Effect of the Administration of Cordyceps militaris Mycelium Extract on Blood Markers for Anemia in Long-Distance Runners
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Research Protocol
2.3. Test Foods
2.4. Blood Tests
2.5. Statistical Analysis
3. Results
3.1. Background Characteristics of the Subjects during Study Period
3.2. Blood Test Markers Related to Oxygen Transport Capacity
3.3. Other Blood Test Markers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Yue, K.; Ye, M.; Zhou, Z.; Sun, W.; Lin, X. The genus Cordyceps: A chemical and pharmacological review. J. Pharm. Pharmacol. 2013, 65, 474–493. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.X.; Wang, S.; Nie, S.; Marcone, M. Properties of Cordyceps sinensis: A review. J. Funct. Foods 2013, 5, 550–569. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Hang, Y.; Chen, X.X.; Zheng, S.C.; Chen, P.; Mo, M.H. The Mechanisms of pharmacological activities of Ophiocordyceps sinensis fungi. Phytother. Res. 2016, 30, 1572–1583. [Google Scholar] [CrossRef] [PubMed]
- Olatunji, O.J.; Tang, J.; Tola, A.; Auberon, F.; Oluwaniyi, O.; Ouyang, Z. The genus Cordyceps: An extensive review of its traditional uses, phytochemistry and pharmacology. Fitoterapia 2018, 129, 293–316. [Google Scholar] [CrossRef] [PubMed]
- Yahagi, N. Illustrated catalogue of Japanese Cordyceps (Entomonogenous fungi): The Yahagi collection of Japanese Cordyceps stored in the Tohoku University museum. Bull. Tohoku Univ. Mus. 2008, 8, 29–89. [Google Scholar]
- Nagata, A.; Tajima, T.; Moriyasu, S. Effectiveness on ingestion with Cordyceps sinensis drinks during running exercise of human. J. Ex. Sports Physiol. 2002, 9, 85–92. [Google Scholar]
- Chen, C.Y.; Hou, C.W.; Bernard, J.R.; Chen, C.C.; Hung, T.C.; Cheng, L.L.; Liao, Y.H.; Kuo, C.H. Rhodiola crenulata- and Cordyceps sinensis-based supplement boosts aerobic exercise performance after short-term high altitude training. High Alt. Med. Biol. 2014, 15, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Muramatsu, I.; Omagari, S. Effectiveness on ingestion with edible sweet potato tops and Codyceps sinensis on male mid- and long-distance runners. Ann. Fitness Sports Sci. 2016, 52, 1–11. [Google Scholar]
- Clénin, G.; Cordes, M.; Huber, A.; Schumacher, Y.O.; Noack, P.; Scales, J.; Kriemler, S. Iron deficiency in sports—Definition, influence on performance and therapy. Swiss Med. Wkly. 2015, 145, w14196. [Google Scholar] [CrossRef]
