Deoxycholic Acid, a Secondary Bile Acid, Increases Cardiac Output and Blood Pressure in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Compliance with Ethical Standards
2.2. Animals
2.3. The Effect of Antibiotic Treatment on DCA Plasma Concentration
2.4. Hemodynamic Effects of DCA Administered into the Cerebroventricular System
2.5. Hemodynamic Effects of Sodium Deoxycholate Administered Intravenously
2.6. Blood Sampling
2.7. The Assessment of FXR and 11HSD2 Blockade on DCA Cardiovascular Actions
2.8. Mechanism of Action Assessment
2.9. Ex vivo Reactivity Studies—Isolated Mesenteric Artery Studies
2.10. Echocardiography
2.11. Chemicals
2.12. Data Analysis and Statistics
3. Results
3.1. The Effect of Antibiotic Treatment on DCA Plasma Concentration
3.2. Intravenous Infusions
3.3. Atropine-, Prazosin-, and Propranolol-Induced Hemodynamic Changes
3.4. DCA Plasma Concentration
3.5. ICV Infusions
3.6. Ex Vivo Reactivity Studies
3.7. Echocardiography
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, T.; Santisteban, M.M.; Rodriguez, V.; Li, E.; Ahmari, N.; Carvajal, J.M.; Zadeh, M.; Gong, M.; Qi, Y.; Zubcevic, J.; et al. Gut dysbiosis is linked to hypertension. Hypertension 2015, 65, 1331–1340. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, S.; Barbara, G.; Buurman, W.; Ockhuizen, T.; Schulzke, J.-D.; Serino, M.; Tilg, H.; Watson, A. Intestinal permeability--a new target for disease prevention and therapy. BMC Gastroenterol. 2014, 14, 189. [Google Scholar] [CrossRef] [PubMed]
- Krack, A.; Sharma, R.; Figulla, H.; Anker, S. The importance of the gastrointestinal system in the pathogenesis of heart failure. Eur. Heart J. 2005, 26, 2368–2374. [Google Scholar] [CrossRef] [PubMed]
- Lopetuso, L.R.; Scaldaferri, F.; Bruno, G.; Petito, V.; Franceschi, F.; Gasbarrini, A. The therapeutic management of gut barrier leaking: The emerging role for mucosal barrier protectors. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 1068–1076. [Google Scholar] [PubMed]
- Molinero, N.; Ruiz, L.; Sánchez, B.; Margolles, A.; Delgado, S. Intestinal Bacteria Interplay with Bile and Cholesterol Metabolism: Implications on Host Physiology. Front. Physiol. 2019, 10, 185. [Google Scholar] [CrossRef] [PubMed]
- Berr, F.; Kullak-Ublick, G.A.; Paumgartner, G.; Munzing, W.; Hylemon, P.B. 7 alpha-dehydroxylating bacteria enhance deoxycholic acid input and cholesterol saturation of bile in patients with gallstones. Gastroenterology 1996, 111, 1611–1620. [Google Scholar] [CrossRef]
- Ridlon, J.M.; Harris, S.C.; Bhowmik, S.; Kang, D.J.; Hylemon, P.B. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 2016, 7, 22–39. [Google Scholar] [CrossRef]
- Khurana, S.; Yamada, M.; Wess, J.; Kennedy, R.H.; Raufman, J.P. Deoxycholyltaurine-induced vasodilation of rodent aorta is nitric oxide- and muscarinic M(3) receptor-dependent. Eur. J. Pharmacol. 2005, 517, 103–110. [Google Scholar] [CrossRef]
