Antitumor Effects of Resveratrol Opposing Mechanisms of Helicobacter pylori in Gastric Cancer
Abstract
:1. Introduction
2. Helicobacter pylori
2.1. Mechanisms of Tumorigenesis Induced by H. pylori
2.2. H. pylori-Induced Gastric Cancer
3. Treatments for Gastric Cancer
3.1. Conventional Treatments for Gastric Cancer
3.2. Polyphenols as a Potential Treatment for Gastric Cancer
4. Resveratrol
4.1. Properties of Resveratrol
4.2. Properties of Resveratrol in Gastric Cancer
4.3. Combination Therapy Strategies with Resveratrol
Therapy Agent | Effects of Combination with Resveratrol | References |
---|---|---|
5-Fluorouracil (5-FU) | Mitigating the inflammatory response induced by 5-FU | [63] |
Doxorubicin | Inhibiting cell migration and EMT, promoting cell apoptosis | [82,83] |
Trastuzumab (Herceptin) | Induction of apoptosis | [85] |
Paclitaxel | Growth inhibitory effects and increased apoptosis | [86] |
Pembrolizumab (PEMB) | Mitigating the biochemical, immunological, and histological alterations induced by PEMB | [87] |
Docetaxel | A combination of resveratrol and copper reduces the toxicity of docetaxel chemotherapy | [88] |
Cisplatin | Suppressing metastasis, promoting apoptosis and cell senescence, inhibiting proliferation, and causing cell cycle arrest | [89] |
Radiotherapy | Safeguarding against radiation-induced intestinal damage, reducing oxidative stress and apoptosis in normal cells, increasing the sensitivity of tumor cells to radiation, promoting apoptosis, and inducing autophagy | [91] |
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Machlowska, J.; Baj, J.; Sitarz, M.; Maciejewski, R.; Sitarz, R. Gastric Cancer: Epidemiology, Risk Factors, Classification, Genomic Characteristics and Treatment Strategies. Int. J. Mol. Sci. 2020, 21, 4012. [Google Scholar] [CrossRef]
- Gullo, I.; Grillo, F.; Mastracci, L.; Vanoli, A.; Carneiro, F.; Saragoni, L.; Limarzi, F.; Ferro, J.; Parente, P.; Fassan, M. Precancerous Lesions of the Stomach, Gastric Cancer and Hereditary Gastric Cancer Syndromes. Pathologica 2020, 112, 166–185. [Google Scholar] [CrossRef] [PubMed]
- De Brito, B.B.; da Silva, F.A.F.; Soares, A.S.; Pereira, V.A.; Santos, M.L.C.; Sampaio, M.M.; Neves, P.H.M.; Melo, F.F. de Pathogenesis and Clinical Management of Helicobacter Pylori Gastric Infection. World J. Gastroenterol. 2019, 25, 5578–5589. [Google Scholar] [CrossRef] [PubMed]
- Berretta, M.; Bignucolo, A.; Di Francia, R.; Comello, F.; Facchini, G.; Ceccarelli, M.; Iaffaioli, R.V.; Quagliariello, V.; Maurea, N. Resveratrol in Cancer Patients: From Bench to Bedside. Int. J. Mol. Sci. 2020, 21, 2945. [Google Scholar] [CrossRef] [PubMed]
- Rauf, A.; Imran, M.; Butt, M.S.; Nadeem, M.; Peters, D.G.; Mubarak, M.S. Resveratrol as an Anti-Cancer Agent: A Review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1428–1447. [Google Scholar] [CrossRef] [PubMed]
- Zulueta, A. Resveratrol: A Potential Challenger against Gastric Cancer. World J. Gastroenterol. 2015, 21, 10636. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.M.; Machado, J.C.; Figueiredo, C. Clinical Relevance of Helicobacter Pylori VacA and CagA Genotypes in Gastric Carcinoma. Best. Pract. Res. Clin. Gastroenterol. 2014, 28, 1003–1015. [Google Scholar] [CrossRef] [PubMed]
