Dietary Advanced Glycation End Products (AGEs) and Urinary Fluorescent AGEs in Children and Adolescents: Findings from the Italian I.Family Project
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Ethics
2.3. Physical Examination
2.4. Sample Processing and Analytical Procedures
2.5. Measurement of Urinary AGEs
2.6. Socio-Demographic Data
2.7. Dietary Data
2.8. Dietary AGEs
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ulrich, P.; Cerami, A. Protein Glycation, Diabetes, and Aging. Recent Prog. Horm. Res. 2001, 56, 1–22. [Google Scholar] [CrossRef]
- Rowan, S.; Bejarano, E.; Taylor, A. Mechanistic Targeting of Advanced Glycation End-Products in Age-Related Diseases. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 3631–36433. [Google Scholar] [CrossRef]
- Perrone, A.; Giovino, A.; Benny, J.; Martinelli, F. Advanced Glycation End Products (AGEs): Biochemistry, Signaling, Analytical Methods, and Epigenetic Effects. Oxid. Med. Cell Longev. 2020, 2020, 3818196. [Google Scholar] [CrossRef]
- Li, L.; Zhuang, Y.; Zou, X.; Chen, M.; Cui, B.; Jiao, Y.; Cheng, Y. Advanced Glycation End Products: A Comprehensive Review of Their Detection and Occurrence in Food. Foods 2023, 12, 2103. [Google Scholar] [CrossRef]
- Chaudhuri, J.; Bains, Y.; Guha, S.; Kahn, A.; Hall, D.; Bose, N.; Gugliucci, A.; Kapahi, P. The Role of Advanced Glycation End Products in Aging and Metabolic Diseases: Bridging Association and Causality. Cell Metab. 2018, 28, 337–352. [Google Scholar] [CrossRef]
- Twarda-Clapa, A.; Olczak, A.; Białkowska, A.M.; Koziołkiewicz, M. Advanced Glycation End-Products (AGEs): Formation, Chemistry, Classification, Receptors, and Diseases Related to AGEs. Cells 2022, 11, 1312. [Google Scholar] [CrossRef]
- Gill, V.; Kumar, V.; Singh, K.; Kumar, A.; Kim, J.J. Advanced Glycation End Products (AGEs) May Be a Striking Link between Modern Diet and Health. Biomolecules 2019, 9, 888. [Google Scholar] [CrossRef]
- Reynaert, N.L.; Gopal, P.; Rutten, E.P.A.; Wouters, E.F.M.; Schalkwijk, C.G. Advanced Glycation End Products and Their Receptor in Age-Related, Non-Communicable Chronic Inflammatory Diseases; Overview of Clinical Evidence and Potential Contributions to Disease. Int. J. Biochem. Cell Biol. 2016, 81, 403–418. [Google Scholar] [CrossRef]
- Luévano-Contreras, C.; Gómez-Ojeda, A.; Macías-Cervantes, M.H.; Garay-Sevilla, M.E. Dietary Advanced Glycation End Products and Cardiometabolic Risk. Curr. Diab. Rep. 2017, 17, 63. [Google Scholar] [CrossRef]
- Tian, Z.; Chen, S.; Shi, Y.; Wang, P.; Wu, Y.; Li, G. Dietary Advanced Glycation End Products (DAGEs): An Insight between Modern Diet and Health. Food Chem. 2023, 415, 135735. [Google Scholar] [CrossRef]
- Sharifi-Zahabi, E.; Sharafabad, F.H.; Abdollahzad, H.; Malekahmadi, M.; Rad, N.B. Circulating Advanced Glycation End Products and Their Soluble Receptors in Relation to All-Cause and Cardiovascular Mortality: A Systematic Review and Meta-Analysis of Prospective Observational Studies. Adv. Nutr. 2021, 12, 2157–2171. [Google Scholar] [CrossRef]
