Oxidative Stress and Natural Products in Orthodontic Treatment: A Systematic Review
Abstract
:1. Introduction
- -
- Pathologies: Some diseases, such as rheumatoid arthritis, diabetes, cardiovascular diseases, and some neurodegenerative diseases, are associated with an increase in O.S. This may be due to an alteration in the equilibrium between the production of ROS and the body’s ability to neutralize them using natural antioxidants [8,9,10].
- -
- -
- -
2. Materials and Methods
2.1. Protocol and Registration
2.2. Search Processing
2.3. Eligibility Criteria
- -
- Population: Adults and children, both male and female, who took natural products during orthodontic treatment.
- -
- Intervention: Natural products during orthodontic treatment.
- -
- Comparison: Orthodontics without natural products.
- -
- Outcome: Effectiveness of the natural products in orthodontic treatment, concerning O.S. caused by orthodontic materials or tooth movement.
2.4. Data Processing
3. Results
Quality Assessment and Risk of Bias
4. Discussion
4.1. O.S. and Orthodontic Treatment
4.2. O.S. and Natural Products
- -
- Anti-inflammatory properties thanks to the content of acemannans and anthraquinones which can reduce inflammation by acting on inflammatory processes at a cellular level [103];
- -
- -
- -
- Effects on bacterial plaque, influencing its growth and formation [106];
- -
- Effects on the immune system by helping to regulate the immune response and reduce inflammation [107];
- -
- -
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | antioxidative defense |
AOPPs | advanced oxidative protein products |
BOP | bleeding on probing |
BRP | Brazilian red propolis |
CAT | catalase |
CG | control group |
CHX | chlorhexidine |
FPN | ferroportin |
GBI | gingival plaque bleeding index |
GCF | gingival crevicular fluid |
GI | gingival index |
MPO | myeloperoxidase activity |
MTC | matricaria therapy chamomilla |
NI-TI | nickel-titanium |
NO | nitric oxide |
OS | oxidative stress |
PCR | polymerase chain reaction |
PD | probing depth |
PI | plaque index |
ROS | reactive oxygen species |
SOD | superoxide dismutase |
TAC | total antioxidant capacity |
TBARS | thiobarbituric acid reactive substances |
TG | treatment group |
TOS | total oxidant status |
VPI | visible plaque index |
References
- FDI World Dental Federation. Malocclusion in Orthodontics and Oral Health. Int. Dent. J. 2020, 70, 11–12. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.K.; Abutayyem, H.; Kanwal, B.; AL Shayeb, M. Future of Orthodontics—A Systematic Review and Meta-Analysis on the Emerging Trends in This Field. J. Clin. Med. 2023, 12, 532. [Google Scholar] [CrossRef] [PubMed]
- Inchingolo, A.D.; Malcangi, G.; Inchingolo, A.M.; Piras, F.; Settanni, V.; Garofoli, G.; Palmieri, G.; Ceci, S.; Patano, A.; De Leonardis, N.; et al. Benefits and Implications of Resveratrol Supplementation on Microbiota Modulations: A Systematic Review of the Literature. Int. J. Mol. Sci. 2022, 23, 4027. [Google Scholar] [CrossRef] [PubMed]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, e8416763. [Google Scholar] [CrossRef] [PubMed]
- Di Domenico, M.; Feola, A.; Ambrosio, P.; Pinto, F.; Galasso, G.; Zarrelli, A.; Di Fabio, G.; Porcelli, M.; Scacco, S.; Inchingolo, F.; et al. Antioxidant Effect of Beer Polyphenols and Their Bioavailability in Dental-Derived Stem Cells (D-dSCs) and Human Intestinal Epithelial Lines (Caco-2) Cells. Stem Cells Int. 2020, 2020, 8835813. [Google Scholar] [CrossRef] [PubMed]
- Lennicke, C.; Cochemé, H.M. Redox Metabolism: ROS as Specific Molecular Regulators of Cell Signaling and Function. Mol. Cell 2021, 81, 3691–3707. [Google Scholar] [CrossRef] [PubMed]
- Inchingolo, A.M.; Patano, A.; Malcangi, G.; Azzollini, D.; Laudadio, C.; Ciocia, A.M.; Sardano, R.; Ferrante, L.; Campanelli, M.; Dipalma, G.; et al. Mandibular Molar Distalization in Class III Malocclusion: A Systematic Review. Appl. Sci. 2023, 13, 9337. [Google Scholar] [CrossRef]
- Malcangi, G.; Patano, A.; Ciocia, A.M.; Netti, A.; Viapiano, F.; Palumbo, I.; Trilli, I.; Guglielmo, M.; Inchingolo, A.D.; Dipalma, G.; et al. Benefits of Natural Antioxidants on Oral Health. Antioxidants 2023, 12, 1309. [Google Scholar] [CrossRef]
- Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. Oxidative Stress and Neurodegenerative Diseases: A Review of Upstream and Downstream Antioxidant Therapeutic Options. Curr. Neuropharmacol. 2009, 7, 65–74. [Google Scholar] [CrossRef]
- Vona, R.; Pallotta, L.; Cappelletti, M.; Severi, C.; Matarrese, P. The Impact of Oxidative Stress in Human Pathology: Focus on Gastrointestinal Disorders. Antioxidants 2021, 10, 201. [Google Scholar] [CrossRef]
- Liu, Z.; Ren, Z.; Zhang, J.; Chuang, C.-C.; Kandaswamy, E.; Zhou, T.; Zuo, L. Role of ROS and Nutritional Antioxidants in Human Diseases. Front. Physiol. 2018, 9, 477. [Google Scholar] [CrossRef] [PubMed]
- Spooner, R.; Yilmaz, Ö. The Role of Reactive-Oxygen-Species in Microbial Persistence and Inflammation. Int. J. Mol. Sci. 2011, 12, 334–352. [Google Scholar] [CrossRef] [PubMed]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxid. Redox Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef]
- Redox Regulation of the Immune Response|Cellular & Molecular Immunology. Available online: https://www.nature.com/articles/s41423-022-00902-0 (accessed on 4 November 2023).
- Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front. Physiol. 2020, 11, 694. [Google Scholar] [CrossRef] [PubMed]
- Marrelli, M.; Tatullo, M.; Dipalma, G.; Inchingolo, F. Oral Infection by Staphylococcus Aureus in Patients Affected by White Sponge Nevus: A Description of Two Cases Occurred in the Same Family. Int. J. Med. Sci. 2012, 9, 47–50. [Google Scholar] [CrossRef]
- Kovac, V.; Poljsak, B.; Perinetti, G.; Primozic, J. Systemic Level of Oxidative Stress during Orthodontic Treatment with Fixed Appliances. BioMed Res. Int. 2019, 2019, 5063565. [Google Scholar] [CrossRef]
- Inchingolo, F.; Inchingolo, A.M.; Malcangi, G.; De Leonardis, N.; Sardano, R.; Pezzolla, C.; de Ruvo, E.; Di Venere, D.; Palermo, A.; Inchingolo, A.D.; et al. The Benefits of Probiotics on Oral Health: Systematic Review of the Literature. Pharmaceuticals 2023, 16, 1313. [Google Scholar] [CrossRef] [PubMed]
- Cassetta, M.; Pranno, N.; Stasolla, A.; Orsogna, N.; Fierro, D.; Cavallini, C.; Cantisani, V. The Effects of a Common Stainless Steel Orthodontic Bracket on the Diagnostic Quality of Cranial and Cervical 3T- MR Images: A Prospective, Case-Control Study. Dentomaxillofacial Radiol. 2017, 46, 20170051. [Google Scholar] [CrossRef]
- Release of Metal Ions from Orthodontic Appliances: An in Vitro Study—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/22011837/ (accessed on 24 October 2023).
- Prashant, P.S.; Nandan, H.; Gopalakrishnan, M. Friction in Orthodontics. J. Pharm. Bioallied Sci. 2015, 7, S334. [Google Scholar] [CrossRef]
- Smith, R.J.; Burstone, C.J. Mechanics of Tooth Movement. Am. J. Orthod. 1984, 85, 294–307. [Google Scholar] [CrossRef]
- Minervini, G.; Franco, R.; Marrapodi, M.M.; Fiorillo, L.; Cervino, G.; Cicciù, M. Economic Inequalities and Temporomandibular Disorders: A Systematic Review with Meta-Analysis. J. Oral Rehabil. 2023, 50, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Primožič, J.; Poljšak, B.; Jamnik, P.; Kovač, V.; Čanadi Jurešić, G.; Spalj, S. Risk Assessment of Oxidative Stress Induced by Metal Ions Released from Fixed Orthodontic Appliances during Treatment and Indications for Supportive Antioxidant Therapy: A Narrative Review. Antioxidants 2021, 10, 1359. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wan, B.; Wang, R.; Zhang, B.; Luo, P.; Wang, D.; Nie, J.-J.; Chen, D.; Wu, X. Mechanical Stimulation on Mesenchymal Stem Cells and Surrounding Microenvironments in Bone Regeneration: Regulations and Applications. Front. Cell Dev. Biol. 2022, 10, 808303. [Google Scholar] [CrossRef] [PubMed]
- Inchingolo, F.; Tatullo, M.; Marrelli, M.; Inchingolo, A.M.; Picciariello, V.; Inchingolo, A.D.; Dipalma, G.; Vermesan, D.; Cagiano, R. Clinical Trial with Bromelain in Third Molar Exodontia. Eur. Rev. Med. Pharmacol. Sci. 2010, 14, 771–774. [Google Scholar] [PubMed]
- Huang, Y.-J.; Nan, G.-X. Oxidative Stress-Induced Angiogenesis. J. Clin. Neurosci. 2019, 63, 13–16. [Google Scholar] [CrossRef]
- Meeran, N.A. Biological Response at the Cellular Level within the Periodontal Ligament on Application of Orthodontic Force—An Update. J. Orthod. Sci. 2012, 1, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Agidigbi, T.S.; Kim, C. Reactive Oxygen Species in Osteoclast Differentiation and Possible Pharmaceutical Targets of ROS-Mediated Osteoclast Diseases. Int. J. Mol. Sci. 2019, 20, 3576. [Google Scholar] [CrossRef] [PubMed]
- Da, W.; Tao, L.; Zhu, Y. The Role of Osteoclast Energy Metabolism in the Occurrence and Development of Osteoporosis. Front. Endocrinol. 2021, 12, 675385. [Google Scholar] [CrossRef]
- Cirilli, I.; Damiani, E.; Dludla, P.V.; Hargreaves, I.; Marcheggiani, F.; Millichap, L.E.; Orlando, P.; Silvestri, S.; Tiano, L. Role of Coenzyme Q10 in Health and Disease: An Update on the Last 10 Years (2010–2020). Antioxidants 2021, 10, 1325. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Y.; Zhang, S.; Li, J.; Li, X.; Ying, Y.; Yuan, J.; Chen, K.; Deng, S.; Wang, Q. Association of Polymicrobial Interactions with Dental Caries Development and Prevention. Front. Microbiol. 2023, 14, 1162380. [Google Scholar] [CrossRef]
- Johansson, A.-K.; Omar, R.; Carlsson, G.E.; Johansson, A. Dental Erosion and Its Growing Importance in Clinical Practice: From Past to Present. Int. J. Dent. 2012, 2012, 632907. [Google Scholar] [CrossRef] [PubMed]
- Inchingolo, A.M.; Malcangi, G.; Ferrante, L.; Del Vecchio, G.; Viapiano, F.; Mancini, A.; Inchingolo, F.; Inchingolo, A.D.; Di Venere, D.; Dipalma, G.; et al. Damage from Carbonated Soft Drinks on Enamel: A Systematic Review. Nutrients 2023, 15, 1785. [Google Scholar] [CrossRef] [PubMed]
