Pilot-Study to Explore Metabolic Signature of Type 2 Diabetes: A Pipeline of Tree-Based Machine Learning and Bioinformatics Techniques for Biomarkers Discovery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects, and Data
2.2. Metabolomics Analysis
2.3. Data Analysis
2.4. Classification
3. Results
3.1. Univariate Statistical Analysis Results
3.2. Univariate ROC Analysis Results
3.3. PLS-DA Model Results
3.4. Diagnostic Model Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tinajero, M.G.; Malik, V.S. An update on the epidemiology of type 2 diabetes: A global perspective. Endocrinol. Metab. Clin. 2021, 50, 337–355. [Google Scholar] [CrossRef] [PubMed]
- Rogowicz-Frontczak, A.; Majchrzak, A.; Zozulińska-Ziółkiewicz, D. Insulin resistance in endocrine disorders—Treatment options. Endokrynol. Pol. 2017, 68, 334–351. [Google Scholar] [CrossRef] [PubMed]
- de Boer, I.H.; Khunti, K.; Sadusky, T.; Tuttle, K.R.; Neumiller, J.J.; Rhee, C.M.; Rosas, S.E.; Rossing, P.; Bakris, G. Diabetes management in chronic kidney disease: A consensus report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO). Diabetes Care 2022, 45, 3075–3090. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, J.; Hamet, P. Environmental and genetic contributions to diabetes. Metabolism 2019, 100, 153952. [Google Scholar] [CrossRef] [PubMed]
- Grant, R.W.; Dixit, V.D. Mechanisms of disease: Inflammasome activation and the development of type 2 diabetes. Front. Immunol. 2013, 4, 41259. [Google Scholar] [CrossRef] [PubMed]
- Clish, C.B. Metabolomics: An emerging but powerful tool for precision medicine. Mol. Case Stud. 2015, 1, a000588. [Google Scholar] [CrossRef] [PubMed]
- Hameed, I.; Masoodi, S.R.; Mir, S.A.; Nabi, M.; Ghazanfar, K.; Ganai, B.A. Type 2 diabetes mellitus: From a metabolic disorder to an inflammatory condition. World J. Diabetes 2015, 6, 598. [Google Scholar] [CrossRef]
- Hahn, S.-J.; Kim, S.; Choi, Y.S.; Lee, J.; Kang, J. Prediction of type 2 diabetes using genome-wide polygenic risk score and metabolic profiles: A machine learning analysis of population-based 10-year prospective cohort study. EBioMedicine 2022, 86, 104383. [Google Scholar] [CrossRef] [PubMed]
- Yagin, F.H.; Yasar, S.; Gormez, Y.; Yagin, B.; Pinar, A.; Alkhateeb, A.; Ardigò, L.P. Explainable Artificial Intelligence Paves the Way in Precision Diagnostics and Biomarker Discovery for the Subclass of Diabetic Retinopathy in Type 2 Diabetics. Metabolites 2023, 13, 1204. [Google Scholar] [CrossRef] [PubMed]
- Siptroth, J.; Moskalenko, O.; Krumbiegel, C.; Ackermann, J.; Koch, I.; Pospisil, H. Investigation of metabolic pathways from gut microbiome analyses regarding type 2 diabetes mellitus using artificial neural networks. Discov. Artif. Intell. 2023, 3, 19. [Google Scholar] [CrossRef]