- Peppa, M.; Mavroeidi, I. Experimental Animal Studies Support the Role of Dietary Advanced Glycation End Products in Health and Disease. Nutrients 2021, 13, 3467. [Google Scholar] [CrossRef]
- Gupta, A.; Uribarri, J. Dietary Advanced Glycation End Products and Their Potential Role in Cardiometabolic Disease in Children. Horm. Res. Paediatr. 2016, 85, 291–300. [Google Scholar] [CrossRef]
- Liang, Z.; Chen, X.; Li, L.; Li, B.; Yang, Z. The fate of dietary advanced glycation end products in the body: From oral intake to excretion. Crit. Rev. Food Sci. Nutr. 2020, 60, 3475–3491. [Google Scholar] [CrossRef]
- Maasen, K.; Van Greevenbroek, M.M.J.; Scheijen, J.L.J.M.; Van Der Kallen, C.J.H.; Stehouwer, C.D.A.; Schalkwijk, C.G. High Dietary Glycemic Load Is Associated with Higher Concentrations of Urinary Advanced Glycation Endproducts: The Cohort on Diabetes and Atherosclerosis Maastricht (CODAM). Study Am. J. Clin. Nutr. 2019, 110, 358–366. [Google Scholar] [CrossRef]
- Borriello, M.; Lauria, F.; Sirangelo, I.; Aleksandrova, K.; Hebestreit, A.; Siani, A.; Russo, P. Association between Urinary Advanced Glycation End Products and Subclinical Inflammation in Children and Adolescents: Results from the Italian I. Family Cohort. Nutrients 2022, 14, 4135. [Google Scholar] [CrossRef]
- Uribarri, J.; Cai, W.; Peppa, M.; Goodman, S.; Ferrucci, L.; Striker, G.; Vlassara, H. Circulating Glycotoxins and Dietary Advanced Glycation Endproducts: Two Links to Inflammatory Response, Oxidative Stress, and Aging. J. Gerontol. A Biol. Sci. Med. Sci. 2007, 62, 427–433. [Google Scholar] [CrossRef]
- Palaseweenun, P.; Hagen-Plantinga, E.A.; Schonewille, J.T.; Koop, G.; Butre, C.; Jonathan, M.; Wierenga, P.A.; Hendriks, W.H. Urinary excretion of advanced glycation end products in dogs and cats. J. Anim. Physiol. Anim. Nutr. 2021, 105, 149–156. [Google Scholar] [CrossRef]
- Scheijen, J.; Hanssen, N.; Greevenbroek, M.; Kallen, C.; Feskens, E.; Stehouwer, C.; Schalkwijk, C. Dietary intake of advanced glycation endproducts is associated with higher levels of advanced glycation endproducts in plasma and urine: The CODAM study. Clin. Nutr. 2018, 37, 919–925. [Google Scholar] [CrossRef]
- Maza, M.; Bravo, A.; Leiva, L.G.; Petermann, M.; Garrido, F.; Bunout, D.; Hirsch, S.; Barrera, G.; Fernández, M. Fluorescent serum and urinary advanced glycoxidation end-products in non-diabetic subjects. Biol. Res. 2007, 40, 203–212. [Google Scholar] [CrossRef]
- Semba, R.D.; Ang, A.; Talegawkar, S.; Crasto, C.; Dalal, M.; Jardack, P.; Traber, M.G.; Ferrucci, L.; Arab, L. Dietary Intake Associated with Serum versus Urinary Carboxymethyl-Lysine, a Major Advanced Glycation End Product, in Adults: The Energetics Study. Eur. J. Clin. Nutr. 2012, 66, 3–9. [Google Scholar] [CrossRef]
- Steenbeke, M.; De Decker, I.; Marchand, S.; Glorieux, G.; Biesen, W.; Lapauw, B.; Delanghe, J.; Speeckaert, M. Dietary Advanced Glycation End Products in an Elderly Population with Diabetic Nephropathy: An Exploratory Investigation. Nutrients 2022, 14, 1818. [Google Scholar] [CrossRef]
