chang, K.L. S-Equol Protects Chondrocytes against Sodium Nitroprusside-Caused Matrix Loss and Apoptosis through Activating PI. Int. J. Mol. Sci. 2021, 22, 7054. [Google Scholar] [CrossRef]
- Dai, J.; Zhang, Y.; Chen, D.; Li, X.; Wang, J.; Sun, Y. Glabridin inhibits osteoarthritis development by protecting chondrocytes against oxidative stress, apoptosis and promoting mTOR mediated autophagy. Life Sci. 2021, 268, 118992. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Liu, T.; Ren, M.; Wang, X. Neobavaisoflavone improves medial collateral ligament-induced osteoarthritis through repressing the nuclear factor -κB/hypoxia-inducible factor-2α axis. J. Physiol. Pharm. 2022, 73, 645–657. [Google Scholar] [CrossRef]
- Xu, F.; Zhao, L.J.; Liao, T.; Li, Z.C.; Wang, L.L.; Lin, P.Y.; Jiang, R.; Wei, Q.J. Ononin ameliorates inflammation and cartilage degradation in rat chondrocytes with IL-1β-induced osteoarthritis by downregulating the MAPK and NF-κB pathways. BMC Complement. Med. Ther. 2022, 22, 25. [Google Scholar] [CrossRef] [PubMed]
- He, L.X.; Tang, Z.H.; Huang, Q.S.; Li, W.H. DNA Methylation: A Potential Biomarker of Chronic Obstructive Pulmonary Disease. Front. Cell. Dev. Biol. 2020, 8, 585. [Google Scholar] [CrossRef] [PubMed]
- Bellavia, D.; Costa, V.; De Luca, A.; Cordaro, A.; Fini, M.; Giavaresi, G.; Caradonna, F.; Raimondi, L. The Binomial “Inflammation-Epigenetics” in Breast Cancer Progression and Bone Metastasis: IL-1β Actions Are Influenced by TET Inhibitor in MCF-7 Cell Line. Int. J. Mol. Sci. 2022, 23, 15422. [Google Scholar] [CrossRef]
- Caradonna, F.; Cruciata, I.; Schifano, I.; La Rosa, C.; Naselli, F.; Chiarelli, R.; Perrone, A.; Gentile, C. Methylation of cytokines gene promoters in IL-1β-treated human intestinal epithelial cells. Inflamm. Res. 2018, 67, 327–337. [Google Scholar] [CrossRef]
- Volpes, S.; Cruciata, I.; Ceraulo, F.; Schimmenti, C.; Naselli, F.; Pinna, C.; Mauro, M.; Picone, P.; Dallavalle, S.; Nuzzo, D.; et al. Nutritional epigenomic and DNA-damage modulation effect of natural stilbenoids. Sci. Rep. 2023, 13, 658. [Google Scholar] [CrossRef]
- Loeser, R.F.; Collins, J.A.; Diekman, B.O. Ageing and the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 2016, 12, 412–420. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, D.; Vithran, D.T.A.; Kwabena, B.R.; Xiao, W.; Li, Y. CC chemokines and receptors in osteoarthritis: New insights and potential targets. Arthritis Res. Ther. 2023, 25, 113. [Google Scholar] [CrossRef]
- Franceschi, C.; Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69 (Suppl. S1), S4–S9. [Google Scholar] [CrossRef]
- Franceschi, C.; Garagnani, P.; Parini, P.; Giuliani, C.; Santoro, A. Inflammaging: A new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 2018, 14, 576–590. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Cicuttini, F.; Jin, X.; Wluka, A.E.; Han, W.; Zhu, Z.; Blizzard, L.; Antony, B.; Winzenberg, T.; Jones, G.; et al. Knee effusion-synovitis volume measurement and effects of vitamin D supplementation in patients with knee osteoarthritis. Osteoarthr. Cartil. 2017, 25, 1304–1312. [Google Scholar] [CrossRef] [PubMed]
- Motta, F.; Barone, E.; Sica, A.; Selmi, C. Inflammaging and Osteoarthritis. Clin. Rev. Allergy Immunol. 2023, 64, 222–238. [Google Scholar] [CrossRef] [PubMed]
- Terkawi, M.A.; Ebata, T.; Yokota, S.; Takahashi, D.; Endo, T.; Matsumae, G.; Shimizu, T.; Kadoya, K.; Iwasaki, N. Low-Grade Inflammation in the Pathogenesis of Osteoarthritis: Cellular and Molecular Mechanisms and Strategies for Future Therapeutic Intervention. Biomedicines 2022, 10, 1109. [Google Scholar] [CrossRef] [PubMed]