- Qi, F.; Huang, H.; Wang, M.; Rong, W.; Wang, J. Applications of Antioxidants in Dental Procedures. Antioxidants 2022, 11, 2492. [Google Scholar] [CrossRef] [PubMed]
- Inchingolo, A.D. Correlation between Occlusal Trauma and Oral Microbiota: A Microbiological Investigation. J. Biol. Regul. Homeost. Agents 2021, 35, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Alfuriji, S.; Alhazmi, N.; Alhamlan, N.; Al-Ehaideb, A.; Alruwaithi, M.; Alkatheeri, N.; Geevarghese, A. The Effect of Orthodontic Therapy on Periodontal Health: A Review of the Literature. Int. J. Dent. 2014, 2014, 585048. [Google Scholar] [CrossRef] [PubMed]
- Gyawali, R.; Bhattarai, B. Orthodontic Management in Aggressive Periodontitis. Int. Sch. Res. Not. 2017, 2017, 8098154. [Google Scholar] [CrossRef]
- Dzobo, K. The Role of Natural Products as Sources of Therapeutic Agents for Innovative Drug Discovery. Compr. Pharmacol. 2022, 408–422. [Google Scholar] [CrossRef]
- Najmi, A.; Javed, S.A.; Al Bratty, M.; Alhazmi, H.A. Modern Approaches in the Discovery and Development of Plant-Based Natural Products and Their Analogues as Potential Therapeutic Agents. Molecules 2022, 27, 349. [Google Scholar] [CrossRef]
- Rodríguez-Yoldi, M.J. Anti-Inflammatory and Antioxidant Properties of Plant Extracts. Antioxidants 2021, 10, 921. [Google Scholar] [CrossRef]
- Gutierrez-Mariscal, F.M.; Arenas-de Larriva, A.P.; Limia-Perez, L.; Romero-Cabrera, J.L.; Yubero-Serrano, E.M.; López-Miranda, J. Coenzyme Q10 Supplementation for the Reduction of Oxidative Stress: Clinical Implications in the Treatment of Chronic Diseases. Int. J. Mol. Sci. 2020, 21, 7870. [Google Scholar] [CrossRef]
- Traber, M.G.; Stevens, J.F. Vitamins C and E: Beneficial Effects from a Mechanistic Perspective. Free Radic. Biol. Med. 2011, 51, 1000–1013. [Google Scholar] [CrossRef] [PubMed]
- Naini, M.A.; Zargari-Samadnejad, A.; Mehrvarz, S.; Tanideh, R.; Ghorbani, M.; Dehghanian, A.; Hasanzarrini, M.; Banaee, F.; Koohi-Hosseinabadi, O.; Tanideh, N.; et al. Anti-Inflammatory, Antioxidant, and Healing-Promoting Effects of Aloe Vera Extract in the Experimental Colitis in Rats. Evid. Based Complement. Altern. Med. ECAM 2021, 2021, 9945244. [Google Scholar] [CrossRef] [PubMed]
- Michalak, M. Plant-Derived Antioxidants: Significance in Skin Health and the Ageing Process. Int. J. Mol. Sci. 2022, 23, 585. [Google Scholar] [CrossRef]
- Rao, P.V.; Krishnan, K.T.; Salleh, N.; Gan, S.H. Biological and Therapeutic Effects of Honey Produced by Honey Bees and Stingless Bees: A Comparative Review. Rev. Bras. Farmacogn. 2016, 26, 657–664. [Google Scholar] [CrossRef]
- Silva, S.V.E.; Gallia, M.C.; da Luz, J.R.D.; de Rezende, A.A.; Bongiovanni, G.A.; Araujo-Silva, G.; Almeida, M.d.G. Antioxidant Effect of Coenzyme Q10 in the Prevention of Oxidative Stress in Arsenic-Treated CHO-K1 Cells and Possible Participation of Zinc as a Pro-Oxidant Agent. Nutrients 2022, 14, 3265. [Google Scholar] [CrossRef]
- Al-Mamary, M.; Al-Meeri, A.; Al-Habori, M. Antioxidant Activities and Total Phenolic of Different Types of Honey. Nutr. Res. 2002, 22, 1041–1047. [Google Scholar] [CrossRef]
- Ahmed, S.; Sulaiman, S.A.; Baig, A.A.; Ibrahim, M.; Liaqat, S.; Fatima, S.; Jabeen, S.; Shamim, N.; Othman, N.H. Honey as a Potential Natural Antioxidant Medicine: An Insight into Its Molecular Mechanisms of Action. Oxid. Med. Cell. Longev. 2018, 2018, 8367846. [Google Scholar] [CrossRef] [PubMed]
- Mihailovic, V.; Katanic Stankovic, J.S.; Selakovic, D.; Rosic, G. An Overview of the Beneficial Role of Antioxidants in the Treatment of Nanoparticle-Induced Toxicities. Oxid. Med. Cell. Longev. 2021, 2021, 7244677. [Google Scholar] [CrossRef]
- Caiati, C.; Stanca, A.; Lepera, M.E. Free Radicals and Obesity-Related Chronic Inflammation Contrasted by Antioxidants: A New Perspective in Coronary Artery Disease. Metabolites 2023, 13, 712. [Google Scholar] [CrossRef]
- Abedi, N.; Sajadi-Javan, Z.S.; Kouhi, M.; Ansari, L.; Khademi, A.; Ramakrishna, S. Antioxidant Materials in Oral and Maxillofacial Tissue Regeneration: A Narrative Review of the Literature. Antioxidants 2023, 12, 594. [Google Scholar] [CrossRef]
- Flemming, J.; Meyer-Probst, C.T.; Speer, K.; Kölling-Speer, I.; Hannig, C.; Hannig, M. Preventive Applications of Polyphenols in Dentistry-A Review. Int. J. Mol. Sci. 2021, 22, 4892. [Google Scholar] [CrossRef] [PubMed]
- IJMS|Free Full-Text|Flavonoids as Potential Wound-Healing Molecules: Emphasis on Pathways Perspective. Available online: https://www.mdpi.com/1422-0067/24/5/4607 (accessed on 4 November 2023).