- Gopal, K.; Al Batran, R.; Altamimi, T.R.; Greenwell, A.A.; Saed, C.T.; Dakhili, S.A.T.; Dimaano, M.T.E.; Zhang, Y.; Eaton, F.; Sutendra, G.; et al. FoxO1 inhibition alleviates type 2 diabetes-related diastolic dysfunction by increasing myocardial pyruvate dehydrogenase activity. Cell Rep. 2021, 35, 108935. [Google Scholar] [CrossRef] [PubMed]
- Skinner, S.C.; Nemkov, T.; Diaw, M.; Mbaye, M.N.; Diedhiou, D.; Sow, D.; Gueye, F.; Lopez, P.; Connes, P.; D’Alessandro, A. Metabolic profile of individuals with and without type 2 diabetes from sub-Saharan Africa. J. Proteome Res. 2023, 22, 2319–2326. [Google Scholar] [CrossRef]
- Yagin, F.H.; Alkhateeb, A.; Colak, C.; Azzeh, M.; Yagin, B.; Rueda, L. A Fecal-Microbial-Extracellular-Vesicles-Based Metabolomics Machine Learning Framework and Biomarker Discovery for Predicting Colorectal Cancer Patients. Metabolites 2023, 13, 589. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.I.; Lee, H.; Yang, J.-S.; Choi, J.-H.; Jung, D.-H.; Park, Y.J.; Park, J.-E.; Kim, S.M.; Park, S.H. Predicting models for plant metabolites based on PLSR, AdaBoost, XGBoost, and LightGBM algorithms using hyperspectral imaging of Brassica juncea. Agriculture 2023, 13, 1477. [Google Scholar] [CrossRef]
- Ahmed, M.; Mumtaz, R.; Anwar, Z. An enhanced water quality index for water quality monitoring using remote sensing and machine learning. Appl. Sci. 2022, 12, 12787. [Google Scholar] [CrossRef]
- Camacho-Barcia, L.; García-Gavilán, J.; Papandreou, C.; Hansen, T.T.; Harrold, J.A.; Finlayson, G.; Blundell, J.E.; Sjödin, A.; Halford, J.C.; Bulló, M. Circulating metabolites associated with postprandial satiety in overweight/obese participants: The SATIN study. Nutrients 2021, 13, 549. [Google Scholar] [CrossRef] [PubMed]
- Gozukara Bag, H.G.; Yagin, F.H.; Gormez, Y.; González, P.P.; Colak, C.; Gülü, M.; Badicu, G.; Ardigò, L.P. Estimation of obesity levels through the proposed predictive approach based on physical activity and nutritional habits. Diagnostics 2023, 13, 2949. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Rajagopalan, D.; Connor, S.C.; Damian, D.; Zhu, L.; Handzel, A.; Hu, G.; Amanullah, A.; Bao, S.; Woody, N. Multivariate classification analysis of metabolomic data for candidate biomarker discovery in type 2 diabetes mellitus. Metabolomics 2008, 4, 337–346. [Google Scholar] [CrossRef]
- Van’t Veer, L.J.; Dai, H.; Van De Vijver, M.J.; He, Y.D.; Hart, A.A.; Mao, M.; Peterse, H.L.; Van Der Kooy, K.; Marton, M.J.; Witteveen, A.T. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002, 415, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.M.; Fu-Liu, C.S. Multi-class cancer subtype classification based on gene expression signatures with reliability analysis. FEBS Lett. 2004, 561, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Khorraminezhad, L.; Leclercq, M.; Droit, A.; Bilodeau, J.-F.; Rudkowska, I. Statistical and machine-learning analyses in nutritional genomics studies. Nutrients 2020, 12, 3140. [Google Scholar] [CrossRef] [PubMed]