- Hooi, J.K.Y.; Lai, W.Y.; Ng, W.K.; Suen, M.M.Y.; Underwood, F.E.; Tanyingoh, D.; Malfertheiner, P.; Graham, D.Y.; Wong, V.W.S.; Wu, J.C.Y.; et al. Global Prevalence of Helicobacter Pylori Infection: Systematic Review and Meta-Analysis. Gastroenterology 2017, 153, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Malfertheiner, P.; Yu, H.-T.; Kuo, C.-L.; Chang, Y.-Y.; Meng, F.-T.; Wu, Y.-X.; Hsiao, J.-L.; Chen, M.-J.; Lin, K.-P.; et al. Global Prevalence of Helicobacter Pylori Infection and Incidence of Gastric Cancer Between 1980 and 2022. Gastroenterology 2024, 166, 605–619. [Google Scholar] [CrossRef]
- Piscione, M.; Mazzone, M.; Di Marcantonio, M.C.; Muraro, R.; Mincione, G. Eradication of Helicobacter Pylori and Gastric Cancer: A Controversial Relationship. Front. Microbiol. 2021, 12, 630852. [Google Scholar] [CrossRef]
- Salvatori, S.; Marafini, I.; Laudisi, F.; Monteleone, G.; Stolfi, C. Helicobacter Pylori and Gastric Cancer: Pathogenetic Mechanisms. Int. J. Mol. Sci. 2023, 24, 2895. [Google Scholar] [CrossRef] [PubMed]
- Malespín-Bendaña, W.; Alpízar-Alpízar, W.; Figueroa-Protti, L.; Reyes, L.; Molina-Castro, S.; Une, C.; Ramírez-Mayorga, V. Helicobacter Pylori Infection Induces Gastric Precancerous Lesions and Persistent Expression of Angpt2, Vegf-A and Tnf-A in a Mouse Model. Front. Oncol. 2023, 13, 1072802. [Google Scholar] [CrossRef] [PubMed]
- Sharndama, H.C.; Mba, I.E. Helicobacter Pylori: An up-to-Date Overview on the Virulence and Pathogenesis Mechanisms. Braz. J. Microbiol. 2022, 53, 33–50. [Google Scholar] [CrossRef] [PubMed]
- Ansari, S.; Yamaoka, Y. Helicobacter Pylori Virulence Factors Exploiting Gastric Colonization and Its Pathogenicity. Toxins 2019, 11, 677. [Google Scholar] [CrossRef] [PubMed]
- Wüstner, S.; Anderl, F.; Wanisch, A.; Sachs, C.; Steiger, K.; Nerlich, A.; Vieth, M.; Mejías-Luque, R.; Gerhard, M. Helicobacter Pylori γ-Glutamyl Transferase Contributes to Colonization and Differential Recruitment of T Cells during Persistence. Sci. Rep. 2017, 7, 13636. [Google Scholar] [CrossRef] [PubMed]
- Talebi Bezmin Abadi, A. Strategies Used by Helicobacter Pylori to Establish Persistent Infection. World J. Gastroenterol. 2017, 23, 2870. [Google Scholar] [CrossRef] [PubMed]
- Marcus, E.A.; Sachs, G.; Scott, D.R. Acid-regulated Gene Expression of Helicobacter Pylori: Insight into Acid Protection and Gastric Colonization. Helicobacter 2018, 23, e12490. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, H.; Watanabe, E.; Norose, Y.; Ito, Y.; Takahashi, H. Neutralizing Antibodies for Helicobacter pylori Urease Inhibit Bacterial Colonization in the Murine Stomach In Vivo. Biomed. Res. 2019, 40, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Baj, J.; Forma, A.; Sitarz, M.; Portincasa, P.; Garruti, G.; Krasowska, D.; Maciejewski, R. Helicobacter Pylori Virulence Factors—Mechanisms of Bacterial Pathogenicity in the Gastric Microenvironment. Cells 2020, 10, 27. [Google Scholar] [CrossRef]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer Statistics for the Year 2020: An Overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef]
- Yang, W.-J.; Zhao, H.-P.; Yu, Y.; Wang, J.-H.; Guo, L.; Liu, J.-Y.; Pu, J.; Lv, J. Updates on Global Epidemiology, Risk and Prognostic Factors of Gastric Cancer. World J. Gastroenterol. 2023, 29, 2452–2468. [Google Scholar] [CrossRef] [PubMed]
- Correa, P. Human Gastric Carcinogenesis: A Multistep and Multifactorial Process--First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res. 1992, 52, 6735–6740. [Google Scholar] [PubMed]
