Nutritional Status Predicts the Length of Stay and Mortality in Patients Undergoing Electrotherapy Procedures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Statistical Analysis
2.2. Ethical Concerns
3. Results
3.1. Study Population
3.2. Nutritional Status
3.3. Length of Stay
3.4. Complications
3.5. In-Hospital Mortality
4. Discussion
5. Conclusions
Limitations of the Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cederholm, T.; Barazzoni, R.; Austin, P.; Ballmer, P.; Biolo, G.; Bischoff, S.C.; Compher, C.; Correia, I.; Higashiguchi, T.; Holst, M.; et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin. Nutr. 2017, 36, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Fakhoury, H.M.A.; Yousef, Z.; Tamim, H.; Daher, S.; Attasi, A.A.; Al Ajlan, A.; Hajeer, A.H. Combined effect of age and body mass index on postoperative mortality and morbidity in laparoscopic cholecystectomy patients. Front. Surg. 2023, 10, 1243915. [Google Scholar] [CrossRef] [PubMed]
- Ringaitiene, D.; Gineityte, D.; Vicka, V.; Sabestinaite, A.; Klimasauskas, A.; Gaveliene, E.; Rucinskas, K.; Ivaska, J.; Sipylaite, J. Concordance of the new ESPEN criteria with low phase angle in defining early stages of malnutrition in cardiac surgery. Clin. Nutr. 2018, 37, 1596–1601. [Google Scholar] [CrossRef] [PubMed]
- Ringaitiene, D.; Gineityte, D.; Vicka, V.; Zvirblis, T.; Norkiene, I.; Sipylaite, J.; Irnius, A.; Ivaskevicius, J. Malnutrition assessed by phase angle determines outcomes in low-risk cardiac surgery patients. Clin. Nutr. 2016, 35, 1328–1332. [Google Scholar] [CrossRef]
- Visser, M.; van Venrooij, L.M.W.; Wanders, D.C.M.; de Vos, R.; Wisselink, W.; van Leeuwen, P.A.M.; de Mol, B.A.J.M. The bioelectrical impedance phase angle as an indicator of undernutrition and adverse clinical outcome in cardiac surgical patients. Clin. Nutr. 2012, 31, 981–986. [Google Scholar] [CrossRef]
- Morisawa, T.; Saitoh, M.; Takahashi, T.; Watanabe, H.; Mochizuki, M.; Kitahara, E.; Fujiwara, T.; Fujiwara, K.; Nishitani-Yokoyama, M.; Minamino, T.; et al. Association of phase angle with hospital-acquired functional decline in older patients undergoing cardiovascular surgery. Nutrition 2021, 91–92, 111402. [Google Scholar] [CrossRef]
- van Venrooij, L.M.W.; de Vos, R.; Zijlstra, E.; Borgmeijer-Hoelen, M.M.M.J.; van Leeuwen, P.A.M.; de Mol, B.A.J.M. The impact of low preoperative fat-free body mass on infections and length of stay after cardiac surgery: A prospective cohort study. J. Thorac. Cardiovasc. Surg. 2011, 142, 1263–1269. [Google Scholar] [CrossRef]
- Han, P.; Chen, X.; Yu, X.; Zhang, Y.; Song, P.; Cai, M.; Liang, L.; Liang, Z.; Yang, R.; Jin, F.; et al. The Predictive Value of Sarcopenia and its Individual Criteria for Cardiovascular and All-Cause Mortality in Suburb-Dwelling Older Chinese. J. Nutr. Health Aging 2020, 24, 765–771. [Google Scholar] [CrossRef]
- Elagizi, A.; Kachur, S.; Lavie, C.J.; Carbone, S.; Pandey, A.; Ortega, F.B.; Milani, R.V. An Overview and Update on Obesity and the Obesity Paradox in Cardiovascular Diseases. Prog. Cardiovasc. Dis. 2018, 61, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Horwich, T.B.; Fonarow, G.C.; Clark, A.L. Obesity and the Obesity Paradox in Heart Failure. Prog. Cardiovasc. Dis. 2018, 61, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.L.; Fonarow, G.C.; Horwich, T.B. Obesity and the Obesity Paradox in Heart Failure. Prog. Cardiovasc. Dis. 2014, 56, 409–414. [Google Scholar] [CrossRef]
