The Accumulative Effect of Multiple Postnatal Risk Factors with the Risk of Being Overweight/Obese in Late Childhood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Measures
2.2.1. Exposures from LSAC
2.2.2. Outcomes from LSAC’s CheckPoint Wave
2.2.3. Covariates
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Consideration of the Evidence on Childhood Obesity for the Commission on Ending Childhood Obesity: Report of the ad hoc Working Group on Science and Evidence for Ending Childhood Obesity, Geneva, Switzerland. Available online: https://apps.who.int/iris/handle/10665/206549 (accessed on 20 August 2023).
- Blake-Lamb, T.L.; Locks, L.M.; Perkins, M.E.; Woo Baidal, J.A.; Cheng, E.R.; Taveras, E.M. Interventions for childhood obesity in the first 1,000 days a systematic review. Am. J. Prev. Med. 2016, 50, 780–789. [Google Scholar] [CrossRef]
- Godfrey, K.M.; Reynolds, R.M.; Prescott, S.L.; Nyirenda, M.; Jaddoe, V.W.; Eriksson, J.G.; Broekman, B.F. Influence of maternal obesity on the long-term health of offspring. Lancet Diabetes Endocrinol. 2017, 5, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Diesel, J.C.; Eckhardt, C.L.; Day, N.L.; Brooks, M.M.; Arslanian, S.A.; Bodnar, L.M. Is gestational weight gain associated with offspring obesity at 36 months? Pediatr. Obes. 2015, 10, 305–310. [Google Scholar] [CrossRef]
- Aris, I.M.; Soh, S.E.; Tint, M.T.; Saw, S.M.; Rajadurai, V.S.; Godfrey, K.M.; Gluckman, P.D.; Yap, F.; Chong, Y.S.; Lee, Y.S. Associations of gestational glycemia and prepregnancy adiposity with offspring growth and adiposity in an Asian population. Am. J. Clin. Nutr. 2015, 102, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Zhang, M.; Ji, Y.; Hong, X.; Wang, G.; Xu, R.; Liang, L.; Saria, S.; Ji, H. A prospective birth cohort study of maternal prenatal cigarette smoking assessed by self-report and biomarkers on childhood risk of overweight or obesity. Precis. Nutr. 2022, 1, e00017. [Google Scholar] [PubMed]
- Liao, Z.; Wang, J.; Chen, F.; Chen, Y.; Zhang, T.; Liu, G.; Xie, X.; Tai, J. Association of cesarean delivery with trajectories of growth and body composition in preschool children. Nutrients 2022, 14, 1806. [Google Scholar] [CrossRef]
- Zheng, M.; Campbell, K.J.; Baur, L.; Rissel, C.; Wen, L.M. Infant feeding and growth trajectories in early childhood: The application and comparison of two longitudinal modelling approaches. Int. J. Obes. 2021, 45, 2230–2237. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Dang, S.; Zeng, L.; Gao, W.; Wang, D.; Li, Q.; Jiang, W.; Pei, L.; Li, C.; Yan, H. Rapid infancy weight gain and 7- to 9-year childhood obesity risk: A prospective cohort study in rural western China. Medicine 2016, 95, e3425. [Google Scholar] [CrossRef]
- Lioret, S.; Harrar, F.; Boccia, D.; Hesketh, K.D.; Kuswara, K.; Van Baaren, C.; Maritano, S.; Charles, M.A.; Heude, B.; Laws, R. The effectiveness of interventions during the first 1000 days to improve energy balance-related behaviors or prevent overweight/obesity in children from socio-economically disadvantaged families of high-income countries: A systematic review. Obes. Rev. 2023, 24, e13524. [Google Scholar] [CrossRef]
- Pérez-Muñoz, C.; Carretero-Bravo, J.; Ortega-Martín, E.; Ramos-Fiol, B.; Ferriz-Mas, B.; Díaz-Rodríguez, M. Interventions in the first 1000 days to prevent childhood obesity: A systematic review and quantitative content analysis. BMC Public Health 2022, 22, 2367. [Google Scholar] [CrossRef] [PubMed]
- Gillman, M.W.; Ludwig, D.S. How early should obesity prevention start? N. Engl. J. Med. 2013, 369, 2173–2175. [Google Scholar] [CrossRef]
- Sanson, A.V.; Johnstone, R.E. Growing Up in Australia takes its first steps. Fam. Matters 2004, 67, 46–53. [Google Scholar]
- Soloff, C.; Lawrence, D.; Johnstone, R. Sample Design; Australian Institute of Family Studies Melbourne: Melbourne, Australian, 2005.