- Shima, H.; Masuda, S.; Date, Y.; Shino, A.; Tsuboi, Y.; Kajikawa, M.; Inoue, Y.; Kanamoto, T.; Kikuchi, J. Exploring the impact of food on the gut ecosystem based on the combination of machine learning and network visualization. Nutrients 2017, 9, 1307. [Google Scholar] [CrossRef] [PubMed]
- Kapetanovic, I.M.; Rosenfeld, S.; Izmirlian, G. Overview of commonly used bioinformatics methods and their applications. Ann. N. Y. Acad. Sci. 2004, 1020, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Peddinti, G.; Cobb, J.; Yengo, L.; Froguel, P.; Kravić, J.; Balkau, B.; Tuomi, T.; Aittokallio, T.; Groop, L. Early metabolic markers identify potential targets for the prevention of type 2 diabetes. Diabetologia 2017, 60, 1740–1750. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Lu, Y.; Hajifathalian, K.; Bentham, J.; Di Cesare, M.; Danaei, G.; Bixby, H.; Cowan, M.J.; Ali, M.K.; Taddei, C. Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4·4 million participants. Lancet 2016, 387, 1513–1530. [Google Scholar] [CrossRef] [PubMed]
- Stotz, E. Pyruvate metabolism. In Advances in Enzymology and Related Areas of Molecular Biology; Wiley: Hoboken, NJ, USA, 1945; Volume 5, pp. 129–164. [Google Scholar]
- de Meirleir, L.; Garcia-Cazorla, A.; Brivet, M. Disorders of pyruvate metabolism and the tricarboxylic acid cycle. In Inborn Metabolic Diseases: Diagnosis and Treatment; Springer: Berlin/Heidelberg, Germany, 2016; pp. 187–199. [Google Scholar]
- He, L.; Jing, Y.; Shen, J.; Li, X.; Liu, H.; Geng, Z.; Wang, M.; Li, Y.; Chen, D.; Gao, J. Mitochondrial pyruvate carriers prevent cadmium toxicity by sustaining the TCA cycle and glutathione synthesis. Plant Physiol. 2019, 180, 198–211. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhou, J.; Bao, Y.; Chen, T.; Zhang, Y.; Zhao, A.; Qiu, Y.; Xie, G.; Wang, C.; Jia, W. Serum metabolic signatures of fulminant type 1 diabetes. J. Proteome Res. 2012, 11, 4705–4711. [Google Scholar] [CrossRef] [PubMed]
- Messana, I.; Forni, F.; Ferrari, F.; Rossi, C.; Giardina, B.; Zuppi, C. Proton nuclear magnetic resonance spectral profiles of urine in type II diabetic patients. Clin. Chem. 1998, 44, 1529–1534. [Google Scholar] [CrossRef]
- Salek, R.M.; Maguire, M.L.; Bentley, E.; Rubtsov, D.V.; Hough, T.; Cheeseman, M.; Nunez, D.; Sweatman, B.C.; Haselden, J.N.; Cox, R. A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol. Genom. 2007, 29, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Ha, T.-S.; Park, H.-Y.; Nam, J.-A.; Han, G.-D. Diabetic conditions modulate the adenosine monophosphate-activated protein kinase of podocytes. Kidney Res. Clin. Pract. 2014, 33, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.J.; Ngo, D.; Psychogios, N.; Dejam, A.; Larson, M.G.; Vasan, R.S.; Ghorbani, A.; O’Sullivan, J.; Cheng, S.; Rhee, E.P. 2-Aminoadipic acid is a biomarker for diabetes risk. J. Clin. Investig. 2013, 123, 4309–4317. [Google Scholar] [CrossRef] [PubMed]