- Wleklik, M.; Denfeld, Q.; Lisiak, M.; Czapla, M.; Kałużna-Oleksy, M.; Uchmanowicz, I. Frailty Syndrome in Older Adults with Cardiovascular Diseases–What Do We Know and What Requires Further Research? Int. J. Environ. Res. Public Health 2022, 19, 2234. [Google Scholar] [CrossRef]
- Czapla, M.; Uchmanowicz, I.; Juárez-Vela, R.; Durante, A.; Kałużna-Oleksy, M.; Łokieć, K.; Baeza-Trinidad, R.; Smereka, J. Relationship between nutritional status and length of hospital stay among patients with atrial fibrillation—A result of the nutritional status heart study. Front. Nutr. 2022, 9, 1086715. [Google Scholar] [CrossRef]
- Czapla, M.; Juárez-Vela, R.; Łokieć, K.; Wleklik, M.; Karniej, P.; Smereka, J. The Association between Nutritional Status and Length of Hospital Stay among Patients with Hypertension. Int. J. Environ. Res. Public Health 2022, 19, 5827. [Google Scholar] [CrossRef]
- Czapla, M.; Karniej, P.; Juárez-Vela, R.; Łokieć, K. The association between nutritional status and in-hospital mortality among patients with acute coronary syndrome—A result of the retrospective nutritional status heart study (NSHS). Nutrients 2020, 12, 3091. [Google Scholar] [CrossRef]
- Czapla, M.; Juárez-Vela, R.; Łokieć, K.; Karniej, P. The Association between Nutritional Status and In-Hospital Mortality among Patients with Heart Failure—A Result of the Retrospective Nutritional Status Heart Study 2 (NSHS2). Nutrients 2021, 13, 1669. [Google Scholar] [CrossRef]
- Garlini, L.M.; Alves, F.D.; Ceretta, L.B.; Perry, I.S.; Souza, G.C.; Clausell, N.O. Phase angle and mortality: A systematic review. Eur. J. Clin. Nutr. 2019, 73, 495–508. [Google Scholar] [CrossRef]
- Huang, L.; He, R.; Sun, X.; Lv, J.; Chen, S. Association of Controlling Nutritional Status Score with Adverse Outcomes in Patients With Coronary Artery Disease: A Systematic Review and Meta-Analysis. Angiology 2023, 74, 149–158. [Google Scholar] [CrossRef]
- Tonet, E.; Campo, G.; Maietti, E.; Formiga, F.; Martinez-Sellés, M.; Pavasini, R.; Biscaglia, S.; Serenelli, M.; Sanchis, J.; Diez-Villanueva, P.; et al. Nutritional status and all-cause mortality in older adults with acute coronary syndrome. Clin. Nutr. 2020, 39, 1572–1579. [Google Scholar] [CrossRef] [PubMed]
- Colín-Ramírez, E.; Castillo-Martínez, L.; Orea-Tejeda, A.; Vázquez-Durán, M.; Rodríguez, A.E.; Keirns-Davis, C. Bioelectrical impedance phase angle as a prognostic marker in chronic heart failure. Nutrition 2012, 28, 901–905. [Google Scholar] [CrossRef]
- Popiolek-Kalisz, J.; Blaszczak, P. Nutritional Status of Coronary Artery Disease Patients-Preliminary Results. Int. J. Environ. Res. Public Health 2023, 20, 3464. [Google Scholar] [CrossRef]
- Allepaerts, S.; Buckinx, F.; Bruyère, O.; Reginster, J.Y.; Paquot, N.; Gillain, S. Clinical Impact of Nutritional Status and Energy Balance in Elderly Hospitalized Patients. J. Nutr. Health Aging 2020, 24, 1073–1079. [Google Scholar] [CrossRef] [PubMed]
- Carbone, S.; Popovic, D.; Lavie, C.J.; Arena, R. Obesity, body composition and cardiorespiratory fitness in heart failure with preserved ejection fraction. Future Cardiol. 2017, 13, 451–463. [Google Scholar] [CrossRef]
