Nutraceuticals for Diabetic Retinopathy: Recent Advances and Novel Delivery Systems
Abstract
:1. Introduction
2. Pathophysiology of DR
3. Treatments for DR
4. Nutraceuticals
4.1. Oil
4.2. Carotenoids
4.3. Polyphenol
4.3.1. Flavonoids
- Anthocyanins
- Flavonols
- Flavanols
- Naringenin
4.3.2. Non-Flavonoids
- Curcumin
- Resveratrol
4.3.3. Plant Polyphenol Extracts
- Lychee seed polyphenol
- Sophora flavescens Aiton extract (SFE)
- Hawthorn polyphenol extract (HPE)
- Homoisoflavonoids from the Hyacinthaceae (sensu APGII)
4.4. Saponins
Dietary Source/Compound | In Vivo/In Vitro | Dosage | Duration | Cell Culture/Animal Model | Effects | Year | Refs. |
---|---|---|---|---|---|---|---|
Oil | |||||||
DHA for cells; ω3-PUFAs for mouse | In vitro and in vivo | DHA (50 μM) | 24 h | DMOG treated HRMECs | AMPK-dependent anti-neovascularization effect | 2023 | [63] |
50 μL of oil rich in ω3-PUFAs (240 mg/g/day of DHA and 360 mg/g/day of EPA), (p.o.) | P1–P17 for nursing mother | Mouse OIR model | |||||
Carotenoids | |||||||
Astaxanthin | In vitro | 10, 20, 40 μM | Pretreated for 6 h | H2O2-induced and UVB-induced oxidative stress in ARPE-19 cells | Antioxidative effect | 2022 | [83] |
Astaxanthin | In vitro | 10, 20, 50 μM | 24 h | 661 W cell line | PI3K/Akt/Nrf2 pathway mediated antioxidative and anti-apoptotic effects | 2022 | [82] |
Lutein | In vitro | 0.5, 1.0 μM | 24 h | HG-induced damage in ARPE-19 cells | PI3K/AKT/Nrf2 and Erk1/2 pathways mediated antioxidative effect; protected RPE from diabetes-associated damages | 2020 | [78] |
Astaxanthin | In vivo | 10 or 100 ng/µL (i.vit.); 0.5 or 5 mg/kg (i.p.) | Once | OIR (C57BL/6J mice) | Anit-neovascularization and anti-apoptotic effects | 2019 | [84] |
Astaxanthin | In vivo | 10 or 20 mg/kg/day (p.o.) | 21 days | STZ-induced DR (Swiss albino mice) | Inhibited processes of neuron-specific enolase activity; improved visual acuity function; controlled blood glucose; regulated oxidative stress (catalase) and neuron-specific enolase activity | 2022 | [85] |
Astaxanthin | In vivo | 20 mg/kg/day (p.o.) | 45 days | STZ-induced DR (rats) | Nrf2/keap1 pathway mediated anti-apoptotic, anti-inflammation, and antioxidative effects | 2023 | [88] |
Astaxanthin | In vivo | 4.8 mg/kg/day (p.o.) | 7 days | Hyper caloric diet-induced DR (Psammomys obesus) | Inhibited aldose reductase activity | 2019 | [87] |
Carotenoid-enriched carrot powder diet | In vivo | β-carotene (61.9 mg/kg/day), α-carotene (43.1 mg/kg/day) (p.o.) | 9 weeks | STZ-induced DR (rats) | Exacerbated retina dysfunction | 2020 | [94] |
Lutein | In vivo | Water dispersible form of lutein (4.2 or 8.4 mg/kg/day) (p.o.) | From 6 weeks to 9 months | Ins2Akita/+ mice | Suppressed retinal inflammation, protected retinal vasculature, and preserved retinal function | 2020 | [77] |
Lutein or lactucaxanthin | In vivo | Lutein or lactucaxanthin micelles (200 μM, i.e., 0.23 mg/kg/day body weight of rats) (p.o.) | 8 weeks | STZ-induced DR (rats) | Downregulated ER stress (ATF4, ATF6, and XBP1), inflammatory markers (TNF-α, IL-6, NF-κB, and ICAM-1), and VEGFA. Antioxidative, anti-inflammatory effects | 2023 | [90] |
Lutein-rich purple sweet potato leaf extract | In vivo | 200 or 400 mg/kg/day (p.o.) | 12 weeks | STZ-induced DR (rats) | Suppressed retinal inflammation, increased retina thickness | 2023 | [92] |
Lutein and trapa bispinosa roxb. extract (TBE) | In vivo | Solidified food mixed with lutein (13.3 mg/kg/day) and TBE (133.3 mg/kg/day) | 8 weeks | C57BL/ksj-db/db mice | Downregulated GFAP and VEGF; improved the impaired regulation of retinal blood flow | 2022 | [151] |
Lycopene | In vivo | 4 mg/kg/day (p.o.) | 3 months | Alloxan-induced diabetic optic neuropathy | Antioxidative, anti-inflammatory, ameliorated the tissue damage on the optic nerve | 2018 | [81] |
Palm oil mill effluent-derived beta-carotene | In vivo | 50 or 100 mg/kg/day (p.o.) | 21 days | STZ-induced DR (rats) | Regulated BRB function; antioxidative effect | 2023 | [93] |
Lutein | In vitro and in vivo | Lutein (10 µM) or oxidized lutein (40 nM) | 48 h | HG-induced damage in ARPE-19 cells | Activated AMPK and quenched ROS to maintain mtDNA integrity and mitochondrial biogenesis; antioxidative, anti-inflammatory effects | 2019 | [79] |
One dose/day (p.o.) | 8 weeks | STZ-induced DR (rats) | |||||
Lutein or lactucaxanthin | In vitro and in vivo | Lutein (10 μM) or lactucaxanthin (5 or 10 μM) | 48 h | HG-induced damage in ARPE-19 cells | Downregulated angiogenesis markers through HIF-1α/ER stress/VEGF axis; antioxidative and anti-angiogenic effects, altered the retina structural damages | 2021 | [91] |
Lutein or lactucaxanthin micelles (200 μM, i.e., 0.23 mg/kg/day) (p.o.) | 8 weeks | STZ-induced DR (rats) | |||||
Astaxanthin | In vivo and in vitro | 1, 5, 10 μM | 48 h | HG-induced damage in ARPE-19 cells | Antioxidative and anti-inflammatory effects through PI3K/Akt/NF-κB pathway | 2022 | [86] |
Micellar astaxanthin (3 mg/kg/day) (p.o.) | 8 weeks | STZ-induced DR (rat) | |||||
Astaxanthin | In vivo and in vitro | 1, 5, 10 μM | 48 h | ARPE-19 cells under hyperglycemic w/o hypoxic (CoCl2) condition | Downregulated VEGF through HIF-1α and XBP1 signaling pathway; restored ZO-1; modulated the diabetes-induced retinal morphological changes | 2021 | [89] |
Micellar astaxanthin (3 mg/kg/day) (p.o.) | 8 weeks | STZ-induced DR (rats) | |||||
Polyphenol | |||||||
Anthocyanin | In vitro | Cyanidin-3-O glucoside (10 μM) | Pretreated 1 h and incubated for 24 h | HG-induced damage in ARPE-19 cells | Antioxidative effect | 2022 | [104] |
Anthocyanin | In vitro | Blueberry anthocyanin extracts (12.5, 25, and 50 mg/L); Cyanidin-3-O glucoside (5, 10, 20 μM) | 12 h, 24 h, or 48 h | HG-induced injury in ARPE-19 cells | Antioxidative effect mediated by REDD1/GSK3β pathway; downregulated VEGFA | 2023 | [106] |
Anthocyanin; Verbascoside | In vitro | Cyanidin-3-O glucoside (5, 10, or 50 μM), Verbascoside (5, 10 or 50 μM) | 48 h | HG-induced damage in HRECs | Antioxidative effect; protected integrity (ZO-1, VE-cadherin ↑) and function of epithelial cell layers | 2022 | [107] |
Catechin 7-O-β-D-apiofuranoside (C7A) | In vitro | 4 μg/mL | 72 h | HG-induced injury in HRMECs and pericytes | Inhibited pericyte apoptosis by reducing p38 and JNK activity; reduced endothelial permeability | 2023 | [121] |
Curcumin | In vitro | 10 µM | 12 h | HG-induced injury in ARPE-19 | Anti-inflammatory effect via ROS/PI3K/AKT/mTOR signaling pathway | 2019 | [126] |
Curcumin | In vitro | 15 µM | 24 h | HG-induced injury in ARPE-19 | Antioxidative effect via ERK1/2-mediated Nrf2/HO-1 pathway | 2019 | [125] |
Epigallocatechin-3-gallate (EGCG) | In vitro | 10, 20, or 30 μM | 24 h | HG-induced damage in rat primary retinal Müller cells | Stimulated autophagy and reduced apoptosis | 2019 | [119] |
Hawthorn polyphenol extract (HPE) | In vitro | 10 μg/mL | 24 h | HG-induced injury in ARPE-19 | Regulated mir-34a/SIRT1/p53 signaling to reduce acetylation; inhibited oxidative damage, inflammation, and apoptosis through AMPK/SIRT1/NF-κB pathway | 2021 | [138] |
Homoisoflavonoids from the Hyacinthaceae (sensu APGII) | In vitro | 0.001–0.5 µM | 48 h | HRECs | In vitro anti-angiogenic efficacy and anti-proliferative activity | 2019 | [139] |
Naringenin | In vitro | 1 or 10 µM | 24, 48, and 72 h | HG-induced injury in HRECs | Antioxidative and anti-apoptotic effects | 2022 | [122] |
Peracetate-protected epigallocatechin-3-gallate (pro-EGCG) | In vitro | 10, 20, 30 μM | 24 h | HG-induced damage in mouse primary retinal Müller cells | Anti-inflammatory effect via inhibition of ROS/TXNIP/NLRP3 inflammasome; mitigated cell proliferation and pro-angiogenic factor production | 2020 | [120] |
Quercetin | In vitro | 20, 40, or 80 µM | 48 h | HG-induced injury in HRMECs | Inhibited NLRP3 inflammasome-mediated inflammation and autophagy, inhibited angiogenesis | 2021 | [112] |
Resveratrol | In vitro | 1 µM | 24 h | HG-induced injury in HRECs | Inhibited PKC, antioxidative effects; inhibited NOX-mediated endothelial-to-mesenchymal transition | 2021 | [131] |
Curcumin | In vivo | 200 mg/kg/day (p.o.) (combined with subcutaneous insulin, 4–6 IU/day) | 4 weeks | STZ-induced DR (rats) | Nrf2/HO-1 pathway mediated antioxidative and anti-apoptosis effects; improved retina morphology | 2021 | [124] |
Naringenin | In vivo | 25, 50, or 75 µM | 3 h post-fertilization to 5 days post-fertilization | HG-induced DR (zebrafish) | Antioxidative effect; regressed the glucose levels and cellular damage; inhibited of macular degeneration | 2023 | [123] |
Quercetin | In vivo | 50 mg/kg/day (p.o.) | 12 weeks | HFD and STZ-induced DR (rat) | Downregulated levels of blood glucose and oxidative stress, inhibited inflammation and improved dysbacteriosis and retinal function through gut–retina axis and Nrf2 pathway | 2024 | [116] |
Quercetin | In vivo | 150 mg/kg/day (p.o.) | 16 weeks | STZ-induced DR (rats) | Anti-inflammatory, anti-angiogenic, and neurotrophic effects by inducing HO-1 | 2021 | [113] |
Quercetin | In vivo | 35, 70 mg/kg (p.o.) | 12 weeks | db/db mice | Inhibited oxidative stress, apoptosis, and neurodegeneration via SIRT1/ER signaling pathway | 2020 | [114] |