- Sergi, D.; Boulestin, H.; Campbell, F.M.; Williams, L.M. The Role of Dietary Advanced Glycation End Products in Metabolic Dysfunction. Mol. Nutr. Food Res. 2021, 65, e1900934. [Google Scholar] [CrossRef]
- Ahrens, W.; Bammann, K.; Siani, A.; Buchecker, K.; De Henauw, S.; Iacoviello, L.; Hebestreit, A.; Krogh, V.; Lissner, L.; Mårild, S.; et al. The IDEFICS cohort: Design, characteristics and participation in the baseline survey. Int. J. Obes. 2011, 35 (Suppl. S1), S3–S15. [Google Scholar] [CrossRef]
- Ahrens, W.; Siani, A.; Adan, R.; De Henauw, S.; Eiben, G.; Gwozdz, W.; Hebestreit, A.; Hunsberger, M.; Kaprio, J.; Krogh, V.; et al. Family consortium. Cohort Profile: The transition from childhood to adolescence in European children-how I. Family extends the IDEFICS cohort. Int. J. Epidemiol. 2017, 46, 1394–1395j. [Google Scholar] [CrossRef]
- Stomfai, S.; Ahrens, W.; Bammann, K.; Kovacs, E.; Mårild, S.; Michels, N.; Moreno, L.A.; Pohlabeln, H.; Siani, A.; Tornaritis, M.; et al. IDEFICS Consortium. Intra- and inter-observer reliability in anthropometric measurements in children. Int. J. Obes. 2011, 35 (Suppl. S1), S45–S51. [Google Scholar] [CrossRef]
- Cole, T.J.; Lobstein, T. Extended International (IOTF) Body Mass Index Cut-Offs for Thinness, Overweight and Obesity. Pediatr. Obes. 2012, 7, 284–294. [Google Scholar] [CrossRef]
- Ahrens, W.; Moreno, L.A.; Mårild, S.; Molnár, D.; Siani, A.; De Henauw, S.; Böhmann, J.; Günther, K.; Hadjigeorgiou, C.; Iacoviello, L.; et al. Metabolic syndrome in young children: Definitions and results of the IDEFICS study. Int. J. Obes. 2014, 38 (Suppl. S2), S4–S14. [Google Scholar] [CrossRef]
- Alpert, B.S. Validation of the Welch Allyn Spot Vital Signs blood pressure device according to the ANSI/AAMI SP10: 2002. Accuracy and cost-efficiency successfully combined. Blood Press. Monit. 2007, 12, 345–347. [Google Scholar] [CrossRef]
- Peplies, J.; Günther, K.; Gottlieb, A.; Lübke, A.; Bammann, K.; Ahrens, W. Biological samples—Standard operating procedures for collection, shipment, storage and documentation. In Instruments for Health Surveys in Children and Adolescents; Bammann, K., Lissner, L., Pigeot, I., Ahrens, W., Eds.; Springer Series on Epidemiology and Public Health; Springer: Cham, Switzerland, 2019; pp. 57–76. [Google Scholar] [CrossRef]
- Yanagisawa, K.; Makita, Z.; Shiroshita, K.; Ueda, T.; Fusegawa, T.; Kuwajima, S.; Takeuchi, M.; Koike, T. Specific fluorescence assay for advanced glycation end products in blood and urine of diabetic patients. Metabolism 1998, 47, 1348–1353. [Google Scholar] [CrossRef]
- Schneider, S.L. The international standard classification of education 2011. In Class and Stratification Analysis (Comparative Social Research); Birkelund, G.E., Ed.; Emerald Group Publishing Limited: Leeds, UK, 2013; Volume 30, pp. 365–379. [Google Scholar] [CrossRef]