- Wannamethee, S.G.; Atkins, J.L. Muscle loss and obesity: The health implications of sarcopenia and sarcopenic obesity. Proc. Nutr. Soc. 2015, 74, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Saito, H.; Matsue, Y.; Kamiya, K.; Kagiyama, N.; Maeda, D.; Endo, Y.; Ueno, H.; Yoshioka, K.; Mizukami, A.; Saito, K.; et al. Sarcopenic obesity is associated with impaired physical function and mortality in older patients with heart failure: Insight from FRAGILE-HF. BMC Geriatr. 2022, 22, 556. [Google Scholar] [CrossRef]
- Qin, Q.; Yang, Y.; Chen, J.; Jiang, Y.; Li, A.; Huang, M.; Dong, Y.; Wang, S.; Ding, S. Bioelectrical impedance analysis versus quantitative computer tomography and anthropometry for the assessment of body composition parameters in China. Sci. Rep. 2021, 11, 11076. [Google Scholar] [CrossRef]
- Kuriyan, R. Body composition techniques. Indian J. Med. Res. 2018, 148, 648. [Google Scholar] [CrossRef]
- Popiolek-Kalisz, J.; Szczygiel, K. Bioelectrical Impedance Analysis and Body Composition in Cardiovascular Diseases. Curr. Probl. Cardiol. 2023, 48, 101911. [Google Scholar] [CrossRef]
- Kondrup, J.; Ramussen, H.H.; Hamberg, O.; Stanga, Z.; Camilo, M.; Richardson, R.; Elia, M.; Allison, S.; Meier, R.; Plauth, M. Nutritional risk screening (NRS 2002): A new method based on an analysis of controlled clinical trials. Clin. Nutr. 2003, 22, 321–336. [Google Scholar] [CrossRef]
- Kang, M.C.; Kim, J.H.; Ryu, S.W.; Moon, J.Y.; Park, J.H.; Park, J.K.; Park, J.H.; Baik, H.W.; Seo, J.M.; Son, M.W.; et al. Prevalence of malnutrition in hospitalized patients: A multicenter cross-sectional study. J. Korean Med. Sci. 2018, 33, 14–23. [Google Scholar] [CrossRef]
- World Health Organization. BMI Classification. Global Database on Body Mass Index. Available online: http://www.who.int/bmi/index.jsp?introPage=intro_3.html (accessed on 1 April 2019).
- Yamaguchi, T.; Nozato, T.; Miwa, N.; Sagawa, Y.; Watanabe, K.; Nagata, Y.; Miyazaki, R.; Mitsui, K.; Nagase, M.; Nagamine, T.; et al. Impact of the preprocedural nutrition status on the clinical outcomes of patients after pacemaker implantation for bradycardia. J. Cardiol. 2019, 74, 284–289. [Google Scholar] [CrossRef]
- Çinier, G.; Hayıroğlu, M.İ.; Pay, L.; Yumurtaş, A.Ç.; Tezen, O.; Eren, S.; Kolak, Z.; Çetin, T.; Özcan, S.; Türkkan, C.; et al. Prognostic nutritional index as the predictor of long-term mortality among HFrEF patients with ICD. Pacing Clin. Electrophysiol. PACE 2021, 44, 490–496. [Google Scholar] [CrossRef]
- Erdogan, G.; Yenerçağ, M.; Uçar, M.; Öztürk, O.; Şeker, O.O.; Yontar, O.C.; Çakmak, E.Ö.; Karagöz, A.; Şahin, İ.; Arslan, U. Modified Glasgow Prognostıc Score May Be Useful to Predict Major Adverse Cardiac Events in Heart Failure Patients Undergone Cardiac Resynchronization Treatment. Turk Kardiyol. Dernegi Arsivi 2023, 51, 104–111. [Google Scholar] [CrossRef]
- Kichloo, A.; Shaka, H.; Aljadah, M.; Amir, R.; Albosta, M.; Jamal, S.; Khan, M.Z.; Wani, F.; Mir, K.M.; Kanjwal, K. Predictors of outcomes in hospitalized patients undergoing pacemaker insertion: Analysis from the national inpatient database (2016–2017). Pacing Clin. Electrophysiol. PACE 2021, 44, 1562–1569. [Google Scholar] [CrossRef]
- Balli, M.; Çetin, M.; Koksal, F.; Sag, F.E.; Katkat, F.; Tekin, E.E.; Aydinli, B.; Vurgun, V.K. Predictors of Pacemaker-Induced Cardiomyopathy and Importance of Nutritional Status and Prognostic Nutritional Index. Acta Cardiol. Sin. 2022, 38, 151–158. [Google Scholar] [CrossRef]