- Rawla, P.; Barsouk, A. Epidemiology of Gastric Cancer: Global Trends, Risk Factors and Prevention. Gastroenterol. Rev. 2019, 14, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Conti, C.B.; Agnesi, S.; Scaravaglio, M.; Masseria, P.; Dinelli, M.E.; Oldani, M.; Uggeri, F. Early Gastric Cancer: Update on Prevention, Diagnosis and Treatment. Int. J. Environ. Res. Public Health 2023, 20, 2149. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Wang, L.; Zuo, Z.; Bei, Y.; Liu, K. The Role of Surgery and Radiation in Advanced Gastric Cancer: A Population-Based Study of Surveillance, Epidemiology, and End Results Database. PLoS ONE 2019, 14, e0213596. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, D.; Allum, W.H.; Stenning, S.P.; Thompson, J.N.; Van de Velde, C.J.H.; Nicolson, M.; Scarffe, J.H.; Lofts, F.J.; Falk, S.J.; Iveson, T.J.; et al. Perioperative Chemotherapy versus Surgery Alone for Resectable Gastroesophageal Cancer. N. Engl. J. Med. 2006, 355, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, L.; Yang, Y.; Lu, S.; Chen, H. Progress of Gastric Cancer Surgery in the Era of Precision Medicine. Int. J. Biol. Sci. 2021, 17, 1041–1049. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.D.; Syn, N.L.; Moehler, M.; Grothe, W.; Yong, W.P.; Tai, B.-C.; Ho, J.; Unverzagt, S. Chemotherapy for Advanced Gastric Cancer. Cochrane Database Syst. Rev. 2017, 2017, CD004064. [Google Scholar] [CrossRef]
- Li, J.; Qin, S.; Xu, J.; Xiong, J.; Wu, C.; Bai, Y.; Liu, W.; Tong, J.; Liu, Y.; Xu, R.; et al. Randomized, Double-Blind, Placebo-Controlled Phase III Trial of Apatinib in Patients With Chemotherapy-Refractory Advanced or Metastatic Adenocarcinoma of the Stomach or Gastroesophageal Junction. J. Clin. Oncol. 2016, 34, 1448–1454. [Google Scholar] [CrossRef] [PubMed]
- Gou, M.; Zhang, Y.; Wang, Z.; Dai, G. PD-1 Inhibitors-Based Second-Line Therapy for Metastatic Gastric Cancer. Front. Immunol. 2023, 14, 1136437. [Google Scholar] [CrossRef]
- Chong, I.Y.; Chau, I. Is There Still a Place for Radiotherapy in Gastric Cancer? Curr. Opin. Pharmacol. 2023, 68, 102325. [Google Scholar] [CrossRef] [PubMed]
- Kaviani, E.; Hajibabaie, F.; Abedpoor, N.; Safavi, K.; Ahmadi, Z.; Karimy, A. System Biology Analysis to Develop Diagnostic Biomarkers, Monitoring Pathological Indexes, and Novel Therapeutic Approaches for Immune Targeting Based on Maggot Bioactive Compounds and Polyphenolic Cocktails in Mice with Gastric Cancer. Environ. Res. 2023, 238, 117168. [Google Scholar] [CrossRef] [PubMed]
- da Silva, E.C.S.; Bernardo Guerra, G.C.; de Araújo, E.R.D.; Schlamb, J.; da Silva, V.C.; de Aragão Tavares, E.; Dantas-Medeiros, R.; Abreu, L.S.; Fechine Tavares, J.; de Araújo Júnior, R.F.; et al. Phenolic-Rich Extract of Nopalea Cochenillifera Attenuates Gastric Lesions Induced in Experimental Models through Inhibiting Oxidative Stress, Modulating Inflammatory Markers and a Cytoprotective Effect. Food Funct. 2023, 14, 3242–3258. [Google Scholar] [CrossRef] [PubMed]
- Gunes-Bayir, A.; Guler, E.M.; Bilgin, M.G.; Ergun, I.S.; Kocyigit, A.; Dadak, A. Anti-Inflammatory and Antioxidant Effects of Carvacrol on N-Methyl-N′-Nitro-N-Nitrosoguanidine (MNNG) Induced Gastric Carcinogenesis in Wistar Rats. Nutrients 2022, 14, 2848. [Google Scholar] [CrossRef]