- Murtas, R.; Krogh, V.; Intemann, T.; Lissner, L.; Eiben, G.; Molnár, D.; Moreno, L.A.; Siani, A.; Tornaritis, M.; Veidebaum, T.; et al. Does Providing Assistance to Children and Adolescents Increase Repeatability and Plausibility of Self-Reporting Using a Web-Based Dietary Recall Instrument? J. Acad. Nutr. Diet. 2018, 118, 2324–2330. [Google Scholar] [CrossRef]
- Intemann, T.; Pigeot, I.; De Henauw, S.; Eiben, G.; Lissner, L.; Krogh, V.; Dereń, K.; Molnár, D.; Moreno, L.A.; Russo, P.; et al. Urinary sucrose and fructose to validate self-reported sugar intake in children and adolescents: Results from the I. Family study. Eur. J. Nutr. 2019, 58, 1247–1258. [Google Scholar] [CrossRef]
- Hebestreit, A.; Wolters, M.; Jilani, H.; Eiben, G.; Pala, V. Web-based 24-h dietary recall: The SACANA program. In Instruments for Health Surveys in Children and Adolescents; Bammann, K., Lissner, L., Pigeot, I., Ahrens, W., Eds.; Springer Series on Epidemiology and Public Health; Springer: Cham, Switzerland, 2019; pp. 77–102. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Moubarac, J.C.; Levy, R.B.; Louzada, M.L.C.; Jaime, P.C. The Un Decade of Nutrition, the NOVA Food Classification and the Trouble with Ultra-Processing. Public Health Nutr. 2018, 21, 5–17. [Google Scholar] [CrossRef]
- Lauria, F.; Dello Russo, M.; Formisano, A.; De Henauw, S.; Hebestreit, A.; Hunsberger, M.; Krogh, V.; Intemann, T.; Lissner, L.; Molnar, D.; et al. Ultra-processed foods consumption and diet quality of European children, adolescents and adults: Results from the I. Family study. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 3031–3043. [Google Scholar] [CrossRef]
- Uribarri, J.; Woodruff, S.; Goodman, S.; Cai, W.; Chen, X.U.E.; Pyzik, R.; Yong, A.; Striker, G.E.; Vlassara, H. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J. Am. Diet Assoc. 2010, 110, 911–916.e12. [Google Scholar] [CrossRef]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for Total Energy Intake in Epidemiologic Studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S. [Google Scholar] [CrossRef]
- Koschinsky, T.; He, C.J.; Mitsuhashi, T.; Bucala, R.; Liu, C.; Buenting, C.; Heitmann, K.; Vlassara, H. Orally absorbed reactive glycation products (glycotoxins): An environmental risk factor in diabetic nephropathy. Proc. Natl. Acad. Sci. USA 1997, 94, 6474–6649. [Google Scholar] [CrossRef]
- Bettiga, A.; Fiorio, F.; Di Marco, F.; Trevisani, F.; Romani, A.; Porrini, E.; Salonia, A.; Montorsi, F.; Vago, R. The Modern Western Diet Rich in Advanced Glycation End-Products (AGEs): An Overview of Its Impact on Obesity and Early Progression of Renal Pathology. Nutrients 2019, 11, 1748. [Google Scholar] [CrossRef]
- Aglago, E.K.; Mayén, A.L.; Knaze, V.; Freisling, H.; Fedirko, V.; Hughes, D.J.; Jiao, L.; Eriksen, A.K.; Tjønneland, A.; Boutron-Ruault, M.C.; et al. Dietary Advanced Glycation End-Products and Colorectal Cancer Risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Nutrients 2021, 13, 3132. [Google Scholar] [CrossRef]
- Ruiz, H.H.; Ramasamy, R.; Schmidt, A.M. Advanced Glycation End Products: Building on the Concept of the “Common Soil” in Metabolic Disease. Endocrinology 2020, 161, bqz006. [Google Scholar] [CrossRef]