- Hofmann, A.F. The continuing importance of bile acids in liver and intestinal disease. Arch. Intern. Med. 1999, 159, 2647–2658. [Google Scholar] [CrossRef]
- van Berge Henegouwen, G.P.; Brandt, K.H.; Eyssen, H.; Parmentier, G. Sulphated and unsulphated bile acids in serum, bile, and urine of patients with cholestasis. Gut 1976, 17, 861–869. [Google Scholar] [CrossRef]
- Hepner, G.W.; Hofmann, A.F.; Malagelada, J.R.; Szczepanik, P.A.; Klein, P.D. Increased Bacterial Degradation of Bile Acids in Cholecystectomized Patients. Gastroenterology 1974, 66, 556–564. [Google Scholar] [CrossRef]
- Nowinski, A.; Ufnal, M. Gut bacteria-derived molecules as mediators and markers in cardiovascular diseases. The role of the gut-blood barrier. Kardiol. Pol. 2018, 76, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Grangl, G.; Zöhrer, E.; Köstenberger, M.; Jud, A.; Fauler, G.; Scharnagl, H.; Stojakovic, T.; Marterer, R.; Gamillscheg, A.; Jahnel, J. Serum Bile Acids in Repaired Tetralogy of Fallot: A Marker for Liver and Heart? PLoS ONE 2015, 10, e0144745. [Google Scholar] [CrossRef] [PubMed]
- Mayerhofer, C.C.; Ueland, T.; Broch, K.; Vincent, R.P.; Cross, G.F.; Dahl, C.P.; Aukrust, P.; Gullestad, L.; Hov, J.R.; Trøseid, M. Increased Secondary/Primary Bile Acid Ratio in Chronic Heart Failure. J. Card Fail. 2017, 23, 666–671. [Google Scholar] [CrossRef]
- Murakami, Y.; Tanabe, S.; Suzuki, T. High-fat Diet-induced Intestinal Hyperpermeability is Associated with Increased Bile Acids in the Large Intestine of Mice. J. Food Sci. 2016, 81, H216–H222. [Google Scholar] [CrossRef] [PubMed]
- Reddy, B.S. Diet and excretion of bile acids. Cancer Res. 1981, 41 Pt 2, 3766–3768. [Google Scholar] [PubMed]
- Bortolotti, M.; Kreis, R.; Debard, C.; Cariou, B.; Faeh, D.; Chetiveaux, M.; Ith, M.; Vermathen, P.; Stefanoni, N.; Lê, K.A.; et al. High protein intake reduces intrahepatocellular lipid deposition in humans. Am. J. Clin. Nutr. 2009, 90, 1002–1010. [Google Scholar] [CrossRef] [PubMed]
- Hagio, M.; Matsumoto, M.; Yajima, T.; Hara, H.; Ishizuka, S. Voluntary wheel running exercise and dietary lactose concomitantly reduce proportion of secondary bile acids in rat feces. J. Appl. Physiol. (1985) 2010, 109, 663–668. [Google Scholar] [CrossRef]
- Wertheim, B.C.; Martínez, M.E.; Ashbeck, E.L.; Roe, D.J.; Jacobs, E.T.; Alberts, D.S.; Thompson, P.A. Physical activity as a determinant of fecal bile acid levels. Cancer Epidemiol. Biomark. Prev. 2009, 18, 1591–1598. [Google Scholar] [CrossRef]
- Rastelli, M.; Knauf, C.; Cani, P.D. Gut Microbes and Health: A Focus on the Mechanisms Linking Microbes, Obesity, and Related Disorders. Obesity 2018, 26, 792–800. [Google Scholar] [CrossRef]