Resveratrol (trans-resveratrol) | In vivo | 5 mg/kg (i.p.) | Five days a week for one month | STZ-induced DR (rats) | Anti-apoptotic effect through MAPK signaling (CASP3, JNK1, p38αMAPK, ERK1 ↓; Bcl-2 ↑) | 2021 | [132] |
Resveratrol | In vivo | 5 and 10 mg/kg/d (p.o.) | 30, 32, 34, and 36 weeks | STZ-induced DR (rats) | RAX/P-PKR pathway-mediated anti-apoptotic effects | 2022 | [130] |
Rutin | In vivo | 50 mg/kg (p.o.) | 24 weeks | STZ-induced DR (rats) | Downregulated the levels of VEGF, TNF-α, and aldose reductase; antioxidative effect; reduced retinal vessel tortuosity index | 2019 | [117] |
Sophora flavescens Aiton extract | In vivo | 37.5, 75, 150 mg/kg/day (p.o.) | 4 months | HFD and STZ-induced DR (rats) | Antioxidative, anti-inflammatory effects; ameliorated retinal morphological changes | 2022 | [136] |
Anthocyanin | In vitro and in vivo | 150, 250, or 450 μg/mL | Pretreated 2 h and incubated for 48 h for cells | HG-induced human RPECs injury | Anti-apoptotic and antioxidative effects; alleviated ER stress; improved retina morphology changes | 2023 | [105] |
35 or 140 mg/kg/day (p.o.) | 6 weeks | STZ and high fat and high sucrose diet-induced DR rats | |||||
Anthocyanin (Cyanidin-3-O glucoside) | In vitro and in vivo | 10 µM | 48 h | HG/CoCl2-induced damage in HRECs, BV2 microglia cells | Alleviated the inflammation, microglial activation, and angiogenesis; inhibited vascular leakage | 2021 | [108] |
20 mg/kg/day (p.o.) | 1 month | STZ-induced DR (mice) | |||||
Lychee seed polyphenol | In vitro and in vivo | 8, 16, or 32 μg/mL | / | HG-induced damage in HRECs | Inhibited NLRP3 inflammasome-related inflammation; upregulated tight junction proteins; anti-angiogenesis and anti-apoptotic effects | 2023 | [133] |
50, 100, or 200 mg/kg/day (p.o.) | 6 weeks | db/db mice | |||||
Resveratrol | In vitro and in vivo | 10, 50, or 100 µM | 24 h | HG-induced injury in rat retinal endothelial cells | Decreased retinal vascular permeability, inhibited retinal apoptosis, anti-inflammatory effect | 2019 | [129] |
0.1 or 1 μg/mL (i.vit.); 5, 10, or 50 μg/kg/day (tail vein injection) | 12 weeks | STZ-induced DR (rats) | |||||
Quercetin (Q) and its 8-methyl pentamethyl ether derivative (8MQPM) | In vitro and ex vivo | 25 µM | 24 h | HRECs treated with conditioned medium from Y-79 human retinoblastoma cell line or stimulated by VEGFA | Akt, ERK, and JNK mediated anti-angiogenic effect | 2019 | [115] |
/ | / | Ex vivo rabbit aortic ring assay | |||||
Saponins | |||||||
Ginsenoside Rb1 (GRb1) | In vitro | 5, 10, 20 μM | 48 or 72 h | HG-induced injury in rat retinal capillary endothelial cells | Quenched ROS and inhibited DNA damage and apoptosis through NMNAT–NAD–PARP–SIRT axis | 2019 | [146] |
Ginsenoside Re (Re) | In vitro | 3 μM | 24 h | HG-induced retinal endothelial RF/6A cell injury | Anti-angiogenesis and anti-apoptotic effects through upregulating PI3K/AKT pathway and inhibiting HIF-1α/VEGF signaling | 2020 | [148] |
Ginsenoside-Rg1 (GRg1) | In vitro | 10 μM | 48 h | HG-induced injury in HRECs | Inhibited HG-induced proliferation, migration, and angiogenesis via lncRNA SNHG7/mir-2116-5p/SIRT3 axis | 2022 | [141] |
Ginsenoside Rb1 (GRb1) | In vivo | 20, 40 mg/kg/day (i.p.) | 4 weeks | STZ-induced DR (rats) | Antioxidative effects | 2019 | [147] |
Ginsenoside-Rg1 (GRg1) | In vivo | 25, 50, or 225 mg/kg/day (p.o.) | 8 weeks | db/db mice | Inhibited GCL and INL cell apoptosis | 2020 | [142] |
Ginsenoside-Rg1 (GRg1) | In vivo | 2.5, 5, or 10 mg/kg (eye drops, twice a day) | 15 days | C57BL/ksj-db/db mice | IRS-1/Akt/GSK3β signaling-mediated neuroprotective effect | 2019 | [144] |
Ginsenoside Rd (GRd) | In vitro and in vivo | 1, 3, 10, or 30 μΜ | 24 h | HG-induced injury in HUVECs | Downregulated NOX2 and ameliorated oxidative stress, mitochondrial dysfunction, and endothelial apoptosis via AMPK/SIRT1 signaling | 2022 | [145] |
10 μL 1% (w/v) GRd as eye drops, daily | 1 month | STZ-induced DR (C57BL/6 mice) | |||||
Ginsenoside-Rg1 (GRg1) | In vitro and in vivo | 10 μM | 48 h | HG-induced injury in HRMECs | Anti-angiogenesis and anti-inflammatory effects via mir-216a-5p-mediated downregulation of TLR4/NF-κB signaling pathway | 2023 | [143] |
0.5 mL (5 g/mL) (p.o.) | 16 weeks | STZ-induced DR (rats) | |||||
Panax notoginseng saponins | In vitro and in vivo | 25 μM | 24 h | HG-induced injury in MIO-M1 cells | NF-κB signaling pathway-mediated anti-inflammatory effect; attenuated elevated BRB disruption | 2024 | [150] |
40, 80, or 160 mg/kg (p.o.) | 1 month | STZ-induced DR (rats) | |||||
Notoginsenoside R1 (NGR1) | In vitro and in vivo | 5, 10, 20, 40 μΜ | 72 h | HG-induced injury in rMC-1 cells | Enhanced PINK1-dependent activation of mitophagy; downregulated VEGF and upregulated PEDF; inhibited apoptosis; antioxidative and anti-inflammatory effects; restored retinal function | 2019 | [149] |
30 mg/kg/day (p.o.) | 12 weeks | db/db mice |
Dietary Compound | Family of Compound | Type | Dosage | Supplementation Period | Candidates | Effects | Year | Refs. |
---|---|---|---|---|---|---|---|---|
Omega-3 PUFAs (DHA/EPA) | Oil | Prospective | 1 g omega-3 fatty acids (containing 460 mg EPA and 380 mg DHA) daily | 6.5 years | T1DM/T2DM with or without DR | No benefits for DR. | 2023 | [69] |
DHA | Oil | Prospective | 1050 mg/day | 2 years | NPDR (any stage) | Did not appear to influence the slowing of the progression of NPDR | 2022 | [68] |
Brudyretina: high rich DHA (1050 mg/d) nutraceutical formulation, (DHA, EPA, a mixture of B vitamins, vitamins C and E, lutein, zeaxanthin, and minerals) | Oil plus others | Prospective | 3 capsules of Brudyretina 1.5 g once daily | 90 days | T2DM with NPDR (24 patients) | No difference in BCVA and central subfield macular thickness. Total antioxidant capacity levels increased, and plasma IL-6 levels decreased | 2018 | [152] |
Lutein | Carotenoids | Prospective | 10 mg/day of lutein | 36 weeks | T2DM with NPDR (30 patients) | Improved contrast sensitivity | 2017 | [95] |
Lutein (L) and zeaxanthin (Z) | Carotenoids | Retrospective | Z (0.5 mg/day) or Z (0.5 mg/day) + L (6 mg/day) | 4 months | NPDR (72 patients) | Lutein supplement showed no benefits | 2019 | [97] |
Lycopene | Carotenoids | Cross-sectional | Lycopene intake was assessed by using a food frequency questionnaire | / | T2DM patients and healthy controls | Ameliorated oxidative stress | 2021 | [96] |
Anthocyanin | Polyphenol | Prospective | 320 mg/day | 4 weeks | Healthy controls; T2DM; T2DM-at-risk | Anti-inflammatory (IL-6, IL-18, TNF-α ↓) | 2021 | [110] |
Curcumin, artemisia, bromelain, and black pepper | Combo | Prospective | Curcumin (200 mg), artemisia (80 mg), bromelain (80 mg), and black pepper (2 mg) | 6 months | T2DM with or without mild to moderate DME | Increased central retinal thickness, visual acuity, and vessel density of the deep capillary plexus | 2022 | [127] |
5. Delivery Systems
5.1. Lipid and Surfactant-Based Nanocarriers
5.1.1. Nanoemulsions
5.1.2. Liposomes and Nanoliposomes
5.1.3. Self-Emulsifying Drug Delivery Systems (SEDDSs)
5.1.4. Solid Lipid Nanoparticles
5.2. Polymer-Based Nanocarriers
5.3. Metal-Based Nanoparticles
Compound | In Vivo or In Vitro | Dosage and Administration Way | Name of the Product | Particle Size (nm) | Cell Culture/Animal Model | Effects | Improvements | Year | Refs. |
---|---|---|---|---|---|---|---|---|---|
Nanoemulsions | |||||||||
Lutein | In vivo | 600 μM of lutein (p.o.) | Lutein-NEL | 110 ± 8 | Rats | / | Improve the bioaccessibility of lutein | 2021 | [163] |
Liposomes | |||||||||
Baicalin | In vivo | As eye drops, instilled (100 μL) in the conjunctival sac | Baicalin vesicles | 667–1341 | Rabbits | Antioxidative | Improve stabilization, sterilization endurance, and safety with pharmacokinetic superiority | 2018 | [171] |
Epigallocatechin-5-gallate (EGCG); liposomal EGCG | In vivo | 2.5 mg/100 g b.w./day (i.p., once a day for two consecutive days before STZ administration) | Liposomal nanoformulation of EGCG | 170 | STZ-induced DR (rats) | Antioxidative | Superior antioxidant activity of L-EGCG; enhanced availability of EGCG | 2020 | [176] |
Ellagic acid (EA) | In vitro and in vivo | 10 µg/mL | Liposomes (EA-Hb/TAT and isoDGR-Lipo) | 170.77–212.90 | Hyperglycemia/hypoxia-induced injury in ARPE-19 cells/HUVECs | Ameliorated retinal structure, antioxidative, downregulated the expression of GFAP, HIF-1α, VEGF, and p-VEGFR2 | Better cellular uptake; potential as eye drops; co-loaded with Hb | 2023 | [180] |
5 mg/kg (i.v., once every 3 days for 6 weeks); as eye drops | db/db mice | ||||||||
Lisosan G | In vivo | 1 g kg/day (p.o.) | Lisosan G in liposomes (LipoLG) | ~130 | STZ-induced DR (mice) | Restored retinal function, downregulated typical molecular hallmarks of DR (oxidative stress, inflammation, glial reaction, apoptosis, VEGF expression, and BRB breakdown) | Good entrapment efficiency of Lisosan G, good storage stability | 2023 | [178] |
Quercetin | In vivo | 50, 200 mg/kg (p.o.) | Pegylated quercetin liposomes (Q-PEGL) | 128.8 ± 18.05 | STZ-induced diabetic nephropathy (rats) | FBG level ↓, antioxidative | Maintaining higher quercetin concentrations in plasma | 2020 | [175] |
SNEDDS | |||||||||
Resveratrol | In vitro | As eye drops | RSV-SNEDDS | <100 | Rabbit corneal epithelial cell line (SIRC) | / | Improved solubility, stability, and bioavailability; reduced drug loss during storage | 2024 | [182] |