- Clifford, S.A.; Davies, S.; Wake, M. Child Health CheckPoint: Cohort summary and methodology of a physical health and biospecimen module for the Longitudinal Study of Australian Children. BMJ Open 2019, 9, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Wake, M.; Clifford, S.; York, E.; Mensah, F.; Gold, L.; Burgner, D.; Davies, S. Introducing Growing Up in Australia’s Child Health CheckPoint. Fam. Matters 2014, 95, 15–23. [Google Scholar]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic; Report of a WHO consultation; World Health Organization technical report series; World Health Organization: Geneva, Switzerland, 2000; Volume 894, pp. 1–253. [Google Scholar]
- Section on Breastfeeding. Breastfeeding and the use of human milk. Pediatrics 2012, 129, e827–e841. [Google Scholar] [CrossRef] [PubMed]
- Kuczmarski, R.J.; Ogden, C.L.; Grummer-Strawn, L.M.; Flegal, K.M.; Guo, S.S.; Wei, R.; Mei, Z.; Curtin, L.R.; Roche, A.F.; Johnson, C.L. CDC growth charts: United States. Adv. Data 2000, 314, 311–327. [Google Scholar]
- Monteiro, P.O.; Victora, C.G. Rapid growth in infancy and childhood and obesity in later life—A systematic review. Obes. Rev. 2005, 6, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Druet, C.; Stettler, N.; Sharp, S.; Simmons, R.K.; Cooper, C.; Smith, G.D.; Ekelund, U.; Lévy-Marchal, C.; Jarvelin, M.R.; Kuh, D.; et al. Prediction of childhood obesity by infancy weight gain: An individual-level meta-analysis. Paediatr. Perinat. Epidemiol. 2012, 26, 19–26. [Google Scholar] [CrossRef]
- Taveras, E.M.; Rifas-Shiman, S.L.; Sherry, B.; Oken, E.; Haines, J.; Kleinman, K.; Rich-Edwards, J.W.; Gillman, M.W. Crossing growth percentiles in infancy and risk of obesity in childhood. Arch. Pediatr. Adolesc. Med. 2011, 165, 993–998. [Google Scholar] [CrossRef]
- Baker, K.; Sipthorp, M.; Edwards, B. A Longitudinal Measure of Socioeconomic Position in LSAC; Australian Institute of Family Studies: Canberra, Australian, 2017.
- Huh, S.Y.; Rifas-Shiman, S.L.; Taveras, E.M.; Oken, E.; Gillman, M.W. Timing of solid food introduction and risk of obesity in preschool-aged children. Pediatrics 2011, 127, e544–e551. [Google Scholar] [CrossRef]
- Gingras, V.; Aris, I.M.; Rifas-Shiman, S.L.; Switkowski, K.M.; Oken, E.; Hivert, M.F. Timing of complementary feeding introduction and adiposity throughout childhood. Pediatrics 2019, 144, e20191320. [Google Scholar] [CrossRef] [PubMed]
- AIoF, S. Longitudinal Study of Australian Children Data User Guide–November 2015; Australian Institute of Family Studies: Melbourne, Australian, 2015.