- Brandl, A.; Hartmann, A.; Bechmann, V.; Graf, B.; Nerlich, M.; Angele, P. Oxidative stress induces senescence in chondrocytes. J. Orthop. Res. 2011, 29, 1114–1120. [Google Scholar] [CrossRef]
- Dugan, B.; Conway, J.; Duggal, N.A. Inflammaging as a target for healthy ageing. Age Ageing 2023, 52, afac328. [Google Scholar] [CrossRef]
- Evans, L.W.; Stratton, M.S.; Ferguson, B.S. Dietary natural products as epigenetic modifiers in aging-associated inflammation and disease. Nat. Prod. Rep. 2020, 37, 653–676. [Google Scholar] [CrossRef]
- De Sire, A.; Marotta, N.; Marinaro, C.; Curci, C.; Invernizzi, M.; Ammendolia, A. Role of Physical Exercise and Nutraceuticals in Modulating Molecular Pathways of Osteoarthritis. Int. J. Mol. Sci. 2021, 22, 5722. [Google Scholar] [CrossRef]
- Ye, Y.; Zhou, J. The protective activity of natural flavonoids against osteoarthritis by targeting NF-κB signaling pathway. Front. Endocrinol. 2023, 14, 1117489. [Google Scholar] [CrossRef] [PubMed]
- Astrike-Davis, E.M.; Coryell, P.; Loeser, R.F. Targeting cellular senescence as a novel treatment for osteoarthritis. Curr. Opin. Pharmacol. 2022, 64, 102213. [Google Scholar] [CrossRef] [PubMed]
- Naselli, F.; Tesoriere, L.; Caradonna, F.; Bellavia, D.; Attanzio, A.; Gentile, C.; Livrea, M.A. Anti-proliferative and pro-apoptotic activity of whole extract and isolated indicaxanthin from Opuntia ficus-indica associated with re-activation of the onco-suppressor p16(INK4a) gene in human colorectal carcinoma (Caco-2) cells. Biochem. Biophys. Res. Commun. 2014, 450, 652–658. [Google Scholar] [CrossRef] [PubMed]
- Naselli, F.; Belshaw, N.J.; Gentile, C.; Tutone, M.; Tesoriere, L.; Livrea, M.A.; Caradonna, F. Phytochemical Indicaxanthin Inhibits Colon Cancer Cell Growth and Affects the DNA Methylation Status by Influencing Epigenetically Modifying Enzyme Expression and Activity. J. Nutr. Nutr. 2015, 8, 114–127. [Google Scholar] [CrossRef]
- Ragusa, M.A.; Naselli, F.; Cruciata, I.; Volpes, S.; Schimmenti, C.; Serio, G.; Mauro, M.; Librizzi, M.; Luparello, C.; Chiarelli, R.; et al. Indicaxanthin Induces Autophagy in Intestinal Epithelial Cancer Cells by Epigenetic Mechanisms Involving DNA Methylation. Nutrients 2023, 15, 3495. [Google Scholar] [CrossRef]
- Sciandrello, G.; Mauro, M.; Catanzaro, I.; Saverini, M.; Caradonna, F.; Barbata, G. Long-lasting genomic instability following arsenite exposure in mammalian cells: The role of reactive oxygen species. Environ. Mol. Mutagen 2011, 52, 562–568. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naselli, F.; Bellavia, D.; Costa, V.; De Luca, A.; Raimondi, L.; Giavaresi, G.; Caradonna, F. Osteoarthritis in the Elderly Population: Preclinical Evidence of Nutrigenomic Activities of Flavonoids. Nutrients 2024, 16, 112. https://doi.org/10.3390/nu16010112
Naselli F, Bellavia D, Costa V, De Luca A, Raimondi L, Giavaresi G, Caradonna F. Osteoarthritis in the Elderly Population: Preclinical Evidence of Nutrigenomic Activities of Flavonoids. Nutrients. 2024; 16(1):112. https://doi.org/10.3390/nu16010112
Chicago/Turabian StyleNaselli, Flores, Daniele Bellavia, Viviana Costa, Angela De Luca, Lavinia Raimondi, Gianluca Giavaresi, and Fabio Caradonna. 2024. "Osteoarthritis in the Elderly Population: Preclinical Evidence of Nutrigenomic Activities of Flavonoids" Nutrients 16, no. 1: 112. https://doi.org/10.3390/nu16010112
APA StyleNaselli, F., Bellavia, D., Costa, V., De Luca, A., Raimondi, L., Giavaresi, G., & Caradonna, F. (2024). Osteoarthritis in the Elderly Population: Preclinical Evidence of Nutrigenomic Activities of Flavonoids. Nutrients, 16(1), 112. https://doi.org/10.3390/nu16010112