Solid lipid nanoparticles | |||||||||
Quercetin | In vivo | 5 and 10 mg/kg (i.p. for 21 days) | Nano-formulation of quercetin (NQ) | 157.1–528.2 | STZ-induced DR (zebrafish) | Neuroprotective, ameliorated DR | Good bioavailability | 2020 | [183] |
Polymeric nanocarriers | |||||||||
Curcumin | In vivo | nCUR (20 mg CUR equivalent/kg/day, p.o.) with or without subcutaneous insulin (2 IU/rat/day) | PLGA-GA2-CUR nanoparticles (nCUR) | 261 | STZ-induced DR (rats) | Anti-inflammatory and anti-hyperglycemic; prevented diabetic cataracts and retinopathy | Well-tolerated, lower nanoparticle toxicity | 2023 | [188] |
Lutein | In vitro | Micellar lutein (10 μM) or LNCs (10 μM lutein) (0, 3, 6, 12, 18, 24 h) | Double-layered chitosan–sodium alginate-based lutein nanocarrier (LNCs) | 95 ± 5 | H2O2/CoCl2-treated ARPE-19 cells | Anti-angiogenic, antioxidative | Increased cellular uptake, slowed and controlled lutein release; LNCs improved the cellular efficacy of lutein by curtailing oxidative stress. | 2023 | [186] |
Lutein | In vitro and in vivo | 0, 1, 5, 10, 15, 15, 20, or 50 μM for 24 h | Lutein-loaded chitosan–sodium alginate-based nanocarrier systems (LNCs) | 98 ± 5 | H2O2-treated ARPE-19 cells | Antioxidative | Longer half-life of lutein, higher bioavailability | 2021 | [185] |
600 μM (p.o.) | STZ-induced DR (rat) | ||||||||
Resveratrol | In vitro | Intravitreal injection | PMs-Rv-Rh6G | 3579 ± 0.19 | HRPE cells (D407) | Anti-VEGF, anti-inflammatory | High-efficiency encapsulation of resveratrol | 2019 | [187] |
Metal-based and biopolymeric nanoparticles | |||||||||
Resveratrol | In vitro | / | NIR light-responsive thermoplasmonic-triggered release of therapeutic resveratrol-carrying polymeric microcapsules (MC) | <100 | HRPE cells (D407) | Anti-VEGF | Light-triggered delivery and release; high stability; great biocompatibility | 2022 | [194] |
Metal-based nanoparticles | |||||||||
Ellagic acid (EA) | In silico docking study | / | Nano-encapsulated ellagic acid (NEA) | 161–297 | / | Inhibitory actions on aldose reductase and α-glucosidase | Improved the solubility and biological responses besides minimizing toxicity and degradation | 2020 | [190] |
Rutin | In vivo | Rutin (10 mg/kg/day) or AuNPsR (0.6 mL/day); (p.o. for 7 days) | AuNPsR | 8–22 (mean = 15) | STZ-induced DR (rats) | Antioxidative, improved fundus appearance of retinal arterioles, decreased MDA, and increased antioxidant capacity | Improved bioavailability, green synthesis | 2023 | [193] |
Quercetin | In vitro and in vivo | Fe-Quer NZs (25, 50, 100, or 200 µg/mL) for 48 h | Ultrasmall Fe-Quer nanozymes (NZs) | 5–10 | HG-induced injury in HUVECs and monkey choroid–retinal endothelial cells (RF) | Protected against inflammation, oxidative stress damage, microvascular leakage, and angiogenesis | Exhibiting excellent water dispersibility and efficient ROS scavenging ability | 2023 | [191] |
60 mg/kg (p.o.) | STZ-induced DR (rats) |
6. Conclusions and Further Remarks
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AGEs | Advanced glycation end products |
AMPK | AMP-activated protein kinase |
Ang-2 | Angiopoietin 2 |
AuNPs | Gold nanoparticles |
BRAs | Black raspberry-derived anthocyanins |
BRB | Blood–retinal barrier |
C3G | Cyanidin-3-glucoside |
DHA | Docosahexaenoic acid |
DME | Diabetic macular edema |
DR | Diabetic retinopathy |
EGCG | Epigallocatechin-3-gallate |
eNOS | Endothelial nitric oxide synthase |
EPA | Eicosapentaenoic acid |
ER | Endoplasmic reticulum |
ERK1/2 | Extracellular signal-regulated kinase 1/2 |
FADH2 | Flavin adenine dinucleotide |
GIT | Gastrointestinal tract |
GRP78 | 78-kDa glucose-regulated protein |
HG | High glucose |
HIF-1α | Hypoxia-inducible factor alpha |
HO-1 | Heme Oxygenase-1 |
HREC | Human retinal endothelial cells |
IL | Interleukin |
MAPK | Mitogen-activated protein kinases |
mTOR | Mammalian target of rapamycin |
MUFA | Monounsaturated fatty acids |
NEs | Nanoemulsions |
NF-κb | Nuclear factor-kappa B |
NGF | Nerve growth factor |
NLRP3 | NOD-like receptor family pyrin domain containing 3 |
NPDR | Nonproliferative diabetic retinopathy |
Nrf2 | Nuclear factor erythroid 2-related factor 2 |
O/W | Oil-in-water |
OA | Oleic acid |
OIR | Oxygen-induced retinopathy |
PDR | Proliferative diabetic retinopathy |
PI3K | Phosphoinositide 3 kinase |
PKC | Protein kinase C |
PKR | Protein kinase R |
PRP | Panretinal photocoagulation |
PSD | Postsynaptic density |
PUFA | Polyunsaturated fatty acids |
RAGEs | Receptor for AGEs |
RCT | Randomized controlled trial |
ROS | Reactive oxygen species |
RPE | Retinal pigment epithelial cells |
SEDDS | Self-emulsifying drug delivery systems |
SFA | Saturated fatty acids |
SIRT1 | Sirtuin 1 |
SIRT3 | Sirtuin 3 |
SNEDDS | Self-nanoemulsifying drug delivery systems |
STZ | Streptozotocin |
T1DM | Type 1 diabetes mellitus |
T2DM | Type 2 diabetes mellitus |
TCA | Tricarboxylic acid |
TNF-α | Tumor necrosis factor-α |
TXNIP | Thioredoxin-interacting protein |
VEGF | Vascular endothelial growth factor |
VTDR | Vision-threatening diabetic retinopathy |
W/O | Water-in-oil |
References
- Yamada, M.; Hiratsuka, Y.; Roberts, C.B.; Pezzullo, M.L.; Yates, K.; Takano, S.; Miyake, K.; Taylor, H.R. Prevalence of Visual Impairment in the Adult Japanese Population by Cause and Severity and Future Projections. Ophthalmic Epidemiol. 2010, 17, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Lundeen, E.A.; Burke-Conte, Z.; Rein, D.B.; Wittenborn, J.S.; Saaddine, J.; Lee, A.Y.; Flaxman, A.D. Prevalence of Diabetic Retinopathy in the US in 2021. JAMA Ophthalmol. 2023, 141, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wu, X.; Liu, L.; Geng, J.; Yuan, Z.; Shan, Z.; Chen, L. Prevalence of Diabetic Retinopathy in Mainland China: A Meta-Analysis. PLoS ONE 2012, 7, e45264. [Google Scholar] [CrossRef] [PubMed]
- Yau, J.W.Y.; Rogers, S.L.; Kawasaki, R.; Lamoureux, E.L.; Kowalski, J.W.; Bek, T.; Chen, S.-J.; Dekker, J.M.; Fletcher, A.; Grauslund, J.; et al. Global Prevalence and Major Risk Factors of Diabetic Retinopathy. Diabetes Care 2012, 35, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Bandello, F.; Zarbin, M.A.; Lattanzio, R.; Zucchiatti, I. Clinical Strategies in the Management of Diabetic Retinopathy: A Step-by-Step Guide for Ophthalmologists, 2nd ed.; Springer: Cham, Switzerland, 2019; ISBN 978-3-319-96157-6. [Google Scholar]
- Nyengaard, J.R.; Ido, Y.; Kilo, C.; Williamson, J.R. Interactions between Hyperglycemia and Hypoxia: Implications for Diabetic Retinopathy. Diabetes 2004, 53, 2931–2938. [Google Scholar] [CrossRef] [PubMed]
- Lorenzi, M. The Polyol Pathway as a Mechanism for Diabetic Retinopathy: Attractive, Elusive, and Resilient. Exp. Diabetes Res. 2007, 2007, 61038. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.-J.; Taylor, A. Dietary Hyperglycemia, Glycemic Index and Metabolic Retinal Diseases. Prog. Retin. Eye Res. 2011, 30, 18–53. [Google Scholar] [CrossRef] [PubMed]
- Browning, D.J. Diabetic Retinopathy Evidence-Based Management; Springer: New York, NY, USA, 2010; ISBN 978-0-387-85900-2. [Google Scholar]
- Kang, Q.; Yang, C. Oxidative Stress and Diabetic Retinopathy: Molecular Mechanisms, Pathogenetic Role and Therapeutic Implications. Redox Biol. 2020, 37, 101799. [Google Scholar] [CrossRef] [PubMed]
- Agbaga, M.-P.; Brush, R.S.; Mandal, M.N.A.; Henry, K.; Elliott, M.H.; Anderson, R.E. Role of Stargardt-3 Macular Dystrophy Protein (ELOVL4) in the Biosynthesis of Very Long Chain Fatty Acids. Proc. Natl. Acad. Sci. USA 2008, 105, 12843–12848. [Google Scholar] [CrossRef]
- Fliesler, S.J.; Anderson, R.E. Chemistry and Metabolism of Lipids in the Vertebrate Retina. Prog. Lipid Res. 1983, 22, 79–131. [Google Scholar] [CrossRef]
- Tanito, M.; Elliott, M.H.; Kotake, Y.; Anderson, R.E. Protein Modifications by 4-Hydroxynonenal and 4-Hydroxyhexenal in Light-Exposed Rat Retina. Investig. Ophthalmol. Vis. Sci. 2005, 46, 3859–3868. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, S.; Xiao, T.; Srivastava, S.; Zhang, W.; Chan, L.L.; Vergara, L.A.; Van Kuijk, F.J.G.M.; Ansari, N.H. Toxicity and Detoxification of Lipid-Derived Aldehydes in Cultured Retinal Pigmented Epithelial Cells. Toxicol. Appl. Pharmacol. 2005, 204, 122–134. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Green, W.R.; Tso, M.O.M. Microglial Activation in Human Diabetic Retinopathy. Arch. Ophthalmol. 2008, 126, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Vujosevic, S.; Simó, R. Local and Systemic Inflammatory Biomarkers of Diabetic Retinopathy: An Integrative Approach. Investig. Ophthalmol. Vis. Sci. 2017, 58, BIO68–BIO75. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wang, S.; Xia, X. Role of Intravitreal Inflammatory Cytokines and Angiogenic Factors in Proliferative Diabetic Retinopathy. Curr. Eye Res. 2012, 37, 416–420. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Wu, Z.; Wang, F.; Zhang, Z.; Yu, M. Identification of Chemokines and Growth Factors in Proliferative Diabetic Retinopathy Vitreous. BioMed Res. Int. 2014, 2014, 486386. [Google Scholar] [CrossRef] [PubMed]