- Clifford, S.A.; Gillespie, A.N.; Olds, T.; Grobler, A.C.; Wake, M. Body composition: Population epidemiology and concordance in Australian children aged 11–12 years and their parents. BMJ Open 2019, 9, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Weber, D.R.; Moore, R.H.; Leonard, M.B.; Zemel, B.S. Fat and lean BMI reference curves in children and adolescents and their utility in identifying excess adiposity compared with BMI and percentage body fat. Am. J. Clin. Nutr. 2013, 98, 49–56. [Google Scholar] [CrossRef]
- Laurson, K.R.; Eisenmann, J.C.; Welk, G.J. Body fat percentile curves for U.S. children and adolescents. Am. J. Prev. Med. 2011, 41, S87–S92. [Google Scholar] [CrossRef]
- McCarthy, H.D.; Ashwell, M. A study of central fatness using waist-to-height ratios in UK children and adolescents over two decades supports the simple message—‘keep your waist circumference to less than half your height’. Int. J. Obes. 2006, 30, 988–992. [Google Scholar] [CrossRef]
- Sharma, A.K.; Metzger, D.L.; Daymont, C.; Hadjiyannakis, S.; Rodd, C.J. LMS tables for waist-circumference and waist-height ratio z-scores in children aged 5–19 y in NHANES III: Association with cardio-metabolic risks. Pediatr. Res. 2015, 78, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Zou, G. A modified Poisson regression approach to prospective studies with binary data. Am. J. Epidemiol. 2004, 159, 702–706. [Google Scholar] [CrossRef]
- Jang, Y.J.; Kang, C.; Myung, W.; Lim, S.W.; Moon, Y.K.; Kim, H.; Kim, D.K. Additive interaction of mid- to late-life depression and cerebrovascular disease on the risk of dementia: A nationwide population-based cohort study. Alzheimers Res. Ther. 2021, 13, 61. [Google Scholar] [CrossRef]
- Marousez, L.; Lesage, J.; Eberlé, D. Epigenetics: Linking early postnatal nutrition to obesity programming? Nutrients 2019, 11, 2966. [Google Scholar] [CrossRef]
- Gillman, M.W. Developmental origins of health and disease. N. Engl. J. Med. 2005, 353, 1848–1850. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Aris, I.M.; Lin, P.D.; Rifas-Shiman, S.L.; Perng, W.; Woo Baidal, J.A.; Wen, D.; Oken, E. Longitudinal associations of modifiable risk factors in the first 1000 days with weight status and metabolic risk in early adolescence. Am. J. Clin. Nutr. 2021, 113, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Gillman, M.W.; Rifas-Shiman, S.L.; Kleinman, K.; Oken, E.; Rich-Edwards, J.W.; Taveras, E.M. Developmental origins of childhood overweight: Potential public health impact. Obesity 2008, 16, 1651–1656. [Google Scholar] [CrossRef] [PubMed]
- Aris, I.M.; Bernard, J.Y.; Chen, L.W.; Tint, M.T.; Pang, W.W.; Soh, S.E.; Saw, S.M.; Shek, L.P.; Godfrey, K.M.; Gluckman, P.D.; et al. Modifiable risk factors in the first 1000 days for subsequent risk of childhood overweight in an Asian cohort: Significance of parental overweight status. Int. J. Obes. 2018, 42, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.B.; Gao, H.; Geng, M.L.; Wu, X.; Tong, J.; Deng, F.; Zhang, S.Y.; Wu, L.H.; Huang, K.; Wu, X.Y.; et al. Sex discrepancy observed for gestational metabolic syndrome parameters and polygenic risk associated with preschoolers’ BMI growth trajectory: The Ma’anshan birth cohort study. Front. Endocrinol. 2022, 13, 857711. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Liu, E.; Qiao, Y.; Katzmarzyk, P.T.; Chaput, J.P.; Fogelholm, M.; Johnson, W.D.; Kuriyan, R.; Kurpad, A.; Lambert, E.V.; et al. Maternal gestational diabetes and childhood obesity at age 9–11: Results of a multinational study. Diabetologia 2016, 59, 2339–2348. [Google Scholar] [CrossRef] [PubMed]