- Damian, M.T.; Vulturar, R.; Login, C.C.; Damian, L.; Chis, A.; Bojan, A. Anemia in sports: A narrative review. Life 2021, 11, 987. [Google Scholar] [CrossRef]
- Manabe, N.; Azuma, Y.; Sugimoto, M.; Uchio, K.; Miyamoto, M.; Taketomo, N.; Tsuchita, H.; Miyamoto, H. Effects of the mycelial extract of cultured Cordyceps sinensis on in vivo hepatic energy metabolism and blood flow in dietary hypoferric anaemic mice. Br. J. Nutr. 2000, 83, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Li, Z.; Krochmal, R.; Abrazado, M.; Kim, W.; Cooper, C.B. Effect of Cs-4 (Cordyceps sinensis) on exercise performance in healthy older subjects: A double-blind, placebo-controlled trial. J. Altern. Complement. Med. 2010, 16, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.H.; Chao, Y.C.; Sim, B.Y.; Lin, H.M.; Chen, M.T.; Chen, C.Y. Rhodiola/Cordyceps-based herbal supplement promotes endurance training-improved body composition but not oxidative stress and metabolic biomarkers: A preliminary randomized controlled study. Nutrients 2019, 11, 2357. [Google Scholar] [CrossRef] [PubMed]
- Earnest, C.P.; Morss, G.M.; Wyatt, F.; Jordan, A.N.; Colson, S.; Church, T.S.; Fitzgerald, Y.; Autrey, L.; Jurca, R.; Lucia, A. Effects of a commercial herbal-based formula on exercise performance in cyclists. Med. Sci. Sports Exerc. 2004, 36, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Parcell, A.C.; Smith, J.M.; Schulthies, S.S.; Myrer, J.W.; Fellingham, G. Cordyceps sinensis (CordyMax Cs-4) supplementation does not improve endurance exercise performance. Int. J. Sport Nutr. Exerc. Metab. 2004, 14, 236–242. [Google Scholar] [CrossRef]
- Colson, S.N.; Wyatt, F.B.; Johnston, D.L.; Autrey, L.D.; FitzGerald, Y.L.; Earnest, C.P. Cordyceps sinensis- and Rhodiola rosea-based supplementation in male cyclists and its effect on muscle tissue oxygen saturation. J. Strength Cond. Res. 2005, 19, 358–363. [Google Scholar] [PubMed]
- Andrews, N.C. Disorders of iron metabolism. N. Engl. J. Med. 1999, 341, 1986–1995. [Google Scholar] [CrossRef] [PubMed]
- Hentze, M.W.; Muckenthaler, M.U.; Andrews, N.C. Balancing acts: Molecular control of mammalian iron metabolism. Cell 2004, 117, 285–297. [Google Scholar] [CrossRef] [PubMed]
- Knovich, M.A.; Storey, J.A.; Coffman, L.G.; Torti, S.V.; Torti, F.M. Ferritin for the clinician. Blood Rev. 2009, 23, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Knovich, M.A.; Coffman, L.G.; Torti, F.M.; Torti, S.V. Serum ferritin: Past, present and future. Biochim. Biophys. Acta 2010, 1800, 760–769. [Google Scholar] [CrossRef]