- Higashi, T.; Watanabe, S.; Tomaru, K.; Yamazaki, W.; Yoshizawa, K.; Ogawa, S.; Nagao, H.; Minato, K.; Maekawa, M.; Mano, N. Unconjugated bile acids in rat brain: Analytical method based on LC/ESI-MS/MS with chemical derivatization and estimation of their origin by comparison to serum levels. Steroids 2017, 125, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Mano, N.; Goto, T.; Uchida, M.; Nishimura, K.; Ando, M.; Kobayashi, N.; Goto, J. Presence of protein-bound unconjugated bile acids in the cytoplasmic fraction of rat brain. J. Lipid Res. 2004, 45, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, J.; Ren, X.; Zhang, Y.; Ke, Z.; Zhou, J.; Wang, Y.; Zhang, Y.; Liu, Y. Cholecystectomy-induced secondary bile acids accumulation ameliorates colitis through inhibiting monocyte/macrophage recruitment. Gut Microbes 2022, 14, 2107387. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Qu, R.; Zhang, Y.; Jiang, C.; Zhang, Z.; Fu, W. Progress in the Study of Colorectal Cancer Caused by Altered Gut Microbiota After Cholecystectomy. Front. Endocrinol. 2022, 13, 815999. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Li, X.; Xu, B.; Luo, L.; Guo, Q.; Wang, X.; Sun, L.; Zhang, Z.; Li, P. Cholecystectomy promotes colon carcinogenesis by activating the Wnt signaling pathway by increasing the deoxycholic acid level. Cell Commun. Signal. 2022, 20, 71. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Iida, H.; Jo, T.; Takano, H.; Oonuma, H.; Morita, T.; Toyo-Oka, T.; Omata, M.; Nagai, R.; Okuda, Y.; et al. Ursodeoxycholic acid inhibits endothelin-1 production in human vascular endothelial cells. Eur. J. Pharmacol. 2004, 505, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Park, Y.S.; Shin, C.M.; Han, K.; Park, S.H.; Yoon, H.; Kim, N.; Lee, D.H. Risk of Heart Disease after Cholecystectomy: A Nationwide Population-Based Cohort Study in South Korea. J. Clin. Med. 2021, 10, 3253. [Google Scholar] [CrossRef] [PubMed]
- Bogin, E.; Better, O.; Harari, I. The effect of jaundiced sera and bile salts on cultured beating rat heart cells. Experientia 1983, 39, 1307–1308. [Google Scholar] [CrossRef]
- Pak, J.M.; Adeagbo, A.S.; Triggle, C.R.; Shaffer, E.A.; Lee, S.S. Mechanism of bile salt vasoactivity: Dependence on calcium channels in vascular smooth muscle. Br. J. Pharmacol. 1994, 112, 1209–1215. [Google Scholar] [CrossRef]
- Zhang, R.; Ran, H.H.; Zhang, Y.X.; Liu, P.; Lu, C.Y.; Xu, Q.; Huang, Y. Farnesoid X receptor regulates vascular reactivity through nitric oxide mechanism. J. Physiol. Pharmacol. 2012, 63, 367–372. [Google Scholar]
- Stauffer, A.T.; Rochat, M.K.; Dick, B.; Frey, F.J.; Odermatt, A. Chenodeoxycholic acid and deoxycholic acid inhibit 11 beta-hydroxysteroid dehydrogenase type 2 and cause cortisol-induced transcriptional activation of the mineralocorticoid receptor. J. Biol. Chem. 2002, 277, 26286–26292. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.J.; Yang, J.Y.; Jin, M.; Wang, S.Q.; Wu, D.L.; Liu, Y.N.; Yan, X.; Yang, C.; Zhang, G.; He, J. Glycyrrhetinic Acid protects the heart from ischemia/reperfusion injury by attenuating the susceptibility and incidence of fatal ventricular arrhythmia during the reperfusion period in the rat hearts. Cell Physiol. Biochem. 2015, 36, 741–752. [Google Scholar] [CrossRef] [PubMed]