- Escuredo, O.; Seijo, M.C.; Salvador, J.; González-Martín, M.I. Near Infrared Spectroscopy for Prediction of Antioxidant Compounds in the Honey. Food Chem. 2013, 141, 3409–3414. [Google Scholar] [CrossRef] [PubMed]
- San Miguel, S.M.; Opperman, L.A.; Allen, E.P.; Svoboda, K.K.H. Use of Antioxidants in Oral Healthcare. Compend. March 2011, 32, e25–e28. [Google Scholar]
- Nutrients|Free Full-Text|New Perspectives on the Effect of Dandelion, Its Food Products and Other Preparations on the Cardiovascular System and Its Diseases. Available online: https://www.mdpi.com/2072-6643/14/7/1350 (accessed on 4 March 2023).
- The Promising Role of Antioxidant Phytochemicals in the Prevention and Treatment of Periodontal Disease via the Inhibition of Oxidative Stress Pathways: Updated Insights—PMC. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7760335/ (accessed on 1 November 2023).
- Ashouri Moghaddam, A.; Radafshar, G.; Jahandideh, Y.; Kakaei, N. Clinical Evaluation of Effects of Local Application of Aloe Vera Gel as an Adjunct to Scaling and Root Planning in Patients with Chronic Periodontitis. J. Dent. 2017, 18, 165–172. [Google Scholar]
- Inchingolo, F.; Santacroce, L.; Cantore, S.; Ballini, A.; Del Prete, R.; Topi, S.; Saini, R.; Dipalma, G.; Arrigoni, R. Probiotics and EpiCor® in Human Health. J. Biol. Regul. Homeost. Agents 2019, 33, 1973–1979. [Google Scholar] [CrossRef] [PubMed]
- Paradowska-Stolarz, A.; Wieckiewicz, M.; Owczarek, A.; Wezgowiec, J. Natural Polymers for the Maintenance of Oral Health: Review of Recent Advances and Perspectives. Int. J. Mol. Sci. 2021, 22, 10337. [Google Scholar] [CrossRef] [PubMed]
- Wishney, M. Potential Risks of Orthodontic Therapy: A Critical Review and Conceptual Framework. Aust. Dent. J. 2017, 62 (Suppl. S1), 86–96. [Google Scholar] [CrossRef]
- Yamalik, N.; Perea Pérez, B. Patient Safety and Dentistry: What Do We Need to Know? Fundamentals of Patient Safety, the Safety Culture and Implementation of Patient Safety Measures in Dental Practice. Int. Dent. J. 2012, 62, 189–196. [Google Scholar] [CrossRef]
- Inchingolo, F.; Tatullo, M.; Abenavoli, F.M.; Marrelli, M.; Inchingolo, A.D.; Gentile, M.; Inchingolo, A.M.; Dipalma, G. Non-Syndromic Multiple Supernumerary Teeth in a Family Unit with a Normal Karyotype: Case Report. Int. J. Med. Sci. 2010, 7, 378–384. [Google Scholar] [CrossRef]
- Inchingolo, A.D.; Malcangi, G.; Semjonova, A.; Inchingolo, A.M.; Patano, A.; Coloccia, G.; Ceci, S.; Marinelli, G.; Di Pede, C.; Ciocia, A.M.; et al. Oralbiotica/Oralbiotics: The Impact of Oral Microbiota on Dental Health and Demineralization: A Systematic Review of the Literature. Children 2022, 9, 1014. [Google Scholar] [CrossRef]
- Ballini, A.; Santacroce, L.; Cantore, S.; Bottalico, L.; Dipalma, G.; Topi, S.; Saini, R.; De Vito, D.; Inchingolo, F. Probiotics Efficacy on Oxidative Stress Values in Inflammatory Bowel Disease: A Randomized Double-Blinded Placebo-Controlled Pilot Study. Endocr. Metab. Immune Disord. Drug Targets 2019, 19, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Ballini, A.; Gnoni, A.; Vito, D.D.; Dipalma, G.; Cantore, S.; Isacco, C.G.; Saini, R.; Santacroce, L.; Topi, S.; Scarano, A.; et al. Effect of Probiotics on the Occurrence of Nutrition Absorption Capacities in Healthy Children: A Randomized Double-Blinded Placebo-Controlled Pilot Study. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 8645–8657. [Google Scholar] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef]
- Portelli, M.; Militi, A.; Cervino, G.; Lauritano, F.; Sambataro, S.; Mainardi, A.; Nucera, R. Oxidative Stress Evaluation in Patients Treated with Orthodontic Self-Ligating Multibracket Appliances: An in Vivo Case-Control Study. Open Dent. J. 2017, 11, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Kovač, V.; Poljšak, B.; Primožič, J.; Jamnik, P. Are Metal Ions That Make up Orthodontic Alloys Cytotoxic, and Do They Induce Oxidative Stress in a Yeast Cell Model? Int. J. Mol. Sci. 2020, 21, 7993. [Google Scholar] [CrossRef] [PubMed]
- Kovač, V.; Bergant, M.; Ščančar, J.; Primožič, J.; Jamnik, P.; Poljšak, B. Causation of Oxidative Stress and Defense Response of a Yeast Cell Model after Treatment with Orthodontic Alloys Consisting of Metal Ions. Antioxidants 2021, 11, 63. [Google Scholar] [CrossRef] [PubMed]
- Buczko, P.; Knaś, M.; Grycz, M.; Szarmach, I.; Zalewska, A. Orthodontic Treatment Modifies the Oxidant-Antioxidant Balance in Saliva of Clinically Healthy Subjects. Adv. Med. Sci. 2017, 62, 129–135. [Google Scholar] [CrossRef]