- Jelkmann, W. Erythropoietin after a century of research: Younger than ever. Eur. J. Haematol. 2007, 78, 183–205. [Google Scholar] [CrossRef] [PubMed]
- Bird, S.R.; Linden, M.; Hawley, J.A. Acute changes to biomarkers as a consequence of prolonged strenuous running. Ann. Clin. Biochem. 2014, 51, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Bernat-Adell, M.D.; Collado-Boira, E.J.; Moles-Julio, P.; Panizo-González, N.; Martínez-Navarro, I.; Hernando-Fuster, B.; Hernando-Domingo, C. Recovery of inflammation, cardiac, and muscle damage biomarkers after running a marathon. J. Strength Cond. Res. 2021, 35, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Da Ponte, A.; Giovanelli, N.; Antonutto, G.; Nigris, D.; Curcio, F.; Cortese, P.; Lazzer, S. Changes in cardiac and muscle biomarkers following an uphill-only marathon. Res. Sports Med. 2018, 26, 100–111. [Google Scholar] [CrossRef]
- Qian, G.M.; Pan, G.F.; Guo, J.Y. Anti-inflammatory and antinociceptive effects of cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis. Nat. Prod. Res. 2012, 26, 2358–2362. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Wang, W.; Zhang, H.; Zhang, X.; Han, C. The chemical constituents and pharmacological actions of Cordyceps sinensis. Evid. Based Complement. Alternat. Med. 2015, 2015, 575063. [Google Scholar]
Groups | 0 Week | 4 Weeks | 8 Weeks | 16 Weeks | |
---|---|---|---|---|---|
Body weight (kg) | Placebo | 56.6 ± 4.4 | 56.4 ± 4.8 | 56.8 ± 4.8 | 57.3 ± 5.0 |
CM | 57.2 ± 4.3 | 57.0 ± 4.0 | 57.1 ± 3.8 | 57.7 ± 3.8 | |
Body mass index (kg/m2) | Placebo | 19.5 ± 0.9 | 19.4 ± 1.0 | 19.5 ± 1.1 | 19.7 ± 1.0 |
CM | 19.4 ± 1.3 | 19.3 ± 1.2 | 19.4 ± 1.2 | 19.6 ± 1.4 | |
Body fat percentage (%) | Placebo | 14.5 ± 2.1 | 14.0 ± 2.3 | 14.4 ± 2.5 | 14.4 ± 2.3 |
CM | 14.0 ± 2.5 | 13.7 ± 2.5 | 14.7 ± 2.7 | 14.0 ± 2.9 | |
Skeletal muscle percentage (%) | Placebo | 41.8 ± 1.4 | 42.3 ± 1.5 | 42.0 ± 1.6 | 42.1 ± 1.4 |
CM | 41.8 ± 1.3 | 42.1 ± 1.6 | 41.6 ± 1.6 | 42.0 ± 1.9 | |
Basal metabolic rate (kcal) | Placebo | 1452.6 ± 74.7 | 1451.6 ± 80.5 | 1455.7 ± 81.1 | 1466.1 ± 85.6 |
CM | 1463.7 ± 70.3 | 1461.2 ± 65.2 | 1459.9 ± 63.1 | 1473 4 ± 62.4 |
Groups | August | September | October | November | Total |
---|---|---|---|---|---|
Placebo (km) | 485.1 ± 127.5 | 432.0 ± 54.3 | 488.7 ± 44.3 | 326.2 ± 66.2 | 1732.0 ± 231.9 |
CM (km) | 474.3 ± 107.5 | 369.8 ± 133.9 | 456.3 ± 115.2 | 323.0 ± 83.8 | 1623.5 ± 389.1 |
Groups | Pre-Intervention | Post-Intervention | p |
---|---|---|---|
Placebo (km) | 15:18.82 ± 00:31.60 | 14:54.44 ± 00:32.00 | <0.001 |