- Piazza, S.; Martinelli, G.; Fumagalli, M.; Pozzoli, C.; Maranta, N.; Giavarini, F.; Colombo, L.; Nicotra, G.; Vicentini, S.F.; Genova, F.; et al. Ellagitannins from Castanea Sativa Mill. Leaf Extracts Impair H. Pylori Viability and Infection-Induced Inflammation in Human Gastric Epithelial Cells. Nutrients 2023, 15, 1504. [Google Scholar] [CrossRef]
- Martinelli, G.; Fumagalli, M.; Pozzoli, C.; Nicotra, G.; Vicentini, S.F.; Maranta, N.; Sangiovanni, E.; Dell’Agli, M.; Piazza, S. Exploring In Vitro the Combination of Cistus × Incanus L. and Castanea Sativa Mill. Extracts as Food Supplement Ingredients against H. Pylori Infection. Foods 2023, 13, 40. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.; Lee, H.G.; Piao, J.-Y.; Kim, S.-J.; Na, H.-K.; Surh, Y.-J. Protective Effects of Silibinin on Helicobacter Pylori -Induced Gastritis: NF-ΚB and STAT3 as Potential Targets. J. Cancer Prev. 2021, 26, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; An, J.M.; Han, Y.M.; Surh, Y.J.; Hwang, S.J.; Kim, S.J.; Hahm, K.B. Walnut Polyphenol Extracts Inhibit Helicobacter Pylori-Induced STAT3;Tyr705 Phosphorylation through Activation of PPAR-γ and SOCS1 Induction. J. Clin. Biochem. Nutr. 2020, 67, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Meng, T.; Xiao, D.; Muhammed, A.; Deng, J.; Chen, L.; He, J. Anti-Inflammatory Action and Mechanisms of Resveratrol. Molecules 2021, 26, 229. [Google Scholar] [CrossRef]
- Ren, B.; Kwah, M.X.-Y.; Liu, C.; Ma, Z.; Shanmugam, M.K.; Ding, L.; Xiang, X.; Ho, P.C.-L.; Wang, L.; Ong, P.S.; et al. Resveratrol for Cancer Therapy: Challenges and Future Perspectives. Cancer Lett. 2021, 515, 63–72. [Google Scholar] [CrossRef]
- Almeida, T.C.; Seibert, J.B.; de Almeida, S.H.S.; Amparo, T.R.; de Teixeira, L.F.M.; Barichello, J.M.; Postacchini, B.B.; dos Santos, O.D.H.; da Silva, G.N. Polymeric Micelles Containing Resveratrol: Development, Characterization, Cytotoxicity on Tumor Cells and Antimicrobial Activity. Braz. J. Pharm. Sci. 2020, 56, e18411. [Google Scholar] [CrossRef]
- Ahmadi, R.; Ebrahimzadeh, M.A. Resveratrol—A Comprehensive Review of Recent Advances in Anticancer Drug Design and Development. Eur. J. Med. Chem. 2020, 200, 112356. [Google Scholar] [CrossRef]
- Cai, H.; Scott, E.N.; Britton, R.G.; Parrott, E.; Ognibene, T.J.; Malfatti, M.; Khan, M.; Steward, W.P.; Brown, K. Distribution and Metabolism of [14C]-Resveratrol in Human Prostate Tissue after Oral Administration of a “Dietary-Achievable” or “Pharmacological” Dose: What Are the Implications for Anticancer Activity? Am. J. Clin. Nutr. 2021, 113, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- Ishida, T.; Takeda, T.; Koga, T.; Yahata, M.; Ike, A.; Kuramoto, C.; Taketoh, J.; Hashiguchi, I.; Akamine, A.; Ishii, Y.; et al. Attenuation of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Toxicity by Resveratrol: A Comparative Study with Different Routes of Administration. Biol. Pharm. Bull. 2009, 32, 876–881. [Google Scholar] [CrossRef] [PubMed]