- Wanot, B.; Jasikowska, K.; Niewiadomska, E.; Biskupek-Wanot, A. Cardiovascular effects of H3 histamine receptor inverse agonist/H4 histamine receptor agonist, clobenpropit, in hemorrhage-shocked rats. PLoS ONE 2018, 13, e0201519. [Google Scholar] [CrossRef] [PubMed]
- Beckers, F.; Verheyden, B.; Ramaekers, D.; Swynghedauw, B.; Aubert, A.E. Effects of autonomic blockade on non-linear cardiovascular variability indices in rats. Clin. Exp. Pharmacol. Physiol. 2006, 33, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Tomasova, L.; Dobrowolski, L.; Jurkowska, H.; Wróbel, M.; Huc, T.; Ondrias, K.; Ostaszewski, R.; Ufnal, M. Intracolonic hydrogen sulfide lowers blood pressure in rats. Nitric. Oxide 2016, 60, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Onyszkiewicz, M.; Gawrys-Kopczynska, M.; Sałagaj, M.; Aleksandrowicz, M.; Sawicka, A.; Koźniewska, E.; Samborowska, E.; Ufnal, M. Valeric acid lowers arterial blood pressure in rats. Eur. J. Pharmacol. 2020, 877, 173086. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, T.; Okuda, Y.; Chisaki, K.; Shin, W.S.; Iwasawa, K.; Morita, T.; Matsumoto, A.; Suzuki, J.I.; Suzuki, S.; Yamada, N.; et al. Bile acids increase intracellular Ca2+ concentration and nitric oxide production in vascular endothelial cells. Br. J. Pharmacol. 2000, 130, 1457–1467. [Google Scholar] [CrossRef]
- Khurana, S.; Raina, H.; Pappas, V.; Raufman, J.P.; Pallone, T.L. Effects of deoxycholylglycine, a conjugated secondary bile acid, on myogenic tone and agonist-induced contraction in rat resistance arteries. PLoS ONE 2012, 7, e32006. [Google Scholar] [CrossRef]
- Dopico, A.M.; Bukiya, A.N. Chapter Three-Regulation of Ca2+-Sensitive K+ Channels by Cholesterol and Bile Acids via Distinct Channel Subunits and Sites. In Current Topics in Membranes; Levitan, I., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 53–93. [Google Scholar]
- Signore, S.; Sorrentino, A.; Ferreira-Martins, J.; Kannappan, R.; Shafaie, M.; Del Ben, F.; Isobe, K.; Arranto, C.; Wybieralska, E.; Webster, A.; et al. Inositol 1, 4, 5-Trisphosphate Receptors and Human Left Ventricular Myocytes. Circulation 2013, 128, 1286–1297. [Google Scholar] [CrossRef]
Series | MABP | HR |
---|---|---|
Intravenous Infusions | ||
Vehicle | 90.4 ± 3.0 | 331.3 ± 14.4 |
DOC 4 mmol/kg | 86.0 ± 4.5 | 312.2 ± 17.2 |
DOC 12 mmol/kg | 87.5 ± 4.0 | 324.1 ± 9.9 |
DOC 36 mmol/kg | 89.1 ± 3.3 | 339.6 ± 9.8 |
Atropine | 87.9 ± 1.3 | 393.0 ± 11.9 * |
Atropine + DOC | 84.0 ± 1.9 | 392.0 ± 11.9 * |
Prazosin | 55.3 ± 1.0 * | 277.4 ± 12.9 * |