CM (km) | 15:22.75 ± 00:35.31 | 14:55.98 ± 00:33.93 | <0.001 |
Dietary Components | Weeks | Placebo Group | CM Group |
---|---|---|---|
Iron (mg/1000 kcal) | 0 week | 4.35 ± 0.94 | 4.29 ± 0.87 |
4 weeks | 3.98 ± 0.85 | 3.78 ± 0.67 | |
8 weeks | 4.10 ± 0.65 | 4.26 ± 1.01 | |
12 weeks | 4.14 ± 0.68 | 3.80 ±0.65 | |
16 weeks | 4.24 ± 0.76 | 4.19 ± 0.67 | |
Vitamin C (mg/1000 cal) | 0 week | 60.55 ± 19.43 | 55.45 ± 16.08 |
4 weeks | 50.39 ± 23.94 | 48.55 ± 15.67 | |
8 weeks | 50.35 ± 19.17 | 50.94 ± 21.06 | |
12 weeks | 55.53 ± 23.78 | 54.58 ± 16.22 | |
16 weeks | 55.45 ± 21.76 | 59.79 ± 20.51 |
Groups | 0 Week | 4 Weeks | 8 Weeks | 16 Weeks | |
---|---|---|---|---|---|
Red blood cells (104/mL) | Placebo | 487.36 ± 40.26 | 487.36 ± 41.26 | 485.00 ± 38.61 | 492.82 ± 34.90 |
CM | 489.09 ± 35.00 | 491.73 ± 39.37 | 502.55 ± 37.50 | 495.64 ± 34.56 | |
Mann–Whitney U | NS | NS | NS | NS | |
Hemoglobin (g/dL) | Placebo | 14.85 ± 1.14 | 14.83 ± 1.04 | 14.84 ± 1.14 | 14.96 ± 1.00 |
CM | 14.85 ± 0.79 | 14.92 ± 0.78 | 15.33 ± 0.98 | 15.00 ± 0.94 | |
Mann–Whitney U | NS | NS | NS | NS | |
Hematocrit (%) | Placebo | 44.01 ± 3.08 | 43.81 ± 2.83 | 43.55 ± 3.01 | 44.87 ± 2.68 |
CM | 44.22 ± 1.90 | 44.36 ± 2.40 | 45.05 ± 2.30 | 45.46 ± 2.37 | |
Mann–Whitney U | NS | NS | NS | NS | |
Iron (mg/mL) | Placebo | 112.45 ± 37.45 | 110.00 ± 24.42 | 110.00 ± 37.62 | 89.82 ± 25.96 |
CM | 128.64 ± 27.93 | 120.45 ± 23.66 | 127.82 ± 26.62 | 94.82 ± 33.94 | |
Mann–Whitney U | NS | NS | NS | NS | |
TSAT (%) | Placebo | 34.28 ± 11.6 | 33.28 ± 7.6 | 32.22 ± 9.52 | 28.07 ± 7.97 |
CM | 40.29 ± 8.94 | 37.73 ± 8.77 | 38.62 ± 9.39 | 29.62 ± 9.49 | |
Mann–Whitney U | NS | NS | NS | NS | |
UIBC (mg/dL) | Placebo | 217.45 ± 44.62 | 222.27 ± 35.40 | 226.82 ± 27.51 | 230.73 ± 32.35 |
CM | 192.82 ± 40.45 | 204.09 ± 48.76 | 206.36 ± 41.90 | 222.82 ± 34.03 * | |
Mann–Whitney U | NS | NS | NS | NS | |
TIBC (mg/dL) | Placebo | 329.91 ± 22.54 | 332.27 ± 28.02 | 336.82 ± 31.91 | 320.55 ± 22.78 |
CM | 321.45 ± 34.49 | 324.55 ± 39.83 | 334.18 ± 25.43 | 317.64 ± 37.10 | |
Mann–Whitney U | NS | NS | NS | NS | |
Ferritin (ng/mL) | Placebo | 56.42 ± 33.06 | 51.46 ± 25.54 | 39.02 ± 21.79 *** | 51.06 ± 35.43 |
CM | 60.28 ± 32.13 | 68.86 ± 32.80 | 64.89 ± 39.94 | 67.43 ± 36.15 | |
Mann–Whitney U | NS | NS | NS | NS | |
Erythropoietin (mIU/mL) | Placebo | 6.75 ± 1.74 | 6.82 ± 1.99 | 7.58 ± 1.87 | 9.16 ± 1.98 * |
CM | 6.98 ± 2.14 | 6.44 ± 1.71 | 8.05 ± 2.17 | 10.55 ± 2.96 * | |
Mann–Whitney U | NS | NS | NS | NS | |
White blood cells (/mL) | Placebo | 7127 ± 1861 | 6081 ± 1031 | 5100 ± 1037 ** | 5918 ± 643 |