- Koyama, A.K.; Pavkov, M.E.; Wu, Y.; Siegel, K.R. Is Dietary Intake of Advanced Glycation End Products Associated with Mortality among Adults with Diabetes? Nutr. Metab. Cardiovasc. Dis. 2022, 32, 1402–1409. [Google Scholar] [CrossRef] [PubMed]
- Scheijen, J.; Clevers, E.; Engelen, L.; Dagnelie, P.C.; Brouns, F.; Stehouwer, C.D.A.; Schalkwijk, C.G. Analysis of advanced glycation endproducts in selected food items by ultra-performance liquid chromatography tandem mass spectrometry: Presentation of a dietary AGE database. Food Chem. 2016, 190, 1145–1150. [Google Scholar] [CrossRef] [PubMed]
- Cordova, R.; Knaze, V.; Viallon, V.; Rust, P.; Schalkwijk, C.G.; Weiderpass, E.; Wagner, K.H.; Mayen-Chacon, A.L.; Aglago, E.K.; Dahm, C.C.; et al. Dietary intake of advanced glycation end products (AGEs) and changes in body weight in European adults. Eur. J. Nutr. 2020, 59, 2893–2904. [Google Scholar] [CrossRef] [PubMed]
- Vlassara, H.; Cai, W.; Goodman, S.; Pyzik, R.; Yong, A.; Chen, X.; Zhu, L.; Neade, T.; Beeri, M.; Silverman, J.M.; et al. Protection against loss of innate defenses in adulthood by low advanced glycation end products (AGE) intake: Role of the antiinflammatory AGE receptor-1. J. Clin. Endocrinol. Metab. 2009, 94, 4483–4491. [Google Scholar] [CrossRef] [PubMed]
- Uribarri, J.; Cai, W.; Woodward, M.; Tripp, E.; Goldberg, L.; Pyzik, R.; Yee, K.; Tansman, L.; Chen, X.; Mani, V.; et al. Elevated serum advanced glycation end products in obese indicate risk for the metabolic syndrome: A link between healthy and unhealthy obesity? J. Clin. Endocrinol. Metab. 2015, 100, 1957–1966. [Google Scholar] [CrossRef] [PubMed]
- Vasilj, M.; Goni, L.; Gayoso, L.; Razquin, C.; Sesma, M.T.; Etxeberria, U.; Ruiz-Canela, M. Correlation between serum advanced glycation end products and dietary intake of advanced glycation end products estimated from home cooking and food frequency questionnaires. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 1768–1777. [Google Scholar] [CrossRef] [PubMed]
- Mendes, N.P.; Cândido, F.G.; Valente, F.X.; Peluzio, M.D.C.G.; Juvanhol, L.L.; Alfenas, R.C.G. Dietary advanced glycation end products, body composition, and anthropometric measures: A cross-sectional analysis in women with excess body weight. Nutr. Metab. Cardiovasc. Dis. 2024, 34, 1721–1730. [Google Scholar] [CrossRef] [PubMed]
- Sebeková, K.; Somoza, V.; Jarcusková, M.; Heidland, A.; Podracká, L. Plasma advanced glycation end products are decreased in obese children compared with lean controls. Int. J. Pediatr. Obes. 2009, 4, 112–118. [Google Scholar] [CrossRef]
- Accacha, S.; Rosenfeld, W.; Jacobson, A.; Michel, L.; Schnurr, F.J.; Shelov, S.; Ten, S.; Boucher-Berry, C.; Carey, D.E.; Speiser, P.W.; et al. Plasma advanced glycation end products (AGEs), receptors for AGEs and their correlation with inflammatory markers in middle school-age children. Horm. Res. Paediatr. 2013, 80, 318–327. [Google Scholar] [CrossRef]