- Sitarik, A.R.; Havstad, S.L.; Johnson, C.C.; Jones, K.; Levin, A.M.; Lynch, S.V.; Ownby, D.R.; Rundle, A.G.; Straughen, J.K.; Wegienka, G.; et al. Association between cesarean delivery types and obesity in preadolescence. Int. J. Obes. 2020, 44, 2023–2034. [Google Scholar] [CrossRef]
- Kuhle, S.; Tong, O.S.; Woolcott, C.G. Association between caesarean section and childhood obesity: A systematic review and meta-analysis. Obes. Rev. 2015, 16, 295–303. [Google Scholar] [CrossRef]
- Zheng, M.; Hesketh, K.D.; Vuillermin, P.; Dodd, J.; Wen, L.M.; Baur, L.A.; Taylor, R.; Byrne, R.; Mihrshahi, S.; Burgner, D.; et al. Understanding the pathways between prenatal and postnatal factors and overweight outcomes in early childhood: A pooled analysis of seven cohorts. Int. J. Obes. 2023, 47, 574–582. [Google Scholar] [CrossRef]
- Weng, S.F.; Redsell, S.A.; Swift, J.A.; Yang, M.; Glazebrook, C.P. Systematic review and meta-analyses of risk factors for childhood overweight identifiable during infancy. Arch. Dis. Child. 2012, 97, 1019–1026. [Google Scholar] [CrossRef]
- Yang, Z.; Dong, B.; Song, Y.; Wang, X.; Dong, Y.; Gao, D.; Li, Y.; Zou, Z.; Ma, J.; Arnold, L. Association between birth weight and risk of abdominal obesity in children and adolescents: A school-based epidemiology survey in China. BMC Public Health 2020, 20, 1686. [Google Scholar] [CrossRef] [PubMed]
- Tur, J.A.; Martinez, J.A. Guide and advances on childhood obesity determinants: Setting the research agenda. Obes. Rev. 2022, 23 (Suppl. S1), e13379. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.; Dai, L.J.; Zhang, Q.; Ouyang, Y.Q. A meta-analysis of the association between breastfeeding and early childhood obesity. J. Pediatr. Nurs. 2020, 53, 57–66. [Google Scholar] [CrossRef]
- Huang, H.; Gao, Y.; Zhu, N.; Yuan, G.; Li, X.; Feng, Y.; Gao, L.; Yu, J. The effects of breastfeeding for four months on thinness, overweight, and obesity in children aged 3 to 6 years: A retrospective cohort study from national physical fitness surveillance of Jiangsu province, China. Nutrients 2022, 14, 4154. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Liu, L.; Zhu, Y.; Huang, G.; Wang, P.P. The association between breastfeeding and childhood obesity: A meta-analysis. BMC Public Health 2014, 14, 1267. [Google Scholar] [CrossRef]
- Lindholm, A.; Almquist-Tangen, G.; Alm, B.; Bremander, A.; Dahlgren, J.; Roswall, J.; Staland-Nyman, C.; Bergman, S. Early rapid weight gain, parental body mass index and the association with an increased waist-to-height ratio at 5 years of age. PLoS ONE 2022, 17, e0273442. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Jiang, Y.; Wang, G.; Sun, W.; Dong, S.; Deng, Y.; Meng, M.; Zhu, Q.; Mei, H.; Zhou, Y.; et al. Combined effects of weight change trajectories and eating behaviors on childhood adiposity status: A birth cohort study. Appetite 2021, 162, 105174. [Google Scholar] [CrossRef] [PubMed]
- Hoebel, J.; Waldhauer, J.; Blume, M.; Schienkiewitz, A. Socioeconomic status, overweight, and obesity in childhood and adolescence—Secular trends from the nationwide German kiggs study. Dtsch. Arztebl. Int. 2022, 119, 839–845. [Google Scholar]
- Costa-Font, J.; Gil, J. Intergenerational and socioeconomic gradients of child obesity. Soc. Sci. Med. 2013, 93, 29–37. [Google Scholar] [CrossRef]