- Ikeya, Y.; Saito, Y.; Nakai, T.; Kogawa, R.; Otsuka, N.; Wakamatsu, Y.; Kurokawa, S.; Ohkubo, K.; Nagashima, K.; Okumura, Y. Prognostic importance of the Controlling Nutritional Status (CONUT) score in patients undergoing cardiac resynchronisation therapy. Open Heart 2021, 8, e001740. [Google Scholar] [CrossRef]
- Takada, T.; Jujo, K.; Inagaki, K.; Abe, T.; Kishihara, M.; Shirotani, S.; Endo, N.; Watanabe, S.; Suzuki, K.; Minami, Y.; et al. Nutritional status during hospitalization is associated with the long-term prognosis of patients with heart failure. ESC Heart Fail. 2021, 8, 5372–5382. [Google Scholar] [CrossRef]
- Sargento, L.; Satendra, M.; Almeida, I.; Sousa, C.; Gomes, S.; Salazar, F.; Lousada, N.; Palma Dos Reis, R. Nutritional status of geriatric outpatients with systolic heart failure and its prognostic value regarding death or hospitalization, biomarkers and quality of life. J. Nutr. Health Aging 2013, 17, 300–304. [Google Scholar] [CrossRef]
- Fu, B.; Yu, Y.; Cheng, S.; Huang, H.; Long, T.; Yang, J.; Gu, M.; Cai, C.; Chen, X.; Niu, H.; et al. Prognostic Value of Four Preimplantation Malnutrition Estimation Tools in Predicting Heart Failure Hospitalization of the Older Diabetic Patients with Right Ventricular Pacing. J. Nutr. Health Aging 2023, 27, 1262–1270. [Google Scholar] [CrossRef]
- Jing, S.; Hu, S.; Ma, S. Analysis of postoperative complications and risk factors in patients with permanent pacemaker implantation. J. Thorac. Dis. 2020, 12, 5980–5985. [Google Scholar] [CrossRef]
- Alvarez-Alvarez, B.; García-Seara, J.; Rodríguez-Mañero, M.; Iglesias-Alvarez, D.; Martínez-Sande, J.L.; Agra-Bermejo, R.M.; Fernández López, X.A.; González-Melchor, L.; Gude Sampedro, F.; Díaz-Louzao, C.; et al. Prognostic value of nutrition status in the response of cardiac resynchronization therapy. Indian Pacing Electrophysiol. J. 2018, 18, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Yamada, S.; Yoshihisa, A.; Hijioka, N.; Amami, K.; Kaneshiro, T.; Ishida, T.; Takeishi, Y. Associations of the Prognostic Nutritional Index with the Cardiac Function and Survival after Cardiac Resynchronization Therapy. Intern. Med. 2021, 60, 985–991. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Lian, L.; Chen, C.; Wang, M.; Chen, C.; Hu, X. The change in nutritional status is related to cardiovascular events in patients with pacemaker implantation: A 4-year follow-up study. Front. Nutr. 2022, 9, 986731. [Google Scholar] [CrossRef] [PubMed]
Overall | Single-Chamber Pacemakers | Dual-Chamber Pacemakers | Single-Chamber ICD | Dual-Chamber ICD | CRT-P | CRT-D | p | |
---|---|---|---|---|---|---|---|---|
Sex [% of males] | 58.33 | 54.88 | 48.33 | 83.13 | 68.42 | 73.68 | 76.79 | <0.001 |
Age [years] | 73.97 ± 9.99 | 79.36 ± 8.53 | 75.22 ± 9.22 | 66.70 ± 9.12 | 71.21 ± 11.97 | 74.06 ± 13.31 | 70.43 ± 8.72 | <0.001 |
Length of stay [days] | 4.39 ± 4.47 | 4.66 ± 5.41 | 3.76 ± 2.99 | 4.70 ± 4.99 | 7.04 ± 6.84 | 7.56 ± 6.87 | 5.24 ± 6.31 | <0.001 |
Complications rate [%] | 6.29 | 6.10 | 5.47 | 3.61 | 10.53 | 0 | 12.50 | <0.001 |
Mortality rate [%] | 0.68 | 1.22 | 0.61 | 0 | 0 | 5.26 | 0 | <0.001 |