CM | 5627 ± 716 | 5518 ± 753 | 5327 ± 752 | 5236 ± 452 | |
Mann–Whitney U | <0.05 | NS | NS | <0.05 | |
Total protein (g/dL) | Placebo | 7.32 ± 0.35 | 7.34 ± 0.37 | 7.17 ± 0.33 | 7.14 ± 0.34 |
CM | 7.24 ± 0.30 | 7.30 ± 0.17 | 7.35 ± 0.38 | 7.19 ± 0.25 | |
Mann–Whitney U | NS | NS | NS | NS | |
Triglyceride (mg/dL) | Placebo | 47.82 ± 29.23 | 41.36 ± 16.16 | 53.55 ± 19.59 | 82.09 ± 35.77 * |
CM | 50.27 ± 21.74 | 47.55 ± 14.43 | 61.91 ± 29.87 | 77.91 ± 32.63 * | |
Mann–Whitney U | NS | NS | NS | NS | |
Total cholesterol (mg/dL) | Placebo | 182.27 ± 32.05 | 184.00 ± 33.37 | 185.64 ± 31.33 | 188.73 ± 29.07 |
CM | 172.27 ± 18.55 | 175.64 ± 19.61 | 177.64 ± 22.38 | 177.82 ± 22.95 | |
Mann–Whitney U | NS | NS | NS | NS | |
HDL cholesterol (mg/dL) | Placebo | 77.36 ± 15.23 | 79.18 ± 14.30 | 80.64 ± 15.64 | 75.45 ± 13.49 |
CM | 68.73 ± 14.54 | 71.91 ± 12.96 | 71.18 ± 14.28 | 69.18 ± 14.93 | |
Mann–Whitney U | NS | NS | NS | NS | |
Creatine kinase (U/L) | Placebo | 427.91 ± 399.60 | 645.73 ± 636.14 | 280.45 ± 164.85 | 384.64 ± 188.84 |
CM | 336.73 ± 249.79 | 402.00 ± 239.84 | 203.18 ± 113.12 * | 225.82 ± 109.49 | |
Mann–Whitney U | NS | NS | NS | <0.05 |
Groups | 0 Week | 4 Weeks | 8 Weeks | 16 Weeks | |
---|---|---|---|---|---|
GT (IU/L) | Placebo | 22.73 ± 5.35 | 24.55 ± 8.04 | 23.45 ± 7.93 | 22.00 ± 5.50 |
CM | 21.45 ± 5.65 | 24.73 ± 10.90 | 24.09 ± 8.13 | 21.09 ± 5.99 | |
Mann–Whitney U | NS | NS | NS | NS | |
AST (U/L) | Placebo | 39.45 ± 22.15 | 46.00 ± 27.04 | 32.00 ± 10.14 | 38.55 ± 13.84 |
CM | 29.27 ± 8.91 | 33.27 ± 12.77 | 26.00 ± 6.26 | 28.55 ± 6.68 | |
Mann–Whitney U | NS | NS | NS | NS | |
ALT (U/L) | Placebo | 7.32 ± 0.35 | 7.34 ± 0.37 | 7.17 ± 0.33 | 7.14 ± 0.34 |
CM | 7.24 ± 0.30 | 7.30 ± 0.17 | 7.35 ± 0.38 | 7.19 ± 0.25 | |
Mann–Whitney U | NS | NS | NS | NS | |
C-reacting protein (mg/dL) | Placebo | 0.36 ± 0.89 | 0.05 ± 0.06 | 0.02 ± 0.01 ** | 0.05 ± 0.02 |
CM | 0.05 ± 0.03 | 0.04 ± 0.01 | 0.04 ± 0.01 | 0.06 ± 0.03 | |
Mann–Whitney U | NS | NS | NS | NS | |
Urea nitrogen (mg/dL) | Placebo | 19.85 ± 5.93 | 18.51 ± 4.56 | 15.09 ± 2.99 *** | 15.62 ± 3.41 ** |
CM | 18.92 ± 6.37 | 17.75 ± 5.12 | 14.32 ± 3.28 *** | 15.21 ± 4.78 * | |
Mann–Whitney U | NS | NS | NS | NS | |
Uric acid (mg/dL) | Placebo | 5.78 ± 0.80 | 5.92 ± 0.95 | 5.51 ± 0.83 | 4.95 ± 0.66 * |
CM | 5.85 ± 0.89 | 5.86 ± 0.65 | 5.34 ± 0.65 | 4.94 ± 0.78 | |
Mann–Whitney U | NS | NS | NS | NS | |
Creatinine (mg/dL) | Placebo | 0.78 ± 0.08 | 0.78 ± 0.09 | 0.75 ± 0.07 | 0.78 ± 0.08 |