- Bammann, K.; Lissner, L.; Pigeot, I.; Ahrens, W. (Eds.) Instruments for Health Surveys in Children and Adolescents; Springer Series on Epidemiology and Public Health; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
dAGEs Tertiles | |||
---|---|---|---|
I (n = 349) | II (n = 350) | III (n = 349) | |
dAGEs (kU/day) | 6942 ± 3910 | 14,002 ± 5596 | 28,412 ± 41,547 |
dAGEs (kU/1000 kcal/day) | 3675 ± 1342 | 7599 ± 1212 | 17,322 ± 38,713 |
Age (years) | 11.6 ± 1.9 | 11.6 ± 2.1 | 11.6 ± 2.1 |
Sex (Female%) | 50.1 | 50.3 | 47.3 |
ISCED | |||
Low | 13.5 | 17.1 | 17.6 |
Medium | 66.9 | 62.3 | 62.4 |
High | 19.6 | 20.7 | 20.0 |
BMI z-score | 1.20 ± 1.01 | 1.17 ± 1.05 | 1.19 ± 1.10 |
WC z-score | 1.34 ± 1.19 | 1.36 ± 1.23 | 1.36 ± 1.24 |
Overweight/obese % | 50.1 | 45.4 | 50.1 |
SBP z-score | 0.21 ± 0.83 | 0.18 ± 0.76 | 0.16 ± 0.76 |
DBP z-score | 0.24 ± 0.58 | 0.27 ± 0.56 | 0.22 ± 0.52 |
(n = 187) | (n = 178) | (n = 179) | |
Urinary AGEs (AU) | 303 ± 132 | 301 ± 108 | 298 ± 122 |
Dependent Variable | Independent Variables | B (SE) | p-Value |
---|---|---|---|
Urinary AGEs (AU) | Age (years) | −24.11 (3.06) | <0.0001 |
Sex (m/f) | 11.56 (9.93) | ns | |
BMI z-score | −7.94 (4.68) | ns | |
dAGEs (category) | −1.08 (6.04) | ns |
dAGE Tertiles (kU/1000 kcal) | |||
---|---|---|---|
I (n = 349) | II (n = 350) | III (n = 349) | |
Energy (kcal/day) | 1807 (1716–1898) | 1790 (1705–1875) | 1778 (1690–1866) |
Protein (g/1000 kcal) | 34.1 (32.7–35.6) a,c | 38.5 (37.1–39.8) b,c | 42.7 (41.3–44.1) a,b |
Fat (g/1000 kcal) | 27.6 (26.2–29.0) a,c | 32.5 (31.1–33.8) b,c | 35.0 (33.6–36.3) a,b |
SFA (g/1000 kcal) | 10.2 (9.6–10.9) a,c | 12.0 (11.4–12.6) c | 12.0 (11.4–12.6) a |
CHO (g/1000 kcal) | 151.1 (147.7–154.6) a,c | 137.1 (133.9–140.3) b,c | 126.9 (123.6–130.2) a,b |
Sugars (g/1000 kcal) | 38.5 (36.2–40.8) | 41.1 (38.9–43.2) | 41.5 (39.3–43.7) |
Fibre (g/1000 kcal) | 7.9 (7.5–8.3) | 7.8 (7.4–8.1) | 7.5 (7.1–7.9) |
UPF (%TEI) | 42.3 (40.0–44.7) a | 44.1 (41.8–46.3) b | 38.0 (35.7–40.3) a,b |
dAGEs Tertiles (kU/1000 kcal) | |||||
---|---|---|---|---|---|
All (n = 1048) | I (n = 349) | II (n = 350) | III (n = 349) | p-Value | |
Proteic dishes (non-UPFs) | 43.1 ± 32.3 | 37.1 ± 29.0 | 45.6 ± 31.9 | 46.6 ± 35.0 | <0.001 |
Meat | 21.6 ± 29.8 | 11.9 ± 22.8 | 27.8 ± 30.9 | 25.2 ± 32.3 | <0.001 |
Breaded meat | 7.2 ± 21.0 | 0.4 ± 5.4 | 5.4 ± 18.6 | 15.9 ± 28.7 | <0.001 |
Fish | 2.2 ± 9.2 | 4.7 ± 14.0 | 1.2 ± 5.9 | 0.7 ± 3.7 | <0.001 |
Cheese | 7.3 ± 15.3 | 11.7 ± 19.4 | 6.6 ± 13.7 | 3.6 ± 10.2 | <0.001 |
Parmigiana | 0.9 ± 7.2 | 0.8 ± 6.8 | 1.5 ± 9.9 | 0.4 ± 3.0 | ns |
Eggs | 0.8 ± 5.1 | 1.2 ± 6.0 | 1.0 ± 6.3 | 0.2 ± 1.5 | 0.005 |
Processed meat | 3.0 ± 7.9 | 6.2 ± 12.3 | 2.2 ± 4.2 | 0.7 ± 1.8 | <0.001 |
Proteic dishes (UPFs) | 12.6 ± 24.2 | 10.7 ± 22.8 | 14.0 ± 24.6 | 13.1 ± 25.2 | ns |
Pizza | 12.0 ± 25.4 | 3.0 ± 13.1 | 12.1 ± 25.1 | 20.8 ± 31.2 | <0.001 |
Pasta/cereal-based dishes | 5.5 ± 10.1 | 9.6 ± 14.1 | 4.6 ± 7.7 | 2.2 ± 4.5 | <0.001 |
Lasagna | 2.6 ± 12.6 | 0.2 ± 3.8 | 1.8 ± 10.8 | 5.6 ± 18.2 | <0.001 |