- Iannitti, R.G.; Floridi, A.; Lazzarini, A.; Tantucci, A.; Russo, R.; Ragonese, F.; Monarca, L.; Caglioti, C.; Spogli, R.; Leonardi, L.; et al. Resveratrol Supported on Magnesium DiHydroxide (Resv@MDH) Represents an Oral Formulation of Resveratrol With Better Gastric Absorption and Bioavailability Respect to Pure Resveratrol. Front. Nutr. 2020, 7, 570047. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Yang, S.; Zhang, L.; Dai, L.; Tai, K.; Liu, J.; Mao, L.; Yuan, F.; Gao, Y.; Mackie, A. Fabrication, Characterization and in Vitro Digestion of Food Grade Complex Nanoparticles for Co-Delivery of Resveratrol and Coenzyme Q10. Food Hydrocoll. 2020, 105, 105791. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Y.; Zou, Y.; Liang, X.; Peng, Y.; McClements, D.J.; Hu, K. Encapsulation of Resveratrol in Zein/Pectin Core-Shell Nanoparticles: Stability, Bioaccessibility, and Antioxidant Capacity after Simulated Gastrointestinal Digestion. Food Hydrocoll. 2019, 93, 261–269. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Wang, Q.; Wu, C. Changes of Physicochemical Properties and Bioactivities of Resveratrol-Loaded Core-Shell Biopolymer Nanoparticles during in Vitro Gastrointestinal Digestion. Food Chem. 2023, 424, 136444. [Google Scholar] [CrossRef]
- Rostami, M.; Ghorbani, M.; Aman Mohammadi, M.; Delavar, M.; Tabibiazar, M.; Ramezani, S. Development of Resveratrol Loaded Chitosan-Gellan Nanofiber as a Novel Gastrointestinal Delivery System. Int. J. Biol. Macromol. 2019, 135, 698–705. [Google Scholar] [CrossRef]
- Issarachot, O.; Bunlung, S.; Kaewkroek, K.; Wiwattanapatapee, R. Superporous Hydrogels Based on Blends of Chitosan and Polyvinyl Alcohol as a Carrier for Enhanced Gastric Delivery of Resveratrol. Saudi Pharm. J. 2023, 31, 335–347. [Google Scholar] [CrossRef]
- Boontawee, R.; Issarachot, O.; Kaewkroek, K.; Wiwattanapatapee, R. Foldable/Expandable Gastro-Retentive Films Based on Starch and Chitosan as a Carrier For Prolonged Release of Resveratrol. Curr. Pharm. Biotechnol. 2022, 23, 1009–1018. [Google Scholar] [CrossRef]
- Aggarwal, B.B.; Bhardwaj, A.; Aggarwal, R.S.; Seeram, N.P.; Shishodia, S.; Takada, Y. Role of Resveratrol in Prevention and Therapy of Cancer: Preclinical and Clinical Studies. Anticancer. Res. 2004, 24, 2783. [Google Scholar] [PubMed]
- Ko, J.-H.; Sethi, G.; Um, J.-Y.; Shanmugam, M.K.; Arfuso, F.; Kumar, A.P.; Bishayee, A.; Ahn, K.S. The Role of Resveratrol in Cancer Therapy. Int. J. Mol. Sci. 2017, 18, 2589. [Google Scholar] [CrossRef] [PubMed]
- Leonard, S.S.; Xia, C.; Jiang, B.-H.; Stinefelt, B.; Klandorf, H.; Harris, G.K.; Shi, X. Resveratrol Scavenges Reactive Oxygen Species and Effects Radical-Induced Cellular Responses. Biochem. Biophys. Res. Commun. 2003, 309, 1017–1026. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Xu, X.; Tao, Z.; Wang, X.J.; Pan, Y. Resveratrol Dimers, Nutritional Components in Grape Wine, Are Selective ROS Scavengers and Weak Nrf2 Activators. Food Chem. 2015, 173, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Jiang, A.; Qi, B.; Ma, Z.; Xiong, Y.; Dou, J.; Wang, J. Resveratrol Protects against Helicobacter Pylori-Associated Gastritis by Combating Oxidative Stress. Int. J. Mol. Sci. 2015, 16, 27757–27769. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, S.F.H.; Ahmed, K.; Yamamoto, T.; Kondo, T.; Usmanghani, K.; Kadowaki, M.; Sugiyama, T. Effect of Resveratrol on Helicobacter Pylori-Induced Interleukin-8 Secretion, Reactive Oxygen Species Generation and Morphological Changes in Human Gastric Epithelial Cells. Biol. Pharm. Bull. 2009, 32, 1931–1935. [Google Scholar] [CrossRef] [PubMed]
- Di Fermo, P.; Di Lodovico, S.; Amoroso, R.; De Filippis, B.; D’Ercole, S.; Di Campli, E.; Cellini, L.; Di Giulio, M. Searching for New Tools to Counteract the Helicobacter Pylori Resistance: The Positive Action of Resveratrol Derivatives. Antibiotics 2020, 9, 891. [Google Scholar] [CrossRef] [PubMed]