- Mason, R.H.; Minaker, S.A.; Lahaie Luna, G.; Bapat, P.; Farahvash, A.; Garg, A.; Bhambra, N.; Muni, R.H. Changes in Aqueous and Vitreous Inflammatory Cytokine Levels in Proliferative Diabetic Retinopathy: A Systematic Review and Meta-Analysis. Eye 2022, 1–51. [Google Scholar] [CrossRef]
- Loukovaara, S.; Piippo, N.; Kinnunen, K.; Hytti, M.; Kaarniranta, K.; Kauppinen, A. NLRP3 Inflammasome Activation Is Associated with Proliferative Diabetic Retinopathy. Acta Ophthalmol. 2017, 95, 803–808. [Google Scholar] [CrossRef]
- Ding, X.; Sun, Z.; Guo, Y.; Tang, W.; Shu, Q.; Xu, G. Inhibition of NF-κB Ameliorates Aberrant Retinal Glia Activation and Inflammatory Responses in Streptozotocin-Induced Diabetic Rats. Ann. Transl. Med. 2023, 11, 197. [Google Scholar] [CrossRef]
- Mitamura, Y.; Harada, T.; Harada, C.; Ohtsuka, K.; Kotake, S.; Ohno, S.; Tanaka, K.; Takeuchi, S.; Wada, K. NF-kappaB in Epiretinal Membranes after Human Diabetic Retinopathy. Diabetologia 2003, 46, 699–703. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, X.; Liao, N.; Mi, L.; Peng, Y.; Liu, B.; Zhang, S.; Wen, F. Enhanced Expression of NLRP3 Inflammasome-Related Inflammation in Diabetic Retinopathy. Investig. Ophthalmol. Vis. Sci. 2018, 59, 978–985. [Google Scholar] [CrossRef] [PubMed]
- Spencer, B.G.; Estevez, J.J.; Liu, E.; Craig, J.E.; Finnie, J.W. Pericytes, Inflammation, and Diabetic Retinopathy. Inflammopharmacology 2020, 28, 697–709. [Google Scholar] [CrossRef] [PubMed]
- van der Wijk, A.-E.; Hughes, J.M.; Klaassen, I.; Van Noorden, C.J.F.; Schlingemann, R.O. Is Leukostasis a Crucial Step or Epiphenomenon in the Pathogenesis of Diabetic Retinopathy? J. Leukoc. Biol. 2017, 102, 993–1001. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, N.; Helmy, H.; Labib, H.; Fahmy, I.; El Hamid, M.A.; Moemen, L. Role of Angiopoietins and Tie-2 in Diabetic Retinopathy. Electron. Physician 2017, 9, 5031–5035. [Google Scholar] [CrossRef] [PubMed]
- Aiello, L.P.; Avery, R.L.; Arrigg, P.G.; Keyt, B.A.; Jampel, H.D.; Shah, S.T.; Pasquale, L.R.; Thieme, H.; Iwamoto, M.A.; Park, J.E. Vascular Endothelial Growth Factor in Ocular Fluid of Patients with Diabetic Retinopathy and Other Retinal Disorders. N. Engl. J. Med. 1994, 331, 1480–1487. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-Y.; Fu, Z.J.; Lo, A.C.Y. Hypoxia-Induced Oxidative Stress in Ischemic Retinopathy. Oxid. Med. Cell. Longev. 2012, 2012, 426769. [Google Scholar] [CrossRef] [PubMed]
- Pe’er, J.; Shweiki, D.; Itin, A.; Hemo, I.; Gnessin, H.; Keshet, E. Hypoxia-Induced Expression of Vascular Endothelial Growth Factor by Retinal Cells Is a Common Factor in Neovascularizing Ocular Diseases. Lab. Investig. J. Tech. Methods Pathol. 1995, 72, 638–645. [Google Scholar]
- Pe’er, J.; Folberg, R.; Itin, A.; Gnessin, H.; Hemo, I.; Keshet, E. Upregulated Expression of Vascular Endothelial Growth Factor in Proliferative Diabetic Retinopathy. Br. J. Ophthalmol. 1996, 80, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Reis, A.; Mateus, C.; Melo, P.; Figueira, J.; Cunha-Vaz, J.; Castelo-Branco, M. Neuroretinal Dysfunction with Intact Blood-Retinal Barrier and Absent Vasculopathy in Type 1 Diabetes. Diabetes 2014, 63, 3926–3937. [Google Scholar] [CrossRef]
- Santos, A.R.; Ribeiro, L.; Bandello, F.; Lattanzio, R.; Egan, C.; Frydkjaer-Olsen, U.; García-Arumí, J.; Gibson, J.; Grauslund, J.; Harding, S.P.; et al. Functional and Structural Findings of Neurodegeneration in Early Stages of Diabetic Retinopathy: Cross-Sectional Analyses of Baseline Data of the EUROCONDOR Project. Diabetes 2017, 66, 2503–2510. [Google Scholar] [CrossRef]
- Palmowski, A.M.; Sutter, E.E.; Bearse, M.A.; Fung, W. Mapping of Retinal Function in Diabetic Retinopathy Using the Multifocal Electroretinogram. Investig. Ophthalmol. Vis. Sci. 1997, 38, 2586–2596. [Google Scholar]
- Gundogan, F.C.; Akay, F.; Uzun, S.; Yolcu, U.; Çağıltay, E.; Toyran, S. Early Neurodegeneration of the Inner Retinal Layers in Type 1 Diabetes Mellitus. Ophthalmol. J. Int. Ophtalmol. Int. J. Ophthalmol. Z. Augenheilkd. 2016, 235, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zhang, W.; Zhao, Y.; Shu, X.; Wang, W.; Wang, D.; Yang, Y.; He, Z.; Wang, X.; Ying, Y. GSK3β-Mediated Tau Hyperphosphorylation Triggers Diabetic Retinal Neurodegeneration by Disrupting Synaptic and Mitochondrial Functions. Mol. Neurodegener. 2018, 13, 62. [Google Scholar] [CrossRef] [PubMed]
- Bui, B.V.; Loeliger, M.; Thomas, M.; Vingrys, A.J.; Rees, S.M.; Nguyen, C.T.O.; He, Z.; Tolcos, M. Investigating Structural and Biochemical Correlates of Ganglion Cell Dysfunction in Streptozotocin-Induced Diabetic Rats. Exp. Eye Res. 2009, 88, 1076–1083. [Google Scholar] [CrossRef] [PubMed]
- Simó, R.; Stitt, A.W.; Gardner, T.W. Neurodegeneration in Diabetic Retinopathy: Does It Really Matter? Diabetologia 2018, 61, 1902–1912. [Google Scholar] [CrossRef] [PubMed]
- Flaxel, C.J.; Adelman, R.A.; Bailey, S.T.; Fawzi, A.; Lim, J.I.; Vemulakonda, G.A.; Ying, G. Diabetic Retinopathy Preferred Practice Pattern®. Ophthalmology 2020, 127, P66–P145. [Google Scholar] [CrossRef] [PubMed]
- Fundus Disease Group of Ophthalmological Society of Chinese Medical Association; Fundus Disease Group of Ophthalmologist Branch of Chinese Medical Doctor Association. Evidence-Based Guidelines for Diagnosis and Treatment of Diabetic Retinopathy in China. Chin. J. Ocul. Fundus Dis. 2022, 39, 99–124. [Google Scholar] [CrossRef]
- Zhi, X.; Li, Q.; Shao, L. Approvals by the China NMPA in 2023. Nat. Rev. Drug Discov. 2024, 23, 164–165. [Google Scholar] [CrossRef] [PubMed]
- Shirley, M. Faricimab: First Approval. Drugs 2022, 82, 825–830. [Google Scholar] [CrossRef]
- Ferro Desideri, L.; Traverso, C.E.; Nicolò, M.; Munk, M.R. Faricimab for the Treatment of Diabetic Macular Edema and Neovascular Age-Related Macular Degeneration. Pharmaceutics 2023, 15, 1413. [Google Scholar] [CrossRef]
- Ba, W.; Xu, W.; Deng, Z.; Zhang, B.; Zheng, L.; Li, H. The Antioxidant and Anti-Inflammatory Effects of the Main Carotenoids from Tomatoes via Nrf2 and NF-κB Signaling Pathways. Nutrients 2023, 15, 4652. [Google Scholar] [CrossRef] [PubMed]
- Abu-Amero, K.K.; Kondkar, A.A.; Chalam, K.V. Resveratrol and Ophthalmic Diseases. Nutrients 2016, 8, 200. [Google Scholar] [CrossRef] [PubMed]
- Dow, C.; Mancini, F.; Rajaobelina, K.; Boutron-Ruault, M.-C.; Balkau, B.; Bonnet, F.; Fagherazzi, G. Diet and Risk of Diabetic Retinopathy: A Systematic Review. Eur. J. Epidemiol. 2018, 33, 141–156. [Google Scholar] [CrossRef] [PubMed]
- Rossino, M.G.; Casini, G. Nutraceuticals for the Treatment of Diabetic Retinopathy. Nutrients 2019, 11, 771. [Google Scholar] [CrossRef] [PubMed]
- Athyros, V.G.; Doumas, M.; Imprialos, K.P.; Stavropoulos, K.; Georgianou, E.; Katsimardou, A.; Karagiannis, A. Diabetes and Lipid Metabolism. Hormones 2018, 17, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, D.; Hu, J.; Liu, G.; Chen, J.; Sun, L.; Jiang, Z.; Zhang, X.; Chen, Q.; Ji, B. Visible Light-Induced Lipid Peroxidation of Unsaturated Fatty Acids in the Retina and the Inhibitory Effects of Blueberry Polyphenols. J. Agric. Food Chem. 2015, 63, 9295–9305. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, M.; Prokopiou, E. Diabetic Retinopathy and the Role of Omega-3 PUFAs: A Narrative Review. Exp. Eye Res. 2023, 231, 109494. [Google Scholar] [CrossRef] [PubMed]
- Eynard, A.R.; Repossi, G. Role of Ω3 Polyunsaturated Fatty Acids in Diabetic Retinopathy: A Morphological and Metabolically Cross Talk among Blood Retina Barriers Damage, Autoimmunity and Chronic Inflammation. Lipids Health Dis. 2019, 18, 114. [Google Scholar] [CrossRef] [PubMed]
- Behl, T.; Kotwani, A. Omega-3 Fatty Acids in Prevention of Diabetic Retinopathy. J. Pharm. Pharmacol. 2017, 69, 946–954. [Google Scholar] [CrossRef]
- Weir, N.L.; Guan, W.; Karger, A.B.; Klein, B.E.; Meuer, S.M.; Cotch, M.F.; Guo, X.; Li, X.; Tan, J.; Genter, P. Omega-3 Fatty Acids Are Associated with Decreased Presence and Severity of Diabetic Retinopathy: A Combined Analysis of MESA and GOLDR Cohorts. Retina 2023, 43, 984–991. [Google Scholar] [CrossRef]
- Saini, R.K.; Keum, Y.-S. Omega-3 and Omega-6 Polyunsaturated Fatty Acids: Dietary Sources, Metabolism, and Significance—A Review. Life Sci. 2018, 203, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.J.; Brainard, J.; Song, F.; Wang, X.; Abdelhamid, A.; Hooper, L. Omega-3, Omega-6, and Total Dietary Polyunsaturated Fat for Prevention and Treatment of Type 2 Diabetes Mellitus: Systematic Review and Meta-Analysis of Randomised Controlled Trials. BMJ 2019, 366, l4697. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic Diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Wendell, S.G.; Baffi, C.; Holguin, F. Fatty Acids, Inflammation, and Asthma. J. Allergy Clin. Immunol. 2014, 133, 1255–1264. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. The Importance of the Ratio of Omega-6/Omega-3 Essential Fatty Acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Jin, D.; Wang, S.; Xu, Y.; Li, H.; Chang, Y.; Ma, Y.; Xu, Y.; Guo, C.; Peng, F.; et al. Serum ω-6/ω-3 Polyunsaturated Fatty Acids Ratio and Diabetic Retinopathy: A Propensity Score Matching Based Case-Control Study in China. EClinicalMedicine 2021, 39, 101089. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Fu, Z.; Liegl, R.; Chen, J.; Hellström, A.; Smith, L.E. ω-3 and ω-6 Long-Chain PUFAs and Their Enzymatic Metabolites in Neovascular Eye Diseases. Am. J. Clin. Nutr. 2017, 106, 16–26. [Google Scholar] [CrossRef]