Filled pasta (UPFs) | 0.9 ± 6.3 | 1.0 ± 8.0 | 1.1 ± 6.3 | 0.8 ± 3.8 | ns |
Potatoes | 1.0 ± 5.8 | 1.2 ± 7.4 | 1.3 ± 6.3 | 0.5 ± 2.6 | ns |
Bread | 0.4 ± 2.5 | 0.8 ± 4.2 | 0.2 ± 1.0 | 0.1 ± 0.3 | <0.001 |
Crackers (UPFs) | 1.0 ± 4.8 | 2.2 ± 8.0 | 0.6 ± 1.2 | 0.3 ± 0.7 | <0.001 |
Salty pies | 1.1 ± 6.3 | 2.2 ± 10.0 | 0.7 ± 3.6 | 0.4 ± 1.7 | <0.001 |
Snacks (UPFs) | 5.6 ± 11.7 | 7.6 ± 13.8 | 5.6 ± 10.8 | 3.8 ± 9.8 | <0.001 |
Salty snack (UPFs) | 1.5 ± 5.3 | 2.4 ± 6.9 | 1.2 ± 3.5 | 1.0 ± 4.7 | <0.001 |
Sweet snack (UPFs) | 4.1 ± 10.5 | 5.2 ± 12.3 | 4.3 ± 10.3 | 2.8 ± 8.6 | <0.001 |
Cakes/sweets (not UPFs) | 5.5 ± 10.3 | 10.1 ± 15.2 | 4.4 ± 6.3 | 2.1 ± 3.8 | <0.001 |
Cookies (not UPFs) | 3.2 ± 7.8 | 6.1 ± 12.0 | 2.5 ± 4.5 | 1.1 ± 2.2 | <0.001 |
Bakery Brioches/croissant | 1.0 ± 4.2 | 1.9 ± 6.7 | 0.7 ± 2.0 | 0.4 ± 1.2 | <0.001 |
Handmade/bakery sweets | 1.3 ± 5.5 | 2.1 ± 8.0 | 1.2 ± 4.2 | 0.6 ± 3.0 | <0.001 |
Sauces (UPFs) | 0.3 ± 2.0 | 0.3 ± 2.4 | 0.4 ± 1.9 | 0.3 ± 1.7 | <0.001 |
Sauces not (UPFs) | 3.3 ± 6.8 | 5.8 ± 9.7 | 3.0 ± 5.4 | 1.0 ± 2.2 | <0.001 |
Oil | 2.1 ± 5.3 | 3.1 ± 7.6 | 2.0 ± 4.2 | 1.0 ± 2.4 | <0.001 |
Butter/cream | 0.6 ± 4.6 | 1.1 ± 7.0 | 0.5 ± 3.0 | 0.3 ± 2.4 | 0.02 |
Nuts/dried fruits | 0.6 ± 3.2 | 0.7 ± 3.7 | 0.7 ± 3.5 | 0.3 ± 2.0 | ns |
Vegetables | 1.6 ± 6.1 | 2.7 ± 8.4 | 1.3 ± 5.2 | 0.8 ± 3.3 | <0.001 |
Fruit | 0.10 ± 0.35 | 0.20 ± 0.57 | 0.07 ± 0.14 | 0.03 ± 0.07 | <0.001 |
Soft drinks | 0.06 ± 0.18 | 0.12 ± 0.29 | 0.05 ± 0.08 | 0.03 ± 0.05 | <0.001 |
Milk and yogurt | 0.04 ± 0.08 | 0.07 ± 0.13 | 0.02 ± 0.03 | 0.01 ± 0.02 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dello Russo, M.; Sirangelo, I.; Lauria, F.; Formisano, A.; Iannuzzi, C.; Hebestreit, A.; Pala, V.; Siani, A.; Russo, P. Dietary Advanced Glycation End Products (AGEs) and Urinary Fluorescent AGEs in Children and Adolescents: Findings from the Italian I.Family Project. Nutrients 2024, 16, 1831. https://doi.org/10.3390/nu16121831
Dello Russo M, Sirangelo I, Lauria F, Formisano A, Iannuzzi C, Hebestreit A, Pala V, Siani A, Russo P. Dietary Advanced Glycation End Products (AGEs) and Urinary Fluorescent AGEs in Children and Adolescents: Findings from the Italian I.Family Project. Nutrients. 2024; 16(12):1831. https://doi.org/10.3390/nu16121831
Chicago/Turabian StyleDello Russo, Marika, Ivana Sirangelo, Fabio Lauria, Annarita Formisano, Clara Iannuzzi, Antje Hebestreit, Valeria Pala, Alfonso Siani, and Paola Russo. 2024. "Dietary Advanced Glycation End Products (AGEs) and Urinary Fluorescent AGEs in Children and Adolescents: Findings from the Italian I.Family Project" Nutrients 16, no. 12: 1831. https://doi.org/10.3390/nu16121831
APA StyleDello Russo, M., Sirangelo, I., Lauria, F., Formisano, A., Iannuzzi, C., Hebestreit, A., Pala, V., Siani, A., & Russo, P. (2024). Dietary Advanced Glycation End Products (AGEs) and Urinary Fluorescent AGEs in Children and Adolescents: Findings from the Italian I.Family Project. Nutrients, 16(12), 1831. https://doi.org/10.3390/nu16121831