- Spósito, L.; Fonseca, D.; Gonçalves Carvalho, S.; Sábio, R.M.; Marena, G.D.; Bauab, T.M.; Bagliotti Meneguin, A.; Parreira, P.L.; Martins, M.C.; Chorilli, M. Engineering Resveratrol-Loaded Chitosan Nanoparticles for Potential Use against Helicobacter Pylori Infection. Eur. J. Pharm. Biopharm. 2024, 199, 114280. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, B.; Zang, W.; Wang, X.; Liu, Z.; Li, W.; Jia, J. Resveratrol Inhibits the Growth of Gastric Cancer by Inducing G1 Phase Arrest and Senescence in a Sirt1-Dependent Manner. PLoS ONE 2013, 8, e70627. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, Q.; Chen, Z.; Ni, H.; Xia, L.; Zhao, Q.; Chen, Z.; Chen, P. Resveratrol Suppresses the Invasion and Migration of Human Gastric Cancer Cells via Inhibition of MALAT1-mediated Epithelial-to-mesenchymal Transition. Exp. Ther. Med. 2018, 17, 1569–1578. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Wang, W.; Tang, X.; Goh, R.M.W.-J.; Thuya, W.L.; Ho, P.C.L.; Chen, L.; Wang, L. Inhibitory Potential of Resveratrol in Cancer Metastasis: From Biology to Therapy. Cancers 2023, 15, 2758. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.-H.; Chan, G.K.-L.; Duan, R.; Wang, H.-Y.; Kong, X.-P.; Dong, T.T.-X.; Tsim, K.W.-K. Synergy of Ginkgetin and Resveratrol in Suppressing VEGF-Induced Angiogenesis: A Therapy in Treating Colorectal Cancer. Cancers 2019, 11, 1828. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Dabrosin, C.; Yin, X.; Fuster, M.M.; Arreola, A.; Rathmell, W.K.; Generali, D.; Nagaraju, G.P.; El-Rayes, B.; Ribatti, D.; et al. Broad Targeting of Angiogenesis for Cancer Prevention and Therapy. Semin. Cancer Biol. 2015, 35, S224–S243. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Rafiei, H.; Mohammadinejad, R.; Farkhondeh, T.; Samarghandian, S. Anti-Tumor Activity of Resveratrol against Gastric Cancer: A Review of Recent Advances with an Emphasis on Molecular Pathways. Cancer Cell Int. 2021, 21, 66. [Google Scholar] [CrossRef] [PubMed]
- Atten, M.J.; Attar, B.M.; Milson, T.; Holian, O. Resveratrol-Induced Inactivation of Human Gastric Adenocarcinoma Cells through a Protein Kinase C-Mediated Mechanism. Biochem. Pharmacol. 2001, 62, 1423–1432. [Google Scholar] [CrossRef]
- Atten, M.J.; Godoy-Romero, E.; Attar, B.M.; Milson, T.; Zopel, M.; Holian, O. Resveratrol Regulates Cellular PKC α and δ to Inhibit Growth and Induce Apoptosis in Gastric Cancer Cells. Invest. New Drugs 2005, 23, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Shin, K.-O.; Park, N.-Y.; Seo, C.-H.; Hong, S.-P.; Oh, K.-W.; Hong, J.-T.; Han, S.-K.; Lee, Y.-M. Inhibition of Sphingolipid Metabolism Enhances Resveratrol Chemotherapy in Human Gastric Cancer Cells. Biomol. Ther. 2012, 20, 470–476. [Google Scholar] [CrossRef]
- Wang, Z.; Li, W.; Meng, X.; Jia, B. Resveratrol Induces Gastric Cancer Cell Apoptosis via Reactive Oxygen Species, but Independent of Sirtuin1. Clin. Exp. Pharmacol. Physiol. 2012, 39, 227–232. [Google Scholar] [CrossRef]
- Wu, X.; Xu, Y.; Zhu, B.; Liu, Q.; Yao, Q.; Zhao, G. Resveratrol Induces Apoptosis in SGC-7901 Gastric Cancer Cells. Oncol. Lett. 2018, 16, 2949–2956. [Google Scholar] [CrossRef]