- Gong, Y.; Fu, Z.; Edin, M.L.; Liu, C.-H.; Wang, Z.; Shao, Z.; Fredrick, T.W.; Saba, N.J.; Morss, P.C.; Burnim, S.B.; et al. Cytochrome P450 Oxidase 2C Inhibition Adds to ω-3 Long-Chain Polyunsaturated Fatty Acids Protection against Retinal and Choroidal Neovascularization. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 1919–1927. [Google Scholar] [CrossRef] [PubMed]
- Connor, K.M.; SanGiovanni, J.P.; Lofqvist, C.; Aderman, C.M.; Chen, J.; Higuchi, A.; Hong, S.; Pravda, E.A.; Majchrzak, S.; Carper, D.; et al. Increased Dietary Intake of Omega-3-Polyunsaturated Fatty Acids Reduces Pathological Retinal Angiogenesis. Nat. Med. 2007, 13, 868–873. [Google Scholar] [CrossRef]
- Sapieha, P.; Stahl, A.; Chen, J.; Seaward, M.R.; Willett, K.L.; Krah, N.M.; Dennison, R.J.; Connor, K.M.; Aderman, C.M.; Liclican, E.; et al. 5-Lipoxygenase Metabolite 4-HDHA Is a Mediator of the Antiangiogenic Effect of Omega-3 Polyunsaturated Fatty Acids. Sci. Transl. Med. 2011, 3, 69ra12. [Google Scholar] [CrossRef]
- Dátilo, M.N.; Formigari, G.P.; de Faria, J.B.L.; de Faria, J.M.L. AMP Kinase Activation by Omega-3 Polyunsaturated Fatty Acid Protects the Retina against Ischemic Insult: An in Vitro and in Vivo Study. Exp. Eye Res. 2023, 226, 109345. [Google Scholar] [CrossRef] [PubMed]
- Alsbirk, K.E.; Seland, J.H.; Assmus, J. Diabetic Retinopathy and Visual Impairment in a Norwegian Diabetic Coast Population with a High Dietary Intake of Fish Oils. An Observational Study. Acta Ophthalmol. 2022, 100, e532–e538. [Google Scholar] [CrossRef] [PubMed]
- Chew, E.Y. Dietary Intake of Omega-3 Fatty Acids from Fish and Risk of Diabetic Retinopathy. JAMA 2017, 317, 2226–2227. [Google Scholar] [CrossRef] [PubMed]
- Sala-Vila, A.; Díaz-López, A.; Valls-Pedret, C.; Cofán, M.; García-Layana, A.; Lamuela-Raventós, R.-M.; Castañer, O.; Zanon-Moreno, V.; Martinez-Gonzalez, M.A.; Toledo, E.; et al. Dietary Marine ω-3 Fatty Acids and Incident Sight-Threatening Retinopathy in Middle-Aged and Older Individuals with Type 2 Diabetes: Prospective Investigation From the PREDIMED Trial. JAMA Ophthalmol. 2016, 134, 1142–1149. [Google Scholar] [CrossRef] [PubMed]
- Lafuente, M.; Ortín, L.; Argente, M.; Guindo, J.L.; López-Bernal, M.D.; López-Román, F.J.; García, M.J.; Domingo, J.C.; Lajara, J. Combined Intravitreal Ranibizumab and Oral Supplementation with Docosahexaenoic Acid and Antioxidants for Diabetic Macular Edema: Two-Year Randomized Single-Blind Controlled Trial Results. Retina 2017, 37, 1277–1286. [Google Scholar] [CrossRef]
- Piñas García, P.; Hernández Martínez, F.J.; Aznárez López, N.; Castillón Torre, L.; Tena Sempere, M.E. Supplementation with a Highly Concentrated Docosahexaenoic Acid (DHA) in Non-Proliferative Diabetic Retinopathy: A 2-Year Randomized Double-Blind Placebo-Controlled Study. Antioxidants 2022, 11, 116. [Google Scholar] [CrossRef]
- Sammons, E.L.; Buck, G.; Bowman, L.J.; Stevens, W.M.; Hammami, I.; Parish, S.; Armitage, J. ASCEND-Eye: Effects of Omega-3 Fatty Acids on Diabetic Retinopathy. Ophthalmology 2023, 131, 526–533. [Google Scholar] [CrossRef]
- Kedishvili, N.Y. Enzymology of Retinoic Acid Biosynthesis and Degradation. J. Lipid Res. 2013, 54, 1744–1760. [Google Scholar] [CrossRef]
- Carazo, A.; Macáková, K.; Matoušová, K.; Krčmová, L.K.; Protti, M.; Mladěnka, P. Vitamin A Update: Forms, Sources, Kinetics, Detection, Function, Deficiency, Therapeutic Use and Toxicity. Nutrients 2021, 13, 1703. [Google Scholar] [CrossRef]
- Bernstein, P.S.; Li, B.; Vachali, P.P.; Gorusupudi, A.; Shyam, R.; Henriksen, B.S.; Nolan, J.M. Lutein, Zeaxanthin, and Meso-Zeaxanthin: The Basic and Clinical Science Underlying Carotenoid-Based Nutritional Interventions against Ocular Disease. Prog. Retin. Eye Res. 2016, 50, 34–66. [Google Scholar] [CrossRef] [PubMed]
- Mares, J. Lutein and Zeaxanthin Isomers in Eye Health and Disease. Annu. Rev. Nutr. 2016, 36, 571–602. [Google Scholar] [CrossRef] [PubMed]
- She, C.; Shang, F.; Zhou, K.; Liu, N. Serum Carotenoids and Risks of Diabetes and Diabetic Retinopathy in a Chinese Population Sample. Curr. Mol. Med. 2017, 17, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Shalini, T.; Jose, S.S.; Prasanthi, P.S.; Balakrishna, N.; Viswanath, K.; Reddy, G.B. Carotenoid Status in Type 2 Diabetes Patients with and without Retinopathy. Food Funct. 2021, 12, 4402–4410. [Google Scholar] [CrossRef]
- Brazionis, L.; Rowley, K.; Itsiopoulos, C.; O’Dea, K. Plasma Carotenoids and Diabetic Retinopathy. Br. J. Nutr. 2008, 101, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Tam, K.C.; Ng, T.C.; Goit, R.K.; Chan, K.L.S.; Lo, A.C.Y. Long-Term Lutein Administration Attenuates Retinal Inflammation and Functional Deficits in Early Diabetic Retinopathy Using the Ins2 Akita/+ Mice. BMJ Open Diabetes Res. Care 2020, 8, e001519. [Google Scholar] [CrossRef] [PubMed]
- Shivarudrappa, A.H.; Ponesakki, G. Lutein Reverses Hyperglycemia-Mediated Blockage of Nrf2 Translocation by Modulating the Activation of Intracellular Protein Kinases in Retinal Pigment Epithelial (ARPE-19) Cells. J. Cell Commun. Signal. 2020, 14, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Nanjaiah, H.; Vallikannan, B. Lutein Upregulates the PGC-1α, NRF1, and TFAM Expression by AMPK Activation and Downregulates ROS to Maintain mtDNA Integrity and Mitochondrial Biogenesis in Hyperglycemic ARPE-19 Cells and Rat Retina. Biotechnol. Appl. Biochem. 2019, 66, 999–1009. [Google Scholar] [CrossRef] [PubMed]
- BACANLI, M.; BAŞARAN, N.; BAŞARAN, A.A. Lycopene: Is It Beneficial to Human Health as an Antioxidant? Turk. J. Pharm. Sci. 2017, 14, 311–318. [Google Scholar] [CrossRef]
- Icel, E.; Icel, A.; Uçak, T.; Karakurt, Y.; Elpeze, B.; Çimen, F.K.; Süleyman, H. The Effects of Lycopene on Alloxan Induced Diabetic Optic Neuropathy. Cutan. Ocul. Toxicol. 2019, 38, 88–92. [Google Scholar] [CrossRef]
- Lai, T.-T.; Yang, C.-M.; Yang, C.-H. Astaxanthin Protects Retinal Photoreceptor Cells against High Glucose-Induced Oxidative Stress by Induction of Antioxidant Enzymes via the PI3K/Akt/Nrf2 Pathway. Antioxidants 2020, 9, 729. [Google Scholar] [CrossRef]
- Oh, S.; Kim, Y.J.; Lee, E.K.; Park, S.W.; Yu, H.G. Antioxidative Effects of Ascorbic Acid and Astaxanthin on ARPE-19 Cells in an Oxidative Stress Model. Antioxidants 2020, 9, 833. [Google Scholar] [CrossRef]
- Küçüködük, A.; Helvacioglu, F.; Haberal, N.; Dagdeviren, A.; Bacanli, D.; Yilmaz, G.; Akkoyun, I. Antiproliferative and Anti-Apoptotic Effect of Astaxanthin in an Oxygen-Induced Retinopathy Mouse Model. Can. J. Ophthalmol. 2019, 54, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.; Thirunavukkarasu, J.; Muthuraman, A. Astaxanthin Ameliorates Diabetic Retinopathy in Swiss Albino Mice via Inhibitory Processes of Neuron-Specific Enolase Activity. Processes 2022, 10, 1318. [Google Scholar] [CrossRef]
- Janani, R.; Anitha, R.E.; Divya, P.; Chonche, M.; Baskaran, V. Astaxanthin Ameliorates Hyperglycemia Induced Inflammation via PI3K/Akt–NF–κB Signaling in ARPE-19 Cells and Diabetic Rat Retina. Eur. J. Pharmacol. 2022, 926, 174979. [Google Scholar] [CrossRef]
- Benlarbi-Ben Khedher, M.; Hajri, K.; Dellaa, A.; Baccouche, B.; Hammoum, I.; Boudhrioua-Mihoubi, N.; Dhifi, W.; Ben Chaouacha-Chekir, R. Astaxanthin Inhibits Aldose Reductase Activity in Psammomys Obesus, a Model of Type 2 Diabetes and Diabetic Retinopathy. Food Sci. Nutr. 2019, 7, 3979–3985. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Bai, W.; Yang, L. Astaxanthin Inhibits Oxidative Stress and Apoptosis in Diabetic Retinopathy. Acta Histochem. 2023, 125, 152069. [Google Scholar] [CrossRef]
- Janani, R.; Anitha, R.E.; Perumal, M.K.; Divya, P.; Baskaran, V. Astaxanthin Mediated Regulation of VEGF through HIF1α and XBP1 Signaling Pathway: An Insight from ARPE-19 Cell and Streptozotocin Mediated Diabetic Rat Model. Exp. Eye Res. 2021, 206, 108555. [Google Scholar] [CrossRef] [PubMed]
- Rani, E.A.; Janani, R.; Chonche, M.J.; Vallikannan, B. Lactucaxanthin Regulates the Cascade of Retinal Oxidative Stress, Endoplasmic Reticulum Stress and Inflammatory Signaling in Diabetic Rats. Ocul. Immunol. Inflamm. 2023, 31, 320–328. [Google Scholar] [CrossRef]
- Anitha, R.E.; Janani, R.; Peethambaran, D.; Baskaran, V. Lactucaxanthin Protects Retinal Pigment Epithelium from Hyperglycemia-Regulated Hypoxia/ER Stress/VEGF Pathway Mediated Angiogenesis in ARPE-19 Cell and Rat Model. Eur. J. Pharmacol. 2021, 899, 174014. [Google Scholar] [CrossRef]
- Hisamuddin, A.S.-D.B.; Naomi, R.; Manan, K.A.B.; Bahari, H.; Othman, F.; Embong, H.; Ismail, A.; Ahmed, Q.U.; Jumidil, S.H.; Hussain, M.K.; et al. The Role of Lutein-Rich Purple Sweet Potato Leaf Extract on the Amelioration of Diabetic Retinopathy in Streptozotocin-Induced Sprague-Dawley Rats. Front. Pharmacol. 2023, 14, 1175907. [Google Scholar] [CrossRef]
- Paramaswaran, Y.; Subramanian, A.; Paramakrishnan, N.; Ramesh, M.; Muthuraman, A. Therapeutic Investigation of Palm Oil Mill Effluent-Derived Beta-Carotene in Streptozotocin-Induced Diabetic Retinopathy via the Regulation of Blood–Retina Barrier Functions. Pharmaceuticals 2023, 16, 647. [Google Scholar] [CrossRef]