- Ke, Y.; Zhang, S.; Hao, Y.; Liu, Y. Associations between socioeconomic status and risk of obesity and overweight among Chinese children and adolescents. BMC Public Health 2023, 23, 401. [Google Scholar] [CrossRef]
- Raum, E.; Küpper-Nybelen, J.; Lamerz, A.; Hebebrand, J.; Herpertz-Dahlmann, B.; Brenner, H. Tobacco smoke exposure before, during, and after pregnancy and risk of overweight at age 6. Obesity 2011, 19, 2411–2417. [Google Scholar] [CrossRef] [PubMed]
- Pearce, J.; Taylor, M.A.; Langley-Evans, S.C. Timing of the introduction of complementary feeding and risk of childhood obesity: A systematic review. Int. J. Obes. 2013, 37, 1295–1306. [Google Scholar] [CrossRef] [PubMed]
- Cole, T.J.; Power, C.; Moore, G.E. Intergenerational obesity involves both the father and the mother. Am. J. Clin. Nutr. 2008, 87, 1535–1537. [Google Scholar] [CrossRef] [PubMed]
- Nader, P.R.; Huang, T.T.; Gahagan, S.; Kumanyika, S.; Hammond, R.A.; Christoffel, K.K. Next steps in obesity prevention: Altering early life systems to support healthy parents, infants, and toddlers. Child. Obes. 2012, 8, 195–204. [Google Scholar] [CrossRef]
- Kuh, D.; Ben-Shlomo, Y.; Lynch, J.; Hallqvist, J.; Power, C. Life course epidemiology. J. Epidemiol. Community Health 2003, 57, 778–783. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, J.; Günther, J.; Stecher, L.; Spies, M.; Meyer, D.; Kunath, J.; Raab, R.; Rauh, K.; Hauner, H. Effects of a lifestyle intervention in routine care on short- and long-term maternal weight retention and breastfeeding behavior-12 months follow-up of the Cluster-Randomized GeliS Trial. J. Clin. Med. 2019, 8, 876. [Google Scholar] [CrossRef]
- Louzada, M.L.; Campagnolo, P.D.; Rauber, F.; Vitolo, M.R. Long-term effectiveness of maternal dietary counseling in a low-income population: A randomized field trial. Pediatrics 2012, 129, e1477–e1484. [Google Scholar] [CrossRef] [PubMed]
- Helle, C.; Hillesund, E.R.; Wills, A.K.; Øverby, N.C. Evaluation of an eHealth intervention aiming to promote healthy food habits from infancy -the Norwegian randomized controlled trial Early Food for Future Health. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 1. [Google Scholar] [CrossRef] [PubMed]
- Wright, F.L.; Green, J.; Reeves, G.; Beral, V.; Cairns, B.J. Validity over time of self-reported anthropometric variables during follow-up of a large cohort of UK women. BMC Med. Res. Methodol. 2015, 15, 81. [Google Scholar] [CrossRef]
- Li, R.; Scanlon, K.S.; Serdula, M.K. The validity and reliability of maternal recall of breastfeeding practice. Nutr. Rev. 2005, 63, 103–110. [Google Scholar] [CrossRef]
Characteristics | Total (n = 1869) |
---|---|
Mothers | |
Age (years) | 31.4 ± 4.8 a |
Maternal pregnancy age (n, %) | |
≥35 years | 464 (25.3) |
<35 years | 1367 (74.7) |
Maternal BMI during the child’s infancy (kg/m2) | 25.2 ± 5.1 |
Maternal overweight/obesity during the child’s infancy b (n, %) | |
BMI ≥ 25.0 kg/m2 | 948 (58.6) |
BMI < 25.0 kg/m2 | 669 (41.4) |
Gestational diabetes (n, %) | |
Yes | 95 (5.6) |
No | 1601 (94.4) |
Maternal smoking during pregnancy (n, %) | |
Yes | 202 (11.9) |
No | 1501 (88.1) |
Fathers | |
Paternal BMI during the child’s infancy (kg/m2) | 26.8 ± 3.8 |
Paternal overweight/obesity during the child’s infancy (n, %) | |
BMI ≥ 25.0 kg/m2 | 488 (33.3) |
BMI < 25.0 kg/m2 | 976 (66.7) |
Children | |
Sex (girls, %) | 919 (49.0) |
Gestational age (weeks) | 39.2 ± 2.0 |
Age at CheckPoint (years) | 11.5 ± 0.5 |
Birth weight (grams) | 3443.9 ± 570.0 |
Delivered by cesarean section (n, %) | |