CM | 0.82 ± 0.06 | 0.83 ± 0.08 | 0.79 ± 0.06 | 0.80 ± 0.05 | |
Mann–Whitney U | NS | NS | NS | NS | |
Testosterone (ng/mL/L) | Placebo | 6.25 ± 1.85 | 6.09 ± 2.14 | 6.05 ± 1.83 | 6.09 ± 1.95 |
CM | 7.24 ± 2.39 | 7.05 ± 2.33 | 7.12 ± 2.16 | 7.01 ± 1.76 | |
Mann–Whitney U | NS | NS | NS | NS | |
Sodium (mEq/L) | Placebo | 140.36 ± 1.29 | 140.18 ± 0.87 | 140.00 ± 1.00 | 140.91 ± 0.94 |
CM | 141.18 ± 1.17 | 140.73 ± 1.27 | 140.45 ± 1.04 | 141.27 ± 1.35 | |
Mann–Whitney U | NS | NS | NS | NS | |
Potassium (mEq/L) | Placebo | 4.35 ± 0.41 | 4.17 ± 0.28 | 4.14 ± 0.29 | 4.32 ± 0.24 |
CM | 4.12 ± 0.15 | 4.15 ± 0.29 | 4.15 ± 0.20 | 4.39 ± 0.34 | |
Mann–Whitney U | NS | NS | NS | NS | |
Calcium (mg/dL) | Placebo | 9.41 ± 0.23 | 9.35 ± 0.25 | 9.45 ± 0.23 | 9.41 ± 0.21 |
CM | 9.41 ± 0.20 | 9.44 ± 0.31 | 9.52 ± 0.20 | 9.51 ± 0.29 | |
Mann–Whitney U | NS | NS | NS | NS | |
Magnesium (mg/dL) | Placebo | 2.31 ± 0.11 | 2.30 ± 0.13 | 2.23 ± 0.13 | 2.32 ± 0.10 |
CM | 2.25 ± 0.09 | 2.26 ± 0.12 | 2.23 ± 0.12 | 2.29 ± 0.11 | |
Mann–Whitney U | NS | NS | NS | NS | |
Chloride (mEq/L) | Placebo | 103.27 ± 1.10 | 103.64 ± 0.92 | 103.09 ± 1.30 | 103.45 ± 1.13 |
CM | 103.55 ± 1.21 | 103.00 ± 1.34 | 103.00 ± 1.57 | 103.82 ± 1.25 | |
Mann–Whitney U | NS | NS | NS | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakamura, A.; Shinozaki, E.; Suzuki, Y.; Santa, K.; Kumazawa, Y.; Kobayashi, F.; Nagaoka, I.; Koikawa, N. Effect of the Administration of Cordyceps militaris Mycelium Extract on Blood Markers for Anemia in Long-Distance Runners. Nutrients 2024, 16, 1835. https://doi.org/10.3390/nu16121835
Nakamura A, Shinozaki E, Suzuki Y, Santa K, Kumazawa Y, Kobayashi F, Nagaoka I, Koikawa N. Effect of the Administration of Cordyceps militaris Mycelium Extract on Blood Markers for Anemia in Long-Distance Runners. Nutrients. 2024; 16(12):1835. https://doi.org/10.3390/nu16121835
Chicago/Turabian StyleNakamura, Akira, Eri Shinozaki, Yoshio Suzuki, Kazuki Santa, Yoshio Kumazawa, Fumio Kobayashi, Isao Nagaoka, and Natsue Koikawa. 2024. "Effect of the Administration of Cordyceps militaris Mycelium Extract on Blood Markers for Anemia in Long-Distance Runners" Nutrients 16, no. 12: 1835. https://doi.org/10.3390/nu16121835
APA StyleNakamura, A., Shinozaki, E., Suzuki, Y., Santa, K., Kumazawa, Y., Kobayashi, F., Nagaoka, I., & Koikawa, N. (2024). Effect of the Administration of Cordyceps militaris Mycelium Extract on Blood Markers for Anemia in Long-Distance Runners. Nutrients, 16(12), 1835. https://doi.org/10.3390/nu16121835