- McClinton, K.J.; Aliani, M.; Kuny, S.; Sauvé, Y.; Suh, M. Differential Effect of a Carotenoid-Rich Diet on Retina Function in Non-Diabetic and Diabetic Rats. Nutr. Neurosci. 2020, 23, 838–848. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.-C.; Wu, C.-R.; Wang, Z.-L.; Wang, L.-Y.; Han, Y.; Sun, S.-L.; Li, Q.-S.; Ma, L. Effect of Lutein Supplementation on Visual Function in Nonproliferative Diabetic Retinopathy. Asia Pac. J. Clin. Nutr. 2017, 26, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Leh, H.E.; Mohd Sopian, M.; Abu Bakar, M.H.; Lee, L.K. The Role of Lycopene for the Amelioration of Glycaemic Status and Peripheral Antioxidant Capacity among the Type II Diabetes Mellitus Patients: A Case–Control Study. Ann. Med. 2021, 53, 1060–1066. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Qi, Y.; Su, X.; Luan, H.; Sun, Q. Therapeutic Effect of Lutein Supplement on Non-Proliferative Diabetic Retinopathy. Medicine 2019, 98, e15404. [Google Scholar] [CrossRef] [PubMed]
- Fathalipour, M.; Fathalipour, H.; Safa, O.; Nowrouzi-Sohrabi, P.; Mirkhani, H.; Hassanipour, S. The Therapeutic Role of Carotenoids in Diabetic Retinopathy: A Systematic Review. Diabetes Metab. Syndr. Obes. 2020, 13, 2347–2358. [Google Scholar] [CrossRef]
- Lem, D.W.; Gierhart, D.L.; Davey, P.G. A Systematic Review of Carotenoids in the Management of Diabetic Retinopathy. Nutrients 2021, 13, 2441. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef]
- de Araújo, F.F.; de Paulo Farias, D.; Neri-Numa, I.A.; Pastore, G.M. Polyphenols and Their Applications: An Approach in Food Chemistry and Innovation Potential. Food Chem. 2021, 338, 127535. [Google Scholar] [CrossRef]
- Sharma, A.; Kaur, M.; Katnoria, J.K.; Nagpal, A.K. Polyphenols in Food: Cancer Prevention and Apoptosis Induction. Curr. Med. Chem. 2018, 25, 4740–4757. [Google Scholar] [CrossRef]
- Patil, V.M.; Masand, N. Chapter 12—Anticancer Potential of Flavonoids: Chemistry, Biological Activities, and Future Perspectives. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 59, pp. 401–430. ISBN 978-0-444-64179-3. [Google Scholar]
- Li, R.; Ye, Z.; Yang, W.; Xu, Y.-J.; Tan, C.-P.; Liu, Y. Blueberry Anthocyanins from Commercial Products: Structure Identification and Potential for Diabetic Retinopathy Amelioration. Molecules 2022, 27, 7475. [Google Scholar] [CrossRef] [PubMed]
- Xiao, T.; Zhi, Y.; Tian, F.; Huang, F.; Cheng, X.; Wu, A.; Tao, L.; Guo, Z.; Shen, X. Ameliorative Effect of Black Raspberry Anthocyanins on Diabetes Retinopathy by Inhibiting Axis Protein Tyrosine Phosphatase 1B-Endoplasmic Reticulum Stress. J. Funct. Foods 2023, 107, 105696. [Google Scholar] [CrossRef]
- Li, R.; Ye, Z.; Xu, Y.; Liu, Y. Cyanidin-3-O-Glucoside from Blueberry Anthocyanin Extracts Protects ARPE-19 Cells against High Glucose Damage via REDD1/GSK3β Pathway. Food Biosci. 2023, 56, 103322. [Google Scholar] [CrossRef]
- Anfuso, C.D.; Giurdanella, G.; Longo, A.; Cosentino, A.; Agafonova, A.; Rusciano, D.; Lupo, G. Antioxidant Activity of Cyanidin-3-O-Glucoside and Verbascoside in an in Vitro Model of Diabetic Retinopathy. Front. Biosci.-Landmark 2022, 27, 308. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Gao, X.; Ge, X.; Cui, J.; Liu, X. Cyanidin-3-o-Glucoside (C3G) Inhibits Vascular Leakage Regulated by Microglial Activation in Early Diabetic Retinopathy and Neovascularization in Advanced Diabetic Retinopathy. Bioengineered 2021, 12, 9266–9278. [Google Scholar] [CrossRef]
- Wang, M.; Wey, S.; Zhang, Y.; Ye, R.; Lee, A.S. Role of the Unfolded Protein Response Regulator GRP78/BiP in Development, Cancer, and Neurological Disorders. Antioxid. Redox Signal. 2009, 11, 2307–2316. [Google Scholar] [CrossRef] [PubMed]
- Nikbakht, E.; Singh, I.; Vider, J.; Williams, L.T.; Vugic, L.; Gaiz, A.; Kundur, A.R.; Colson, N. Potential of Anthocyanin as an Anti-Inflammatory Agent: A Human Clinical Trial on Type 2 Diabetic, Diabetic at-Risk and Healthy Adults. Inflamm. Res. 2021, 70, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Anand David, A.V.; Arulmoli, R.; Parasuraman, S. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharmacogn. Rev. 2016, 10, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Chen, L.; Yao, G.-M.; Yan, H.-L.; Wang, L. Effects of Quercetin on Diabetic Retinopathy and Its Association with NLRP3 Inflammasome and Autophagy. Int. J. Ophthalmol. 2021, 14, 42–49. [Google Scholar] [CrossRef]
- Chai, G.-R.; Liu, S.; Yang, H.-W.; Chen, X.-L. Quercetin Protects against Diabetic Retinopathy in Rats by Inducing Heme Oxygenase-1 Expression. Neural Regen. Res. 2021, 16, 1344–1350. [Google Scholar] [CrossRef]
- Hu, T.; Shi, J.-J.; Fang, J.; Wang, Q.; Chen, Y.-B.; Zhang, S.-J. Quercetin Ameliorates Diabetic Encephalopathy through SIRT1/ER Stress Pathway in Db/Db Mice. Aging 2020, 12, 7015. [Google Scholar] [CrossRef] [PubMed]
- Lupo, G.; Cambria, M.T.; Olivieri, M.; Rocco, C.; Caporarello, N.; Longo, A.; Zanghì, G.; Salmeri, M.; Foti, M.C.; Anfuso, C.D. Anti-Angiogenic Effect of Quercetin and Its 8-Methyl Pentamethyl Ether Derivative in Human Microvascular Endothelial Cells. J. Cell. Mol. Med. 2019, 23, 6565–6577. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, Y.; Li, M.; Li, J. Quercetin Protects against Hyperglycemia-Induced Retinopathy in Sprague Dawley Rats by Regulating the Gut-Retina Axis and Nuclear Factor Erythroid-2–Related Factor 2 Pathway. Nutr. Res. 2024, 122, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Sharma, H.P.; Das, U.; Velpandian, T.; Saklani, R. Effect of Rutin on Retinal VEGF, TNF-α, Aldose Reductase, and Total Antioxidant Capacity in Diabetic Rats: Molecular Mechanism and Ocular Pharmacokinetics. Int. Ophthalmol. 2020, 40, 159–168. [Google Scholar] [CrossRef]
- Xu, C.; Bi, M.; Jin, X.; Zhu, M.; Wang, G.; Zhao, P.; Qin, X.; Xu, X.; Sun, X.; Ji, N.; et al. Long-Term Tea Consumption Is Associated with Reduced Risk of Diabetic Retinopathy: A Cross-Sectional Survey among Elderly Chinese from Rural Communities. J. Diabetes Res. 2020, 2020, e1860452. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Sun, X.; Zhu, M.; Du, J.; Xu, J.; Qin, X.; Xu, X.; Song, E. Epigallocatechin-3-Gallate Stimulates Autophagy and Reduces Apoptosis Levels in Retinal Müller Cells under High-Glucose Conditions. Exp. Cell Res. 2019, 380, 149–158. [Google Scholar] [CrossRef]
- Du, J.; Wang, Y.; Tu, Y.; Guo, Y.; Sun, X.; Xu, X.; Liu, X.; Wang, L.; Qin, X.; Zhu, M.; et al. A Prodrug of Epigallocatechin-3-Gallate Alleviates High Glucose-Induced pro-Angiogenic Factor Production by Inhibiting the ROS/TXNIP/NLRP3 Inflammasome Axis in Retinal Müller Cells. Exp. Eye Res. 2020, 196, 108065. [Google Scholar] [CrossRef]
- Kim, I.; Seo, J.; Lee, D.H.; Kim, Y.-H.; Kim, J.-H.; Wie, M.-B.; Byun, J.-K.; Yun, J.-H. Ulmus Davidiana 60% Edible Ethanolic Extract for Prevention of Pericyte Apoptosis in Diabetic Retinopathy. Front. Endocrinol. 2023, 14, 1138676. [Google Scholar] [CrossRef]
- Xue, B.; Wang, Y. Naringenin Upregulates GTPCH1/eNOS to Ameliorate High Glucose-Induced Retinal Endothelial Cell Injury. Exp. Ther. Med. 2022, 23, 428. [Google Scholar] [CrossRef]
- Sudhakaran, G.; Chandran, A.; Sreekutty, A.R.; Madesh, S.; Pachaiappan, R.; Almutairi, B.O.; Arokiyaraj, S.; Kari, Z.A.; Tellez-Isaias, G.; Guru, A.; et al. Ophthalmic Intervention of Naringenin Decreases Vascular Endothelial Growth Factor by Counteracting Oxidative Stress and Cellular Damage in In Vivo Zebrafish. Molecules 2023, 28, 5350. [Google Scholar] [CrossRef]
- Xie, T.; Chen, X.; Chen, W.; Huang, S.; Peng, X.; Tian, L.; Wu, X.; Huang, Y. Curcumin Is a Potential Adjuvant to Alleviates Diabetic Retinal Injury via Reducing Oxidative Stress and Maintaining Nrf2 Pathway Homeostasis. Front. Pharmacol. 2021, 12, 796565. [Google Scholar] [CrossRef]
- Bucolo, C.; Drago, F.; Maisto, R.; Romano, G.L.; D’Agata, V.; Maugeri, G.; Giunta, S. Curcumin Prevents High Glucose Damage in Retinal Pigment Epithelial Cells through ERK1/2-Mediated Activation of the Nrf2/HO-1 Pathway. J. Cell. Physiol. 2019, 234, 17295–17304. [Google Scholar] [CrossRef] [PubMed]
- Ran, Z.; Zhang, Y.; Wen, X.; Ma, J. Curcumin Inhibits High Glucose-induced Inflammatory Injury in Human Retinal Pigment Epithelial Cells through the ROS-PI3K/AKT/mTOR Signaling Pathway. Mol. Med. Rep. 2019, 19, 1024–1031. [Google Scholar] [CrossRef]
- Chiosi, F.; Rinaldi, M.; Campagna, G.; Manzi, G.; De Angelis, V.; Calabrò, F.; D’Andrea, L.; Tranfa, F.; Costagliola, C. Effect of a Fixed Combination of Curcumin, Artemisia, Bromelain, and Black Pepper Oral Administration on Optical Coherence Tomography Angiography Indices in Patients with Diabetic Macular Edema. Nutrients 2022, 14, 1520. [Google Scholar] [CrossRef]
- Meng, X.; Zhou, J.; Zhao, C.-N.; Gan, R.-Y.; Li, H.-B. Health Benefits and Molecular Mechanisms of Resveratrol: A Narrative Review. Foods 2020, 9, 340. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Meng, J.; Li, H.; Wei, H.; Bi, F.; Liu, S.; Tang, K.; Guo, H.; Liu, W. Resveratrol Exhibits an Effect on Attenuating Retina Inflammatory Condition and Damage of Diabetic Retinopathy via PON1. Exp. Eye Res. 2019, 181, 356–366. [Google Scholar] [CrossRef] [PubMed]