- Libert, D.M.; Nowacki, A.S.; Natowicz, M.R. Metabolomic analysis of obesity, metabolic syndrome, and type 2 diabetes: Amino acid and acylcarnitine levels change along a spectrum of metabolic wellness. PeerJ 2018, 6, e5410. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.-Y.; Shen, Y.; Zhu, H.; Gao, J.; Zhang, C.; Tang, L.; Lu, S.-Y.; Shen, C.-L.; Zhang, H.-X.; Li, Z. 2-Aminoadipic acid protects against obesity and diabetes. J. Endocrinol. 2019, 243, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Fenske, R.J.; Weeks, A.M.; Daniels, M.; Nall, R.; Pabich, S.; Brill, A.L.; Peter, D.C.; Punt, M.; Cox, E.D.; Davis, D.B. Plasma prostaglandin E2 metabolite levels predict type 2 diabetes status and one-year therapeutic response independent of clinical markers of inflammation. Metabolites 2022, 12, 1234. [Google Scholar] [CrossRef] [PubMed]
- Greco, A.V.; Geltrude Mingrone, M.; Capristo, E.; Benedetti, G.; Andrea De Gaetano, M.; Gasbarrini, G. The metabolic effect of dodecanedioic acid infusion in non–insulin-dependent diabetic patients. Nutrition 1998, 14, 351–357. [Google Scholar] [CrossRef] [PubMed]
- de Castro, L.F.; de Freitas, S.V.; Duarte, L.C.; de Souza, J.A.C.; Paixão, T.R.L.C.; Coltro, W.K.T. Salivary diagnostics on paper microfluidic devices and their use as wearable sensors for glucose monitoring. Anal. Bioanal. Chem. 2019, 411, 4919–4928. [Google Scholar] [CrossRef] [PubMed]
Variables | Control | T2D | p Value (ES) |
---|---|---|---|
(male/female) | 7/27 | 8/23 | NS |
age (years) | 50.53 ± 6.5 | 54.43 ± 8.4 a | 0.042 (0.52) |
weight (kg) | 70.56 ± 11.4 | 76.63 ± 11.7 a | 0.038 (0.53) |
BMI (kg/m2) | 24.04 ± 3.6 | 27.27 ± 4.6 a | 0.002 (0.79) |
fasting blood glucose (mg/dL) | 96.28 ± 23.3 | 168.77 ± 75.2 a | <0.001 (1.33) |
HbA1C (%) | 5.18 ± 0.6 | 7.24 ± 1.9 a | <0.001 (1.49) |
HDL cholesterol (mmol/L) | 0.79 ± 0.2 | 0.65 ± 0.2 a | 0.006 (0.70) |
LDL cholesterol (mmol/L) | 1.27 ± 0.5 | 1.72 ± 0.6 a | 0.002 (0.82) |
total cholesterol (mmol/L) | 1.60 ± 0.5 | 2.41 ± 0.6 a | <0.001 (1.47) |
triglycerides (mmol/L) | 0.92 ± 0.4 | 1.03 ± 0.6 | NS |
Name | FC | log2(FC) | p.ajusted | −log10(p) |
---|---|---|---|---|
Pyruvate | 0.555 | −0.848 | <0.001 | 4.430 |
D-Rhamnose | 0.411 | −12.834 | <0.001 | 3.830 |
AMP | 2.702 | 14.339 | <0.001 | 3.610 |
Pipecolate | 0.560 | −0.836 | <0.001 | 3.100 |
Tetradecenoic acid | 0.503 | −0.989 | <0.001 | 3.060 |
Dodecanedioic acid | 0.635 | −0.654 | <0.001 | 3.060 |
Prostaglandin E3/D3 (isobars) | 0.561 | −0.832 | 0.003 | 2.530 |
ADP | 1,979 | 0.984 | 0.011 | 1.970 |
GMP | 5.927 | 25.673 | 0.014 | 1.840 |
GDP | 4.551 | 21.863 | 0.024 | 1.610 |
IMP | 12.315 | 36.224 | 0.031 | 1.510 |
Hexadecenoic acid | 0.639 | −0.646 | 0.035 | 1.450 |
Glycocholate | 0.615 | −0.701 | 0.043 | 1.370 |
Name | Cut-Off | AUC | Sensitivity | Specificity |
---|---|---|---|---|
Pyruvate | 0.068 | 0.832 | 0.806 | 0.764 |
D-Rhamnose | 0.030 | 0.826 | 0.677 | 0.823 |
AMP | 0.231 | 0.818 | 0.677 | 0.853 |