- Angeles-Estrada, L.; Pérez-Soto, E.; Pérez-Vielma, N.M.; Gómez-López, M.; Sánchez-Monroy, V. Oxidative Stress and Genotoxicity in Oral Epithelial Cells from Subjects Undergoing Orthodontic Treatment with Fixed Appliances. Clin. Oral Investig. 2023, 27, 4225–4231. [Google Scholar] [CrossRef]
- Menéndez López-Mateos, C.; Menéndez López-Mateos, M.L.; Aguilar-Salvatierra, A.; Gómez-Moreno, G.; Carreño, J.C.; Khaldy, H.; Menéndez-Núñez, M. Salivary Markers of Oxidative Stress in Patients Undergoing Orthodontic Treatment with Clear Aligners versus Self-Ligating Brackets: A Non-Randomized Clinical Trial. J. Clin. Med. 2022, 11, 3531. [Google Scholar] [CrossRef]
- Özcan, S.; Ceylan, I.; Ozcan, E.; Kurt, N.; Dağsuyu, I.; Canakçi, C. Evaluation of Oxidative Stress Biomarkers in Patients with Fixed Orthodontic Appliances. Dis. Markers 2014, 2014, 597892. [Google Scholar] [CrossRef]
- Guler, C.; Toy, E.; Ozturk, F.; Gunes, D.; Karabulut, A.B.; Otlu, O. Evaluation of Salivary Total Oxidant-Antioxidant Status and DNA Damage of Children Undergoing Fixed Orthodontic Therapy. Angle Orthod. 2015, 85, 239–244. [Google Scholar] [CrossRef]
- Martin, B.J.; Campbell, P.M.; Rees, T.D.; Buschang, P.H. A Randomized Controlled Trial Evaluating Antioxidant-Essential Oil Gel as a Treatment for Gingivitis in Orthodontic Patients. Angle Orthod. 2016, 86, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Comparison of Antiplaque and Anti-Gingivitis Effects of Aloe Vera Mouthwash with Chlorhexidine in Fixed Orthodontic Patients—A Randomized Controlled Trial—Kamath—2023—International Journal of Dental Hygiene—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/idh.12615 (accessed on 24 October 2023).
- Lotif, M.; Valadas, L.; Fechine, F.; Fonseca, S.; Bandeira, M.; Dantas, T.; Martins Rodrigues Neto, E.; Squassi, A.; Fonteles, M. A Double-Blind Randomized Clinical Trial of Brazilian Red Propolis Dentifrice Efficacy in Orthodontic Patients. J. Oral Sci. 2021, 64, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Leiva-Cala, C.; Lorenzo-Pouso, A.I.; Centenera-Centenera, B.; López-Palafox, J.; Gándara-Vila, P.; García-García, A.; Pérez-Sayáns, M. Clinical Efficacy of an Aloe Vera Gel versus a 0.12% Chlorhexidine Gel in Preventing Traumatic Ulcers in Patients with Fixed Orthodontic Appliances: A Double-Blind Randomized Clinical Trial. Odontology 2020, 108, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, M.; Petermann, K.D.; Vedovello, S.A.S.; Degan, V.; Lucato, A.; Franzini, C.M. Antimicrobial Effect of Melaleuca Alternifolia Dental Gel in Orthodontic Patients. Am. J. Orthod. Dentofac. Orthop. 2014, 145, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Masoud, M.I.; Allarakia, R.; Alamoudi, N.M.; Nalliah, R.; Allareddy, V. Long-Term Clinical and Bacterial Effects of Xylitol on Patients with Fixed Orthodontic Appliances. Prog. Orthod. 2015, 16, 35. [Google Scholar] [CrossRef] [PubMed]
- Goes, P.; Dutra, C.S.; Lisboa, M.R.P.; Gondim, D.V.; Leitão, R.; Brito, G.A.C.; Rego, R.O. Clinical Efficacy of a 1% Matricaria Chamomile L. Mouthwash and 0.12% Chlorhexidine for Gingivitis Control in Patients Undergoing Orthodontic Treatment with Fixed Appliances. J. Oral Sci. 2016, 58, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Tamer, İ.; Öztaş, E.; Marşan, G. Orthodontic Treatment with Clear Aligners and The Scientific Reality Behind Their Marketing: A Literature Review. Turk. J. Orthod. 2019, 32, 241–246. [Google Scholar] [CrossRef]
- Yavan, M.A.; Kocahan, S.; Özdemir, S.; Sökücü, O. The Effects of Using Plaque-Disclosing Tablets on the Removal of Plaque and Gingival Status of Orthodontic Patients. Turk. J. Orthod. 2019, 32, 207–214. [Google Scholar] [CrossRef]
- Jing, D.; Hao, J.; Shen, Y.; Tang, G.; Lei, L.; Zhao, Z. Effect of Fixed Orthodontic Treatment on Oral Microbiota and Salivary Proteins. Exp. Ther. Med. 2019, 17, 4237–4243. [Google Scholar] [CrossRef]
- Kinney, J.S.; Morelli, T.; Oh, M.; Braun, T.M.; Ramseier, C.A.; Sugai, J.V.; Giannobile, W.V. Crevicular Fluid Biomarkers and Periodontal Disease Progression. J. Clin. Periodontol. 2014, 41, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Cantore, S.; Mirgaldi, R.; Ballini, A.; Coscia, M.F.; Scacco, S.; Papa, F.; Inchingolo, F.; Dipalma, G.; De Vito, D. Cytokine Gene Polymorphisms Associate with Microbiogical Agents in Periodontal Disease: Our Experience. Int. J. Med. Sci. 2014, 11, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Brezniak, N.; Wasserstein, A. Defining and Framing Orthodontitis: A New Term in Orthodontics. Angle Orthod. 2014, 84, 568–569. [Google Scholar] [CrossRef] [PubMed]
- (PDF) Self-Ligating Brackets: An Overview|Rozita Hassan—Academia.Edu. Available online: https://www.academia.edu/49168880/Self_Ligating_Brackets_An_Overview (accessed on 4 November 2023).