Prazosin + DOC | 59.1 ± 1.7 * | 286.5 ± 10.4 * |
Propranolol | 77.7 ± 3.4 * | 243.7 ± 16.7 * |
Propranolol + DOC | 78.2 ± 3.0 * | 251.0 ± 10.1 * |
DY 268 | 90.0 ± 3.5 | 333.4 ± 20.1 |
DY 268 + DOC | 90.6 ± 2.6 | 330.3 ± 14.0 |
GA | 89.8 ± 3.4 | 330.8 ± 14.3 |
GA + DOC | 88.6 ± 3.4 | 327.7 ± 8.3 |
Intracerebroventricular Infusions | ||
Vehicle | 89.7 ± 3.7 | 354.7 ± 19.4 |
DOC 0.375 mmol/kg | 89.2 ± 3.5 | 349.2 ± 14.4 |
DOC 0.75 mmol/kg | 89.5 ± 3.4 | 353.1 ± 14.2 |
DY 268 | 87.9 ± 2.6 | 367.7 ± 5.9 |
DY 268 + DOC | 85.9 ± 4.0 | 365.9 ± 13.8 |
GA | 86.1 ± 4.9 | 367.8 ± 14.1 |
GA + DOC | 84.9 ± 2.8 | 370.2 ± 14.4 |
Timepoints | Deoxycholic Acid Concentration ± SE (mg/L) | p vs. Baseline | p vs. Timepoints |
---|---|---|---|
Dose: 36 mmol/kg bw | |||
Baseline | 0.215 ± 0.075 | - | - |
20 min | 5.630 ± 0.571 | <0.001 | 0.002 |
90 min | 1.801 ± 0.171 | 0.003 | 0.002 |
Dose: 4 mmol/kg bw | |||
Baseline | 0.206 ± 0.068 | - | - |
5 min | 0.844 ± 0.177 | 0.027 | 0.028 |
30 min | 0.344 ± 0.048 | 0.143 | 0.028 |
Parameter | T1 | T2 |
---|---|---|
IVSD (cm) | 0.192 ± 0.006 | 0.194 ± 0.003 |
LVDD | 0.571 ± 0.034 | 0.571 ± 0.019 |
PWD | 0.208 ± 0.009 | 0.214 ± 0.009 |
IVSS | 0.265 ± 0.007 | 0.291 ± 0.010 * |
LVDS | 0.318 ± 0.015 | 0.325 ± 0.012 |
PWS | 0.305 ± 0.009 | 0.327 ± 0.019 * |
EF % | 79.57 ± 2.158 | 79.71 ± 3.121 |
FS % | 43.14 ± 2.126 | 44.14 ± 3.752 |
LV EDV | 0.472 ± 0.064 | 0.457 ± 0.046 |
LV ESV | 0.090 ± 0.010 | 0.081 ± 0.010 |
Stroke volume (mL) | 0.352 ± 0.039 | 0.391 ± 0.033 |
AO (cm) | 0.365 ± 0.010 | 0.375 ± 0.009 |
LA (cm) | 0.440 ± 0.007 | 0.432 ± 0.019 |
LA/AO | 1.202 ± 0.036 | 1.10 ± 0.033 |
HR (bpm) | 320 ± 9.419 | 388.8 ± 10.795 * |
PA Vmax (m/s) | 0.638 ± 0.051 | 0.737 ± 0.049 * |
CO (mL/min) | 112.138 ± 11.561 | 151.03 ± 10.647 * |
SVR (PRU) | 0.791 ± 0.123 | 0.803 ± 0.105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowiński, A.; Chabowski, D.; Giebułtowicz, J.; Aleksandrowicz, M.; Ufnal, M. Deoxycholic Acid, a Secondary Bile Acid, Increases Cardiac Output and Blood Pressure in Rats. Nutrients 2024, 16, 32. https://doi.org/10.3390/nu16010032
Nowiński A, Chabowski D, Giebułtowicz J, Aleksandrowicz M, Ufnal M. Deoxycholic Acid, a Secondary Bile Acid, Increases Cardiac Output and Blood Pressure in Rats. Nutrients. 2024; 16(1):32. https://doi.org/10.3390/nu16010032
Chicago/Turabian StyleNowiński, Artur, Dawid Chabowski, Joanna Giebułtowicz, Marta Aleksandrowicz, and Marcin Ufnal. 2024. "Deoxycholic Acid, a Secondary Bile Acid, Increases Cardiac Output and Blood Pressure in Rats" Nutrients 16, no. 1: 32. https://doi.org/10.3390/nu16010032
APA StyleNowiński, A., Chabowski, D., Giebułtowicz, J., Aleksandrowicz, M., & Ufnal, M. (2024). Deoxycholic Acid, a Secondary Bile Acid, Increases Cardiac Output and Blood Pressure in Rats. Nutrients, 16(1), 32. https://doi.org/10.3390/nu16010032