- Zeng, K.; Wang, Y.; Huang, L.; Song, Y.; Yu, X.; Deng, B.; Zhou, X. Resveratrol Inhibits Neural Apoptosis and Regulates RAX/P-PKR Expression in Retina of Diabetic Rats. Nutr. Neurosci. 2022, 25, 2560–2569. [Google Scholar] [CrossRef]
- Giordo, R.; Nasrallah, G.K.; Posadino, A.M.; Galimi, F.; Capobianco, G.; Eid, A.H.; Pintus, G. Resveratrol-Elicited PKC Inhibition Counteracts NOX-Mediated Endothelial to Mesenchymal Transition in Human Retinal Endothelial Cells Exposed to High Glucose. Antioxidants 2021, 10, 224. [Google Scholar] [CrossRef]
- Al-Hussaini, H.; Kittaneh, R.S.; Kilarkaje, N. Effects of Trans-Resveratrol on Type 1 Diabetes-Induced up-Regulation of Apoptosis and Mitogen-Activated Protein Kinase Signaling in Retinal Pigment Epithelium of Dark Agouti Rats. Eur. J. Pharmacol. 2021, 904, 174167. [Google Scholar] [CrossRef]
- Xiang, X.-H.; Wei, J.; Wang, X.-F.; Xu, Q.; Yu, C.-L.; He, C.-L.; Long, T.; Guo, M.-S.; Chen, X.; Zhou, X.-G.; et al. Lychee Seed Polyphenol Ameliorates DR via Inhibiting Inflammasome/Apoptosis and Angiogenesis in hRECs and Db/Db Mice. Biomed. Pharmacother. 2023, 167, 115478. [Google Scholar] [CrossRef]
- Liu, Y.; Nie, X.; Wang, J.; Zhao, Z.; Wang, Z.; Ju, F. Visualizing the Distribution of Flavonoids in Litchi (Litchi chinenis) Seeds through Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Front. Plant Sci. 2023, 14, 1144449. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Xiong, R.; Wu, A.-G.; Yu, C.-L.; Zhao, Y.; Qiu, W.-Q.; Wang, X.-L.; Teng, J.-F.; Liu, J.; Chen, H.-X.; et al. Polyphenols Derived from Lychee Seed Suppress Aβ (1-42)-Induced Neuroinflammation. Int. J. Mol. Sci. 2018, 19, 2109. [Google Scholar] [CrossRef]
- Luo, Y.; Zhao, K.; Li, Z.; Gao, Y.; Lin, M.; Li, Y.; Wang, S.; Liu, Y.; Chen, L. Effect of the Ethyl Acetate Extract of Sophora Flavescens Aiton on Diabetic Retinopathy Based on Untargeted Retinal Metabolomics. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2022, 1198, 123233. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Jang, E.; Lee, J.-H. Potential Roles and Key Mechanisms of Hawthorn Extract against Various Liver Diseases. Nutrients 2022, 14, 867. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Fang, Y.; Yu, J.; Chang, X. Hawthorn Polyphenols Reduce High Glucose-Induced Inflammation and Apoptosis in ARPE-19 Cells by Regulating miR-34a/SIRT1 to Reduce Acetylation. J. Food Biochem. 2021, 45, e13623. [Google Scholar] [CrossRef] [PubMed]
- Schwikkard, S.; Whitmore, H.; Sishtla, K.; Sulaiman, R.S.; Shetty, T.; Basavarajappa, H.D.; Waller, C.; Alqahtani, A.; Frankemoelle, L.; Chapman, A.; et al. The Antiangiogenic Activity of Naturally Occurring and Synthetic Homoisoflavonoids from the Hyacinthaceae (Sensu APGII). J. Nat. Prod. 2019, 82, 1227–1239. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Tosun, A.; Kim, Y.S. Chapter 31—Ginsenosides as Food Supplements and Their Potential Role in Immunological and Neurodegenerative Disorders. In Bioactive Nutraceuticals and Dietary Supplements in Neurological and Brain Disease; Watson, R.R., Preedy, V.R., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 303–309. ISBN 978-0-12-411462-3. [Google Scholar]
- Xue, L.; Hu, M.; Li, J.; Li, Y.; Zhu, Q.; Zhou, G.; Zhang, X.; Zhou, Y.; Zhang, J.; Ding, P. Ginsenoside Rg1 Inhibits High Glucose-Induced Proliferation, Migration, and Angiogenesis in Retinal Endothelial Cells by Regulating the lncRNA SNHG7/miR-2116-5p/SIRT3 Axis. J. Oncol. 2022, 2022, 6184631. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Ji, Y.; Luo, Y.; Sun, J.; Sun, G.; Sun, X. Ginsenoside Rg1 Prevents Early Diabetic Retinopathy via Reducing Retinal Ganglion Cell Layer and Inner Nuclear Layer Cell Apoptosis in Db/Db Mice. Ann. Transl. Med. 2020, 8, 232. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Hu, M.; Zhu, Q.; Li, Y.; Zhou, G.; Zhang, X.; Zhou, Y.; Zhang, J.; Ding, P. GRg1 Inhibits the TLR4/NF-kB Signaling Pathway by Upregulating miR-216a-5p to Reduce Growth Factors and Inflammatory Cytokines in DR. Mol. Biol. Rep. 2023, 50, 9379–9394. [Google Scholar] [CrossRef]
- Ying, Y.; Zhang, Y.-L.; Ma, C.-J.; Li, M.-Q.; Tang, C.-Y.; Yang, Y.-F.; Zeng, J.-H.; Huang, X.-Y.; Yi, J.; Wang, X.-M.; et al. Neuroprotective Effects of Ginsenoside Rg1 against Hyperphosphorylated Tau-Induced Diabetic Retinal Neurodegeneration via Activation of IRS-1/Akt/GSK3β Signaling. J. Agric. Food Chem. 2019, 67, 8348–8360. [Google Scholar] [CrossRef]
- Tang, K.; Qin, W.; Wei, R.; Jiang, Y.; Fan, L.; Wang, Z.; Tan, N. Ginsenoside Rd Ameliorates High Glucose-Induced Retinal Endothelial Injury through AMPK-STRT1 Interdependence. Pharmacol. Res. 2022, 179, 106123. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Ma, Q.; Xu, M.; Qiao, Y.; Zhang, Y.; Li, P.; Bi, Y.; Tang, M. Ginsenoside Rb1 Attenuates High Glucose-Induced Oxidative Injury via the NAD-PARP-SIRT Axis in Rat Retinal Capillary Endothelial Cells. Int. J. Mol. Sci. 2019, 20, 4936. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Liu, P.; Wang, H.; Dong, M.; Li, G.; Li, Y. Ginsenoside Rb1 Attenuates Diabetic Retinopathy in Streptozotocin-Induced Diabetic Rats1. Acta Cir. Bras. 2019, 34, e201900201. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Zhou, P.; Qu, M.; Dai, Z.; Zhang, X.; Zhang, C.; Dong, X.; Sun, G.; Sun, X. Ginsenoside Re Attenuates High Glucose-Induced RF/6A Injury via Regulating PI3K/AKT Inhibited HIF-1α/VEGF Signaling Pathway. Front. Pharmacol. 2020, 11, 695. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Xie, W.; Meng, X.; Zhai, Y.; Dong, X.; Zhang, X.; Sun, G.; Sun, X. Notoginsenoside R1 Ameliorates Diabetic Retinopathy through PINK1-Dependent Activation of Mitophagy. Cells 2019, 8, 213. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, X.; Xie, Y.; Du, A.; Chen, M.; Lai, S.; Wei, X.; Ji, L.; Wang, C. Panax Notoginseng Saponins Alleviate Diabetic Retinopathy by Inhibiting Retinal Inflammation: Association with the NF-κB Signaling Pathway. J. Ethnopharmacol. 2024, 319, 117135. [Google Scholar] [CrossRef] [PubMed]
- Hanaguri, J.; Yokota, H.; Kushiyama, A.; Kushiyama, S.; Watanabe, M.; Yamagami, S.; Nagaoka, T. Beneficial Effect of Long-Term Administration of Supplement with Trapa Bispinosa Roxb. and Lutein on Retinal Neurovascular Coupling in Type 2 Diabetic Mice. Front. Physiol. 2022, 13, 788034. [Google Scholar] [CrossRef] [PubMed]
- González-Herrero, M.E.R.; Ruiz, M.; Román, F.J.L.; Sánchez, J.M.M.; Domingo, J.C. Supplementation with a Highly Concentrated Docosahexaenoic Acid plus Xanthophyll Carotenoid Multivitamin in Nonproliferative Diabetic Retinopathy: Prospective Controlled Study of Macular Function by Fundus Microperimetry. Clin. Ophthalmol. 2018, 12, 1011–1020. [Google Scholar] [CrossRef]
- McClements, D.J.; Li, F.; Xiao, H. The Nutraceutical Bioavailability Classification Scheme: Classifying Nutraceuticals According to Factors Limiting Their Oral Bioavailability. Annu. Rev. Food Sci. Technol. 2015, 6, 299–327. [Google Scholar] [CrossRef] [PubMed]
- Dima, C.; Assadpour, E.; Dima, S.; Jafari, S.M. Bioavailability of Nutraceuticals: Role of the Food Matrix, Processing Conditions, the Gastrointestinal Tract, and Nanodelivery Systems. Compr. Rev. Food Sci. Food Saf. 2020, 19, 954–994. [Google Scholar] [CrossRef]
- Boonlao, N.; Ruktanonchai, U.R.; Anal, A.K. Enhancing Bioaccessibility and Bioavailability of Carotenoids Using Emulsion-Based Delivery Systems. Colloids Surf. B Biointerfaces 2022, 209, 112211. [Google Scholar] [CrossRef]
- Soukoulis, C.; Bohn, T. A Comprehensive Overview on the Micro- and Nano-Technological Encapsulation Advances for Enhancing the Chemical Stability and Bioavailability of Carotenoids. Crit. Rev. Food Sci. Nutr. 2018, 58, 1–36. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and Bioefficacy of Polyphenols in Humans. I. Review of 97 Bioavailability Studies. Am. J. Clin. Nutr. 2005, 81, 230S–242S. [Google Scholar] [CrossRef]
- Di Lorenzo, C.; Colombo, F.; Biella, S.; Stockley, C.; Restani, P. Polyphenols and Human Health: The Role of Bioavailability. Nutrients 2021, 13, 273. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.R.; Lee, Y.-H.; Bat-Ulzii, A.; Bhattacharya, M.; Chakraborty, C.; Lee, S.-S. Recent Advances of Metal-Based Nanoparticles in Nucleic Acid Delivery for Therapeutic Applications. J. Nanobiotechnol. 2022, 20, 501. [Google Scholar] [CrossRef]
- Ashaolu, T.J. Nanoemulsions for Health, Food, and Cosmetics: A Review. Environ. Chem. Lett. 2021, 19, 3381. [Google Scholar] [CrossRef]
- Yonekura, L.; Nagao, A. Intestinal Absorption of Dietary Carotenoids. Mol. Nutr. Food Res. 2007, 51, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Nidhi, B.; Ramaprasad, T.R.; Baskaran, V. Dietary Fatty Acid Determines the Intestinal Absorption of Lutein in Lutein Deficient Mice. Food Res. Int. 2014, 64, 256–263. [Google Scholar] [CrossRef]
- Toragall, V.; Srirangam, P.; Jayapala, N.; Baskaran, V. Lutein Encapsulated Oleic—Linoleic Acid Nanoemulsion Boosts Oral Bioavailability of the Eye Protective Carotenoid Lutein in Rat Model. Mater. Today Commun. 2021, 28, 102522. [Google Scholar] [CrossRef]
- Lim, C.; Kim, D.; Sim, T.; Hoang, N.H.; Lee, J.W.; Lee, E.S.; Youn, Y.S.; Oh, K.T. Preparation and Characterization of a Lutein Loading Nanoemulsion System for Ophthalmic Eye Drops. J. Drug Deliv. Sci. Technol. 2016, 36, 168–174. [Google Scholar] [CrossRef]