- Basilicata, M.; Pieri, M.; Marrone, G.; Nicolai, E.; Di Lauro, M.; Paolino, V.; Tomassetti, F.; Vivarini, I.; Bollero, P.; Bernardini, S.; et al. Saliva as Biomarker for Oral and Chronic Degenerative Non-Communicable Diseases. Metabolites 2023, 13, 889. [Google Scholar] [CrossRef] [PubMed]
- Berlutti, F.; Ajello, M.; Bosso, P.; Morea, C.; Petrucca, A.; Antonini, G.; Valenti, P. Both Lactoferrin and Iron Influence Aggregation and Biofilm Formation in Streptococcus Mutans. Biometals 2004, 17, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Irani, S. Orofacial Bacterial Infectious Diseases: An Update. J. Int. Soc. Prev. Community Dent. 2017, 7, S61–S67. [Google Scholar] [CrossRef] [PubMed]
- Park, A.W.; Yaacob, H.B. Pathogenic Microbes of the Oral Environment. J. Nihon Univ. Sch. Dent. 1994, 36, 1–33. [Google Scholar] [CrossRef]
- Bandara, H.M.H.N.; Panduwawala, C.P.; Samaranayake, L.P. Biodiversity of the Human Oral Mycobiome in Health and Disease. Oral Dis. 2019, 25, 363–371. [Google Scholar] [CrossRef]
- Mosaddad, S.A.; Tahmasebi, E.; Yazdanian, A.; Rezvani, M.B.; Seifalian, A.; Yazdanian, M.; Tebyanian, H. Oral Microbial Biofilms: An Update. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 2005–2019. [Google Scholar] [CrossRef]
- Santosh, A.B.R.; Muddana, K. Viral Infections of Oral Cavity. J. Fam. Med. Prim. Care 2020, 9, 36–42. [Google Scholar] [CrossRef]
- Madhushankari, G.S.; Yamunadevi, A.; Selvamani, M.; Mohan Kumar, K.P.; Basandi, P.S. Halitosis—An Overview: Part-I—Classification, Etiology, and Pathophysiology of Halitosis. J. Pharm. Bioallied Sci. 2015, 7, S339–S343. [Google Scholar] [CrossRef]
- Krupińska, A.M.; Bogucki, Z. Clinical Aspects of the Use of Lactoferrin in Dentistry. J. Oral Biosci. 2021, 63, 129–133. [Google Scholar] [CrossRef]
- Alavi, S.; Yaraghi, N. The Effect of Fluoride Varnish and Chlorhexidine Gel on White Spots and Gingival and Plaque Indices in Fixed Orthodontic Patients: A Placebo-Controlled Study. Dent. Res. J. 2018, 15, 276–282. [Google Scholar]
- Mulimani, P.; Popowics, T. Effect of Orthodontic Appliances on the Oral Environment and Microbiome. Front. Dent. Med. 2022, 3, 924835. [Google Scholar] [CrossRef]
- Tidke, S.; Chhabra, G.K.; Madhu, P.P.; Reche, A.; Wazurkar, S.; Singi, S.R. The Effectiveness of Herbal Versus Non-Herbal Mouthwash for Periodontal Health: A Literature Review. Cureus 2022, 14, e27956. [Google Scholar] [CrossRef] [PubMed]
- Choi, R.J.; Ngoc, T.M.; Bae, K.; Cho, H.-J.; Kim, D.-D.; Chun, J.; Khan, S.; Kim, Y.S. Anti-Inflammatory Properties of Anthraquinones and Their Relationship with the Regulation of P-Glycoprotein Function and Expression. Eur. J. Pharm. Sci. 2013, 48, 272–281. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free Radicals, Antioxidants and Functional Foods: Impact on Human Health. Pharmacogn. Rev. 2010, 4, 118. [Google Scholar] [CrossRef]
- Bessa, L.J.; Botelho, J.; Machado, V.; Alves, R.; Mendes, J.J. Managing Oral Health in the Context of Antimicrobial Resistance. Int. J. Environ. Res. Public. Health 2022, 19, 16448. [Google Scholar] [CrossRef]
- Marsh, P.D. Dental Plaque as a Biofilm and a Microbial Community—Implications for Health and Disease. BMC Oral Health 2006, 6, S14. [Google Scholar] [CrossRef]
- Iddir, M.; Brito, A.; Dingeo, G.; Campo, S.S.F.D.; Samouda, H.; Frano, M.R.L.; Bohn, T. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients 2020, 12, 1562. [Google Scholar] [CrossRef]
- Evans, J.P.; Sen, C.K. Electrochemical Devices in Cutaneous Wound Healing. Bioengineering 2023, 10, 711. [Google Scholar] [CrossRef] [PubMed]
- Romasco, T.; Tumedei, M.; Inchingolo, F.; Pignatelli, P.; Montesani, L.; Iezzi, G.; Petrini, M.; Piattelli, A.; Di Pietro, N. A Narrative Review on the Effectiveness of Bone Regeneration Procedures with OsteoBiol® Collagenated Porcine Grafts: The Translational Research Experience over 20 Years. J. Funct. Biomater. 2022, 13, 121. [Google Scholar] [CrossRef] [PubMed]
- Españo, E.; Kim, J.; Kim, J.-K. Utilization of Aloe Compounds in Combatting Viral Diseases. Pharmaceuticals 2022, 15, 599. [Google Scholar] [CrossRef] [PubMed]
- Hekmatpou, D.; Mehrabi, F.; Rahzani, K.; Aminiyan, A. The Effect of Aloe Vera Clinical Trials on Prevention and Healing of Skin Wound: A Systematic Review. Iran. J. Med. Sci. 2019, 44, 1–9. [Google Scholar] [PubMed]
- Agarwal, A.; Chaudhary, B. Clinical and Microbiological Effects of 1% Matricaria Chamomilla Mouth Rinse on Chronic Periodontitis: A Double-Blind Randomized Placebo Controlled Trial. J. Indian Soc. Periodontol. 2020, 24, 354–361. [Google Scholar] [CrossRef]
- Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.B.; Novellino, E.; et al. The Therapeutic Potential of Apigenin. Int. J. Mol. Sci. 2019, 20, 1305. [Google Scholar] [CrossRef]
- Wagh, V.D. Propolis: A Wonder Bees Product and Its Pharmacological Potentials. Adv. Pharmacol. Sci. 2013, 2013, 308249. [Google Scholar] [CrossRef]