Decanoic acid (caprate) | 0.093 | 0.811 | 0.806 | 0.676 |
Tetradecenoic acid | 0.136 | 0.787 | 0.806 | 0.705 |
Pipecolate | 0.073 | 0.776 | 0.741 | 0.735 |
Prostaglandin E3/D3 (isobars) | 0.263 | 0.771 | 0.870 | 0.676 |
Dodecanedioic acid | −0.091 | 0.761 | 0.612 | 0.764 |
ADP | −0.092 | 0.759 | 0.838 | 0.705 |
2-Oxoglutarate | −0.050 | 0.747 | 0.645 | 0.823 |
Phosphoethanolamine | 0.12 | 0.745 | 0.645 | 0.764 |
Octadecenoic acid | 0.102 | 0.744 | 0.774 | 0.735 |
Tetradecanoic acid | −0.061 | 0.723 | 0.677 | 0.705 |
Dodecanoic acid | −0.046 | 0.716 | 0.677 | 0.764 |
Hexadecenoic acid | 0.060 | 0.715 | 0.741 | 0.735 |
Octadecadienoic acid | 0.079 | 0.713 | 0.741 | 0.647 |
Hexadecanoic acid | −0.0005 | 0.706 | 0.741 | 0.676 |
Octadecanoic acid | 0.088 | 0.703 | 0.806 | 0.558 |
Measure | 1 Comps | 2 Comps | 3 Comps | 4 Comps | 5 Comps |
---|---|---|---|---|---|
Accuracy | 0.766 | 0.766 | 0.798 | 0.783 | 0.785 |
R2 | 0.461 | 0.602 | 0.699 | 0.791 | 0.839 |
Q2 | 0.311 | 0.356 | 0.323 | 0.250 | 0.246 |
Metric/Model | XGBoost | LightGBM | AdaBoost |
---|---|---|---|
Accuracy | 0.831 (0.74–0.922) | 0.800 (0.703–0.897) | 0.785 (0.685–0.885) |
F1-Score | 0.845 (0.757–0.933) | 0.817 (0.723–0.911) | 0.806 (0.709–0.902) |
Sensitivity | 0.882 (0.725–0.967) | 0.853 (0.689–0.95) | 0.829 (0.664–0.934) |
Specificity | 0.774 (0.589–0.904) | 0.742 (0.554–0.881) | 0.733 (0.541–0.877) |
Positive Predictive Value | 0.811 (0.648–0.92) | 0.784 (0.618–0.902) | 0.784 (0.618–0.902) |
Negative Predictive Value | 0.857 (0.673–0.96) | 0.821 (0.631–0.939) | 0.786 (0.59–0.917) |
AUC | 0.887 (0.828–0.946) | 0.860 (0.797–0.924) | 0.844 (0.781–0.908) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yagin, F.H.; Al-Hashem, F.; Ahmad, I.; Ahmad, F.; Alkhateeb, A. Pilot-Study to Explore Metabolic Signature of Type 2 Diabetes: A Pipeline of Tree-Based Machine Learning and Bioinformatics Techniques for Biomarkers Discovery. Nutrients 2024, 16, 1537. https://doi.org/10.3390/nu16101537
Yagin FH, Al-Hashem F, Ahmad I, Ahmad F, Alkhateeb A. Pilot-Study to Explore Metabolic Signature of Type 2 Diabetes: A Pipeline of Tree-Based Machine Learning and Bioinformatics Techniques for Biomarkers Discovery. Nutrients. 2024; 16(10):1537. https://doi.org/10.3390/nu16101537
Chicago/Turabian StyleYagin, Fatma Hilal, Fahaid Al-Hashem, Irshad Ahmad, Fuzail Ahmad, and Abedalrhman Alkhateeb. 2024. "Pilot-Study to Explore Metabolic Signature of Type 2 Diabetes: A Pipeline of Tree-Based Machine Learning and Bioinformatics Techniques for Biomarkers Discovery" Nutrients 16, no. 10: 1537. https://doi.org/10.3390/nu16101537
APA StyleYagin, F. H., Al-Hashem, F., Ahmad, I., Ahmad, F., & Alkhateeb, A. (2024). Pilot-Study to Explore Metabolic Signature of Type 2 Diabetes: A Pipeline of Tree-Based Machine Learning and Bioinformatics Techniques for Biomarkers Discovery. Nutrients, 16(10), 1537. https://doi.org/10.3390/nu16101537