BMI [kg/m2] | 28.55 ± 4.97 | 28.05 ± 5.35 | 28.91 ± 4.93 | 27.96 ± 5.01 | 26.25 ± 3.87 | 30.56 ± 5.01 | 28.17 ± 4.64 | 0.67 |
Body mass [kg] | 81.05 ± 16.78 | 78.38 ± 17.25 | 80.37 ± 16.59 | 83.80 ± 17.68 | 75.66 ± 12.70 | 92.61 ± 17.29 | 82.85 ± 15.17 | 0.56 |
NRS 2002 [points] | 0.90 ± 0.78 | 1.13 ± 0.72 | 0.91 ± 0.71 | 0.64 ± 0.92 | 0.93 ± 1.16 | 1.00 ± 0.94 | 0.83 ± 0.79 | 0.01 |
Overall CIED | One-Chamber Pacemaker | Dual-Chamber Pacemaker | One-Chamber ICD | Dual-Chamber ICD | CRT-P | CRT-D | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β | R2 | p | β | R2 | p | β | R2 | p | β | R2 | p | β | R2 | p | β | R2 | p | β | R2 | p | |
NRS 2002 | 0.78 | 0.0187 | 0.003 | 0.29 | 0.0015 | 0.759 | 0.30 | 0.0048 | 0.248 | 1.01 | 0.0356 | 0.129 | −0.64 | 0.0126 | 0.691 | 2.58 | 0.1164 | 0.180 | 3.79 | 0.2140 | 0.002 |
BMI | −0.05 | 0.0027 | 0.216 | 0.20 | 0.0443 | 0.066 | 0.002 | 0.000 | 0.960 | −0.23 | 0.0511 | 0.042 | −0.61 | 0.1184 | 0.149 | −0.25 | 0.0312 | 0.483 | −0.24 | 0.0304 | 0.207 |
Body mass | −0.02 | 0.0034 | 0.166 | 0.04 | 0.0196 | 0.224 | −0.01 | 0.0014 | 0.494 | −0.06 | 0.0428 | 0.064 | −0.18 | 0.1062 | 0.173 | −0.05 | 0.0159 | 0.618 | −0.11 | 0.0605 | 0.073 |
Age | −0.002 | 0.000 | 0.933 | −0.03 | 0.0028 | 0.647 | 0.02 | 0.0032 | 0.309 | −0.01 | 0.0003 | 0.870 | −0.07 | 0.0162 | 0.604 | 0.10 | 0.0344 | 0.461 | 0.07 | 0.0088 | 0.500 |
Overall CIED | One-Chamber Pacemaker | Dual-Chamber Pacemaker | One-Chamber ICD | Dual-Chamber ICD | CRT-P | CRT-D | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β | p | β | p | β | p | β | p | β | p | β | p | β | p | |
NRS 2002 | 1.02 | 0.001 | 0.53 | 0.62 | 0.29 | 0.35 | 1.24 | 0.08 | −0.52 | 0.77 | 2.67 | 0.27 | 4.05 | 0.003 |
BMI | 0.05 | 0.21 | 0.20 | 0.08 | 0.01 | 0.79 | −0.24 | 0.04 | −0.59 | 0.18 | −0.17 | 0.67 | −0.23 | 0.24 |
Body mass | −0.02 | 0.14 | 0.04 | 0.26 | −0.004 | 0.69 | −0.07 | 0.046 | −0.17 | 0.21 | −0.01 | 0.94 | −0.10 | 0.10 |
β | p | R2 | p | |
---|---|---|---|---|
NRS 2002 score | 0.80 | 0.002 | 0.04 | <0.001 |
Second-grade atrioventricular block | −1.54 | 0.003 | ||
NRS 2002 score | 0.77 | 0.003 | 0.03 | 0.001 |
Sick sinus syndrome | −1.26 | 0.01 | ||
NRS 2002 score | 0.82 | 0.001 | 0.03 | <0.001 |
Heart failure | 1.05 | 0.02 | ||
NRS 2002 score * | 1.42 | 0.01 | 0.09 | 0.003 |
Secondary prevention ICD * | 3.08 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popiolek-Kalisz, J.; Chrominski, T.; Szczasny, M.; Blaszczak, P. Nutritional Status Predicts the Length of Stay and Mortality in Patients Undergoing Electrotherapy Procedures. Nutrients 2024, 16, 843. https://doi.org/10.3390/nu16060843
Popiolek-Kalisz J, Chrominski T, Szczasny M, Blaszczak P. Nutritional Status Predicts the Length of Stay and Mortality in Patients Undergoing Electrotherapy Procedures. Nutrients. 2024; 16(6):843. https://doi.org/10.3390/nu16060843
Chicago/Turabian StylePopiolek-Kalisz, Joanna, Tomasz Chrominski, Marcin Szczasny, and Piotr Blaszczak. 2024. "Nutritional Status Predicts the Length of Stay and Mortality in Patients Undergoing Electrotherapy Procedures" Nutrients 16, no. 6: 843. https://doi.org/10.3390/nu16060843
APA StylePopiolek-Kalisz, J., Chrominski, T., Szczasny, M., & Blaszczak, P. (2024). Nutritional Status Predicts the Length of Stay and Mortality in Patients Undergoing Electrotherapy Procedures. Nutrients, 16(6), 843. https://doi.org/10.3390/nu16060843