Yes | 560 (29.9) |
No | 1313 (70.1) |
Child with assisted reproductive technology (n, %) | |
Yes | 135 (7.2) |
No | 1737 (92.8) |
Duration of breastfeeding (n, %) | |
≥6 months | 1059 (64.0) |
<6 months | 595 (36.0) |
Time of solid foods introduction (n, %) | |
≥4 months | 1605 (92.3) |
<4 months | 134 (7.7) |
Tobacco exposure during infancy (n, %) | |
Yes | 107 (6.2) |
No | 1612 (93.8) |
Increment of weight z-score during infancy | 0.4 ± 0.5 |
BMI at 11–12 years (kg/m2) | 19.2 ± 3.4 |
FMI at 11–12 years (kg/m2) | 4.4 ± 2.6 |
BF% at 11–12 years (%) | 21.7 ± 8.4 |
WHtR at 11–12 years | 0.4 ± 0.1 |
Family socioeconomic score | 0.3 ± 1.0 |
Unadjusted Model | Adjusted Model 1 | Adjusted Model 2 | ||||
---|---|---|---|---|---|---|
Number of Risk Factors | RR (95%CI) | p-Value | RR (95%CI) | p-Value | RR (95%CI) | p-Value |
Primary Outcome for Children | ||||||
Overweight or obesity a | ||||||
2 risk scores | 2.34 (1.62 to 3.39) | <0.001 | 2.40 (1.66 to 3.46) | <0.001 | 2.49 (1.70 to 3.64) | <0.001 |
3 risk scores | 2.77 (1.90 to 4.05) | <0.001 | 2.85 (1.96 to 4.14) | <0.001 | 2.89 (1.95 to 4.29) | <0.001 |
≥4 risk scores | 3.92 (2.70 to 5.68) | <0.001 | 4.30 (2.98 to 6.21) | <0.001 | 4.32 (2.91 to 6.41) | <0.001 |
p-for-trend | <0.001 | <0.001 | <0.001 | |||
Secondary Outcomes for Children | ||||||
Fat mass index (≥75th) b | ||||||
2 risk scores | 2.64 (1.39 to 5.04) | <0.01 | 2.72 (1.43 to 5.17) | <0.01 | 2.69 (1.39 to 5.21) | <0.01 |
3 risk scores | 4.45 (2.38 to 8.31) | <0.001 | 4.59 (2.46 to 8.55) | <0.001 | 4.10 (2.11 to 7.98) | <0.001 |
≥4 risk scores | 6.69 (3.61 to 12.39) | <0.001 | 7.31 (3.97 to 13.45) | <0.001 | 6.59 (3.42 to 12.69) | <0.001 |
p-for-trend | <0.001 | <0.001 | <0.001 | |||
Body fat percentage (≥75th) b | ||||||
2 risk scores | 2.25 (1.52 to 3.32) | <0.001 | 2.30 (1.56 to 3.41) | <0.001 | 2.29 (1.54 to 3.40) | <0.001 |
3 risk scores | 2.61 (1.74 to 3.91) | <0.001 | 2.68 (1.79 to 4.01) | <0.001 | 2.43 (1.59 to 3.70) | <0.001 |
≥4 risk scores | 4.09 (2.78 to 6.03) | <0.001 | 4.41 (3.00 to 6.50) | <0.001 | 4.19 (2.78 to 6.30) | <0.001 |
p-for-trend | <0.001 | <0.001 | <0.001 | |||
Waist-to-height ratio (≥0.5) | ||||||
2 risk scores | 2.18 (1.05 to 4.53) | 0.04 | 2.26 (1.09 to 4.69) | 0.03 | 2.19 (1.03 to 4.65) | 0.05 |
3 risk scores | 4.73 (2.40 to 9.32) | <0.001 | 4.75 (2.43 to 9.30) | <0.001 | 4.00 (1.97 to 8.13) | <0.001 |
≥4 risk scores | 6.05 (3.04 to 12.03) | <0.001 | 6.52 (3.33 to 12.74) | <0.001 | 5.23 (2.53 to 10.80) | <0.001 |
p-for-trend | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.; Liao, Z.; Wang, J.; Liu, M. The Accumulative Effect of Multiple Postnatal Risk Factors with the Risk of Being Overweight/Obese in Late Childhood. Nutrients 2024, 16, 1536. https://doi.org/10.3390/nu16101536
Wu T, Liao Z, Wang J, Liu M. The Accumulative Effect of Multiple Postnatal Risk Factors with the Risk of Being Overweight/Obese in Late Childhood. Nutrients. 2024; 16(10):1536. https://doi.org/10.3390/nu16101536
Chicago/Turabian StyleWu, Ting, Zijun Liao, Jing Wang, and Mengjiao Liu. 2024. "The Accumulative Effect of Multiple Postnatal Risk Factors with the Risk of Being Overweight/Obese in Late Childhood" Nutrients 16, no. 10: 1536. https://doi.org/10.3390/nu16101536
APA StyleWu, T., Liao, Z., Wang, J., & Liu, M. (2024). The Accumulative Effect of Multiple Postnatal Risk Factors with the Risk of Being Overweight/Obese in Late Childhood. Nutrients, 16(10), 1536. https://doi.org/10.3390/nu16101536