- Patri, G.; Sahu, A. Role of Herbal Agents—Tea Tree Oil and Aloe Vera as Cavity Disinfectant Adjuncts in Minimally Invasive Dentistry-An In Vivo Comparative Study. J. Clin. Diagn. Res. JCDR 2017, 11, DC05–DC09. [Google Scholar] [CrossRef]
- Janakiram, C.; Deepan Kumar, C.V.; Joseph, J. Xylitol in Preventing Dental Caries: A Systematic Review and Meta-Analyses. J. Nat. Sci. Biol. Med. 2017, 8, 16–21. [Google Scholar] [CrossRef]
- Švajger, U.; Jeras, M. Anti-Inflammatory Effects of Resveratrol and Its Potential Use in Therapy of Immune-Mediated Diseases. Int. Rev. Immunol. 2012, 31, 202–222. [Google Scholar] [CrossRef]
- De Sá Coutinho, D.; Pacheco, M.T.; Frozza, R.L.; Bernardi, A. Anti-Inflammatory Effects of Resveratrol: Mechanistic Insights. Int. J. Mol. Sci. 2018, 19, 1812. [Google Scholar] [CrossRef] [PubMed]
- Limagne, E.; Lançon, A.; Delmas, D.; Cherkaoui-Malki, M.; Latruffe, N. Resveratrol Interferes with IL1-β-Induced Pro-Inflammatory Paracrine Interaction between Primary Chondrocytes and Macrophages. Nutrients 2016, 8, 280. [Google Scholar] [CrossRef] [PubMed]
Article screening Strategy | Database: Scopus, Web of Science, and Pubmed |
Keywords: A “Natural Products”; B “Oxidative Stress”; C “Orthodontic” | |
Boolean variable: “AND” and “OR” | |
Timespan: 2013–2023 | |
Language: English |
Authors (Year) | Study Design | Materials and Methods | Outcomes |
---|---|---|---|
Mario Portelli et al., 2017 [69] | Experimental | Twenty-three 12- to 16-year-old patients receiving multibracket self-ligating vestibular orthodontic appliances participated in the study. Salivary specimens collected at T1, T2, and T3. |
|
Vito Kovac et al., 2020 [70] | Experimental study | Compositions of stainless steel, nickel-titanium, cobalt-chromium, and β-titanium orthodontic alloys were simulated with mixtures of Fe, Ni, Cr, Co, Ti, and Mo metal ions to assess cytotoxicity and O.S. in Saccharomyces cerevisiae yeast strains. |
|
Vito Kovac et al., 2022 [71] | Experimental | Orthodontic materials (archwires, brackets, and molar bands) were incubated in artificial saliva for 90 days. Metal composition and ion release were assessed. Metal ion mixtures were prepared to assess O.S., antioxidant enzyme defense, and protein damage. |
|
Piotr Buczko et al., 2017 [72] | Experimental study | Included 37 volunteers, saliva samples collected immediately before, one week after, and twenty-four weeks after appliance insertion. |
|
Lucía Angeles-Estrada et al., 2023 [73] | Experimental study | Oral epithelial cells from 51 healthy volunteers receiving orthodontic treatment. Sampling: Samples taken before treatment, at 6 months, and at 9 months. OS Assessment: Quantification of 8-hydroxy-2’deoxyguanosine (8-OHdG) levels. Gene Expression: Evaluation of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). Genotoxicity Assessment: Multiplex polymerase chain reaction (PCR) and fragment analysis for DNA degradation and instability. | 8-OHdG increased during treatment, but the increase was not statistically significant. SOD increased by 2.5-fold at 6 months and 2.6-fold at 9 months. CAT increased by threefold at 6 months and returned to baseline levels at 9 months. DNA degradation found in 8% and 12% of DNA samples at 6 and 9 months, respectively. DNA instability detected in 2% and 8% of DNA samples at 6 and 9 months, respectively. |
Cristina Menéndez López-Mateos et al., 2022 [74] | Randomized clinical trial. | Participants: Non-randomized clinical trial with consecutively recruited patients over 18 years of age undergoing orthodontic treatment. Groups: Group A (48 patients) treated with clear aligners (Invisalign®), and Group B (19 patients) treated with Damon System® 0.22″ self-ligating brackets with light forces. Saliva Samples: collected at the beginning of treatment, 30 days later, and 90 days later by a single physician Analyzed Parameters: AOPP, TAC, and MPO levels. | AOPPs levels increased in both groups after the initial 30 days of orthodontic treatment with clear aligners or fixed self-ligating brackets. During the first stages of orthodontic therapy, whether using fixed brackets or clear aligners, there were no appreciable changes in TAC and MPO levels. During the first ninety days of therapy, there were no discernible changes in AOPP levels between self-ligating brackets and transparent aligners. Salivary antioxidant capacity remained similar between the two orthodontic techniques during the initial treatment phases. |
Sevil Sema Atuğ Özcan et al., 2014 [75] | Experimental Study | Fifty volunteers who needed orthodontic treatment with fixed appliances participated in the trial. Saliva and GCF samples were taken prior to therapy, one month into the regimen, and six months into it. Periodontal clinical parameters were measured, and biochemical parameters (IL-1 β, TNF-α, 8-OHdG, NO, and MDA) were analyzed using ELISA and spectrophotometric methods. | IL-1 β level in GCF at the 6th month was significantly different from the baseline (p < 0.05). However, all other biochemical parameters in both saliva and GCF did not exhibit significant changes at any measurement period. |