- Ge, Y.; Zhang, A.; Sun, R.; Xu, J.; Yin, T.; He, H.; Gou, J.; Kong, J.; Zhang, Y.; Tang, X. Penetratin-Modified Lutein Nanoemulsion in-Situ Gel for the Treatment of Age-Related Macular Degeneration. Expert Opin. Drug Deliv. 2020, 17, 603–619. [Google Scholar] [CrossRef]
- Alavi, M.; Mozafari, M.R.; Hamblin, M.R.; Hamidi, M.; Hajimolaali, M.; Katouzian, I. Industrial-Scale Methods for the Manufacture of Liposomes and Nanoliposomes: Pharmaceutical, Cosmetic, and Nutraceutical Aspects. Micro Nano Bio Asp. 2022, 1, 26–35. [Google Scholar] [CrossRef]
- Khorasani, S.; Danaei, M.; Mozafari, M.R. Nanoliposome Technology for the Food and Nutraceutical Industries. Trends Food Sci. Technol. 2018, 79, 106–115. [Google Scholar] [CrossRef]
- Zarrabi, A.; Alipoor Amro Abadi, M.; Khorasani, S.; Mohammadabadi, M.-R.; Jamshidi, A.; Torkaman, S.; Taghavi, E.; Mozafari, M.R.; Rasti, B. Nanoliposomes and Tocosomes as Multifunctional Nanocarriers for the Encapsulation of Nutraceutical and Dietary Molecules. Molecules 2020, 25, 638. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Li, L.; Li, L.; Pokhrel, G.; Qi, G.; Rong, R.; Zhu, T. The Protective Effect of Baicalin against Renal Ischemia-Reperfusion Injury through Inhibition of Inflammation and Apoptosis. BMC Complement. Altern. Med. 2014, 14, 19. [Google Scholar] [CrossRef]
- Jo, H.; Jung, S.H.; Bin Yim, H.; Lee, S.J.; Kang, K.D. The Effect of Baicalin in a Mouse Model of Retinopathy of Prematurity. BMB Rep. 2015, 48, 271–276. [Google Scholar] [CrossRef]
- Ashraf, O.; Nasr, M.; Nebsen, M.; Said, A.M.A.; Sammour, O. In Vitro Stabilization and in Vivo Improvement of Ocular Pharmacokinetics of the Multi-Therapeutic Agent Baicalin: Delineating the Most Suitable Vesicular Systems. Int. J. Pharm. 2018, 539, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Chi, J.; Ye, X.; Wang, S.; Liang, J.; Yue, P.; Xiao, H.; Gao, X. Nanoliposomes as Delivery System for Anthocyanins: Physicochemical Characterization, Cellular Uptake, and Antioxidant Properties. LWT 2021, 139, 110554. [Google Scholar] [CrossRef]
- Zhang, J.; Liang, X.; Li, X.; Guan, Z.; Liao, Z.; Luo, Y.; Luo, Y. Ocular Delivery of Cyanidin-3-Glycoside in Liposomes and Its Prevention of Selenite-Induced Oxidative Stress. Drug Dev. Ind. Pharm. 2016, 42, 546–553. [Google Scholar] [CrossRef]
- Gu, H.; Chen, P.; Liu, X.; Lian, Y.; Xi, J.; Li, J.; Song, J.; Li, X. Trimethylated Chitosan-Coated Flexible Liposomes with Resveratrol for Topical Drug Delivery to Reduce Blue-Light-Induced Retinal Damage. Int. J. Biol. Macromol. 2023, 252, 126480. [Google Scholar] [CrossRef]
- Tang, L.; Li, K.; Zhang, Y.; Li, H.; Li, A.; Xu, Y.; Wei, B. Quercetin Liposomes Ameliorate Streptozotocin-Induced Diabetic Nephropathy in Diabetic Rats. Sci. Rep. 2020, 10, 2440. [Google Scholar] [CrossRef] [PubMed]
- Bulboaca, A.E.; Boarescu, P.-M.; Porfire, A.S.; Dogaru, G.; Barbalata, C.; Valeanu, M.; Munteanu, C.; Râjnoveanu, R.M.; Nicula, C.A.; Stanescu, I.C. The Effect of Nano-Epigallocatechin-Gallate on Oxidative Stress and Matrix Metalloproteinases in Experimental Diabetes Mellitus. Antioxidants 2020, 9, 172. [Google Scholar] [CrossRef] [PubMed]
- Amato, R.; Rossino, M.G.; Cammalleri, M.; Locri, F.; Pucci, L.; Dal Monte, M.; Casini, G. Lisosan G Protects the Retina from Neurovascular Damage in Experimental Diabetic Retinopathy. Nutrients 2018, 10, 1932. [Google Scholar] [CrossRef] [PubMed]
- Amato, R.; Melecchi, A.; Pucci, L.; Canovai, A.; Marracci, S.; Cammalleri, M.; Dal Monte, M.; Caddeo, C.; Casini, G. Liposome-Mediated Delivery Improves the Efficacy of Lisosan G against Retinopathy in Diabetic Mice. Cells 2023, 12, 2448. [Google Scholar] [CrossRef] [PubMed]
- Höltke, C. isoDGR-Peptides for Integrin Targeting: Is the Time Up for RGD? J. Med. Chem. 2018, 61, 7471–7473. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yu, H.; Liu, C.; Wang, C.; Zeng, X.; Yan, J.; Sun, Y. Efficiency Co-Delivery of Ellagic Acid and Oxygen by a Non-Invasive Liposome for Ameliorating Diabetic Retinopathy. Int. J. Pharm. 2023, 641, 122987. [Google Scholar] [CrossRef]
- Date, A.A.; Desai, N.; Dixit, R.; Nagarsenker, M. Self-Nanoemulsifying Drug Delivery Systems: Formulation Insights, Applications and Advances. Nanomed. 2010, 5, 1595–1616. [Google Scholar] [CrossRef] [PubMed]
- Zingale, E.; Bonaccorso, A.; D’Amico, A.G.; Lombardo, R.; D’Agata, V.; Rautio, J.; Pignatello, R. Formulating Resveratrol and Melatonin Self-Nanoemulsifying Drug Delivery Systems (SNEDDS) for Ocular Administration Using Design of Experiments. Pharmaceutics 2024, 16, 125. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Du, S.; Wang, W.; Zhang, F. Therapeutic Investigation of Quercetin Nanomedicine in a Zebrafish Model of Diabetic Retinopathy. Biomed. Pharmacother. 2020, 130, 110573. [Google Scholar] [CrossRef]
- Rishitha, N.; Muthuraman, A. Therapeutic Evaluation of Solid Lipid Nanoparticle of Quercetin in Pentylenetetrazole Induced Cognitive Impairment of Zebrafish. Life Sci. 2018, 199, 80–87. [Google Scholar] [CrossRef]
- Toragall, V.; Baskaran, V. Chitosan-Sodium Alginate-Fatty Acid Nanocarrier System: Lutein Bioavailability, Absorption Pharmacokinetics in Diabetic Rat and Protection of Retinal Cells against H2O2 Induced Oxidative Stress In Vitro. Carbohydr. Polym. 2021, 254, 117409. [Google Scholar] [CrossRef] [PubMed]
- Toragall, V.; Muzaffar, J.C.; Baskaran, V. Lutein Loaded Double-Layered Polymer Nanocarrier Modulate H2O2 and CoCl2 Induced Oxidative and Hypoxia Damage and Angiogenic Markers in ARPE-19 Cells. Int. J. Biol. Macromol. 2023, 240, 124378. [Google Scholar] [CrossRef]
- Ruginǎ, D.; Ghiman, R.; Focșan, M.; Tăbăran, F.; Copaciu, F.; Suciu, M.; Pintea, A.; Aștilean, S. Resveratrol-Delivery Vehicle with Anti-VEGF Activity Carried to Human Retinal Pigmented Epithelial Cells Exposed to High-Glucose Induced Conditions. Colloids Surf. B Biointerfaces 2019, 181, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Ganugula, R.; Arora, M.; Dwivedi, S.; Chandrashekar, D.S.; Varambally, S.; Scott, E.M.; Kumar, M.N.V.R. Systemic Anti-Inflammatory Therapy Aided by Curcumin-Laden Double-Headed Nanoparticles Combined with Injectable Long-Acting Insulin in a Rodent Model of Diabetes Eye Disease. ACS Nano 2023, 17, 6857–6874. [Google Scholar] [CrossRef] [PubMed]
- Mody, V.V.; Siwale, R.; Singh, A.; Mody, H.R. Introduction to Metallic Nanoparticles. J. Pharm. Bioallied Sci. 2010, 2, 282. [Google Scholar] [CrossRef]
- Marella, S.; Hema, K.; Shameer, S.; Prasad, T.N.V.K.V. Nano-Ellagic Acid: Inhibitory Actions on Aldose Reductase and α-Glucosidase in Secondary Complications of Diabetes, Strengthened by in Silico Docking Studies. 3 Biotech 2020, 10, 439. [Google Scholar] [CrossRef] [PubMed]
- Gui, S.; Tang, W.; Huang, Z.; Wang, X.; Gui, S.; Gao, X.; Xiao, D.; Tao, L.; Jiang, Z.; Wang, X. Ultrasmall Coordination Polymer Nanodots Fe-Quer Nanozymes for Preventing and Delaying the Development and Progression of Diabetic Retinopathy. Adv. Funct. Mater. 2023, 33, 2300261. [Google Scholar] [CrossRef]
- Giljohann, D.A.; Seferos, D.S.; Daniel, W.L.; Massich, M.D.; Patel, P.C.; Mirkin, C.A. Gold Nanoparticles for Biology and Medicine. Angew. Chem. Int. Ed. 2010, 49, 3280–3294. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, M.; Păpurică, A.-M.; Muntean, M.; Bungărdean, R.M.; Gheban, D.; Moldovan, B.; Katona, G.; David, L.; Filip, G.A. Effects of Gold Nanoparticles Phytoreduced with Rutin in an Early Rat Model of Diabetic Retinopathy and Cataracts. Metabolites 2023, 13, 955. [Google Scholar] [CrossRef]
- Stoia, D.; Pop, R.; Campu, A.; Nistor, M.; Astilean, S.; Pintea, A.; Suciu, M.; Rugina, D.; Focsan, M. Hybrid Polymeric Therapeutic Microcarriers for Thermoplasmonic-Triggered Release of Resveratrol. Colloids Surf. B Biointerfaces 2022, 220, 112915. [Google Scholar] [CrossRef]
- Küünal, S.; Rauwel, P.; Rauwel, E. Chapter 14—Plant Extract Mediated Synthesis of Nanoparticles. In Emerging Applications of Nanoparticles and Architecture Nanostructures; Barhoum, A., Makhlouf, A.S.H., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2018; pp. 411–446. ISBN 978-0-323-51254-1. [Google Scholar]
- Dong, Y.; Wan, G.; Yan, P.; Qian, C.; Li, F.; Peng, G. Fabrication of Resveratrol Coated Gold Nanoparticles and Investigation of Their Effect on Diabetic Retinopathy in Streptozotocin Induced Diabetic Rats. J. Photochem. Photobiol. B 2019, 195, 51–57. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, X.; Fung, N.S.K.; Lam, W.C.; Lo, A.C.Y. Nutraceuticals for Diabetic Retinopathy: Recent Advances and Novel Delivery Systems. Nutrients 2024, 16, 1715. https://doi.org/10.3390/nu16111715
Ye X, Fung NSK, Lam WC, Lo ACY. Nutraceuticals for Diabetic Retinopathy: Recent Advances and Novel Delivery Systems. Nutrients. 2024; 16(11):1715. https://doi.org/10.3390/nu16111715
Chicago/Turabian StyleYe, Xiaoyuan, Nicholas Siu Kay Fung, Wai Ching Lam, and Amy Cheuk Yin Lo. 2024. "Nutraceuticals for Diabetic Retinopathy: Recent Advances and Novel Delivery Systems" Nutrients 16, no. 11: 1715. https://doi.org/10.3390/nu16111715
APA StyleYe, X., Fung, N. S. K., Lam, W. C., & Lo, A. C. Y. (2024). Nutraceuticals for Diabetic Retinopathy: Recent Advances and Novel Delivery Systems. Nutrients, 16(11), 1715. https://doi.org/10.3390/nu16111715