Vito Kovac et al., 2019 [17] | Experimental Comparative Study | A total of 54 male participants with malocclusion were randomly assigned to either the treatment group (TG; n = 27) or control group (CG; n = 27). Capillary blood was collected at various time points. | Short-term systemic O.S. was brought on by orthodontic treatment with fixed appliances; this stress resolved seven days following the placement of the archwire. |
Cigdem Guler et al., 2015 [76] | Experimental study |
|
|
Martin et al., 2016 [77] | Randomized controlled trial | Thirty orthodontic patients were screened for gingivitis and divided into treatment and placebo groups. They underwent periodontal examinations and were instructed to apply a topical gel twice daily, then discontinue use. | Patients with gum disease can successfully reduce inflammation by using an anti-inflammatory gel made of essential oils to their teeth. |
Kamath et al., 2023 [78] | Randomized controlled trial | A total of 30 participants with fixed orthodontic treatment, divided into test and control groups. Results were analyzed using Student’s paired and unpaired t-tests, focusing on plaque index, gingival index, and bleeding on probing. | Larger multicentric trials are required; however, aloe vera, the gold standard mouthwash, showed promising effectiveness in lowering plaque and gingivitis scores without harmful consequences. |
Lotif et al., 2022 [79] | Double-blind randomized clinical trial | A total of 42 participants randomized into two groups based on dentifrice, recorded saliva, and microbiological analysis identified Lactobacillus spp. isolates, with VPI and CFU/mL values. | The toothpaste containing BRP demonstrated antimicrobial properties against Lactobacillus spp. and reduced the VPI for up to four weeks. |
Leiva-Cala et al., 2020 [80] | Randomized clinical trial | A study involving 140 patients aged 12 and older with permanent teeth found that 43.6% of transactions were TOUs. In the CHX arm, 81.4% of patients experienced TOUs, while 5.7% of patients treated with aloe vera gel did not suffer from TOUs. | Administration of aloe vera gel may be essential in shielding patients with permanent orthodontic equipment from traumatic mouth ulcers. |
Santamaria et al., 2014 [81] | Comparative Study | A study of 34 volunteers, divided into two groups, monitored their dental hygiene for four weeks. They were given different treatments for plaque index and bacteria count, and after 15 days, they were instructed to return to their usual habits. The data was analyzed statistically with a 5% significance level. | The use of natural products such as melaleuca could be a solution for controlling dental biofilm, especially in orthodontic patients. |
Masoud et al., 2015 [82] | Comparative Study | Considered xylitol as a possible natural product for reducing dental plaque, suggests xylitol may not offer significant benefit. | Xylitol may not offer a significant benefit, but it still had no adverse effects. |
Goes et al., (2016) [83] | Pilot Study | The study compared the effects of mouthwash with 1% Matricaria chamomilla, with a mouthwash with 0.12% CHX (chlorhexidine) (considered the gold standard). | It was found that both VPI (visible plaque index) and GBI (gingival plaque index) bleeding indexes significantly decreased with MTC at 1%, similar to the effects of CHX at 0.12%, in patients with gingivitis associated with orthodontic appliances. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inchingolo, F.; Inchingolo, A.M.; Latini, G.; Ferrante, L.; Trilli, I.; Del Vecchio, G.; Palmieri, G.; Malcangi, G.; Inchingolo, A.D.; Dipalma, G. Oxidative Stress and Natural Products in Orthodontic Treatment: A Systematic Review. Nutrients 2024, 16, 113. https://doi.org/10.3390/nu16010113
Inchingolo F, Inchingolo AM, Latini G, Ferrante L, Trilli I, Del Vecchio G, Palmieri G, Malcangi G, Inchingolo AD, Dipalma G. Oxidative Stress and Natural Products in Orthodontic Treatment: A Systematic Review. Nutrients. 2024; 16(1):113. https://doi.org/10.3390/nu16010113
Chicago/Turabian StyleInchingolo, Francesco, Angelo Michele Inchingolo, Giulia Latini, Laura Ferrante, Irma Trilli, Gaetano Del Vecchio, Giulia Palmieri, Giuseppina Malcangi, Alessio Danilo Inchingolo, and Gianna Dipalma. 2024. "Oxidative Stress and Natural Products in Orthodontic Treatment: A Systematic Review" Nutrients 16, no. 1: 113. https://doi.org/10.3390/nu16010113
APA StyleInchingolo, F., Inchingolo, A. M., Latini, G., Ferrante, L., Trilli, I., Del Vecchio, G., Palmieri, G., Malcangi, G., Inchingolo, A. D., & Dipalma, G. (2024). Oxidative Stress and Natural Products in Orthodontic Treatment: A Systematic Review. Nutrients, 16(1), 113. https://doi.org/10.3390/nu16010113