- Rojo, D.; Madrid, A.; Martín, S.S.; Párraga, M.; Silva Pinhal, M.A.; Villena, J.; Valenzuela-Valderrama, M. Resveratrol Decreases the Invasion Potential of Gastric Cancer Cells. Molecules 2022, 27, 3047. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Yuan, Y.; Gan, H.-Z.; Peng, Q. Resveratrol Inhibits the Hedgehog Signaling Pathway and Epithelial-Mesenchymal Transition and Suppresses Gastric Cancer Invasion and Metastasis. Oncol. Lett. 2015, 9, 2381–2387. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Zhang, R.; Hu, Y.; Li, W.; Wang, M.; Liang, Z.; Sun, Z.; Ji, R.; Xu, W.; Qian, H. Gastric-Cancer-Derived Mesenchymal Stem Cells: A Promising Target for Resveratrol in the Suppression of Gastric Cancer Metastasis. Hum. Cell 2020, 33, 652–662. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.-H.; Xiao, Y.; Li, X.-Q.; Fan, L.; Zhou, C.-C.; Cheng, L.; Jiang, Z.-D.; Wang, G.-H. Resveratrol Counteracts Hypoxia-Induced Gastric Cancer Invasion and EMT through Hedgehog Pathway Suppression. Anticancer Agents Med. Chem. 2020, 20, 1105–1114. [Google Scholar] [CrossRef] [PubMed]
- Su, N.; Li, L.; Zhou, E.; Li, H.; Wu, S.; Cao, Z. Resveratrol Downregulates MiR-155-5p to Block the Malignant Behavior of Gastric Cancer Cells. Biomed. Res. Int. 2022, 2022, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Xia, L. Resveratrol Inhibits the Proliferation, Invasion, and Migration, and Induces the Apoptosis of Human Gastric Cancer Cells through the MALAT1/MiR-383-5p/DDIT4 Signaling Pathway. J. Gastrointest. Oncol. 2022, 13, 985–996. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, X.; Fang, C.; Li, S. Resveratrol Induces the Growth Inhibition of CDX-Deficient Gastric Cancer Cells Using CDX2 and RUNX3 via the β-Catenin/TCF4 Signaling Pathway. Transl. Oncol. 2023, 35, 101727. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Zhang, J.; Zhou, J.; Zhu, M.; Wang, L.; Yan, L. Resveratrol Inhibits Interleukin-6 Induced Invasion of Human Gastric Cancer Cells. Biomed. Pharmacother. 2018, 99, 766–773. [Google Scholar] [CrossRef]
- Li, T.; Zhang, X.; Cheng, L.; Li, C.; Wu, Z.; Luo, Y.; Zhou, K.; Li, Y.; Zhao, Q.; Huang, Y. Modulation of LncRNA H19 Enhances Resveratrol-inhibited Cancer Cell Proliferation and Migration by Regulating Endoplasmic Reticulum Stress. J. Cell Mol. Med. 2022, 26, 2205–2217. [Google Scholar] [CrossRef]
- Lu, W.; Ni, Z.; Jiang, S.; Tong, M.; Zhang, J.; Zhao, J.; Feng, C.; Jia, Q.; Wang, J.; Yao, T.; et al. Resveratrol Inhibits Bile Acid-induced Gastric Intestinal Metaplasia via the PI3K/AKT/p-FoxO4 Signalling Pathway. Phytother. Res. 2021, 35, 1495–1507. [Google Scholar] [CrossRef]
- Lin, M.; Yao, W.; Xiao, Y.; Dong, Z.; Huang, W.; Zhang, F.; Zhou, X.; Liang, M. Resveratrol-Modified Mesoporous Silica Nanoparticle for Tumor-Targeted Therapy of Gastric Cancer. Bioengineered 2021, 12, 6343–6353. [Google Scholar] [CrossRef]
- Tomikoshi, Y.; Nomura, M.; Okudaira, N.; Sakagami, H.; Wakabayashi, H. Enhancement of Cytotoxicity of Three Apoptosis-Inducing Agents Against Human Oral Squamous Cell Carcinoma Cell Line by Benzoxazinotropone. In Vivo 2016, 30, 645–650. [Google Scholar]
- Jin, X.; Wei, Y.; Liu, Y.; Lu, X.; Ding, F.; Wang, J.; Yang, S. Resveratrol Promotes Sensitization to Doxorubicin by Inhibiting Epithelial-mesenchymal Transition and Modulating SIRT1/Β-catenin Signaling Pathway in Breast Cancer. Cancer Med. 2019, 8, 1246–1257. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Liu, D.; Niu, H.; Zhu, G.; Xu, Y.; Ye, D.; Li, J.; Zhang, Q. Resveratrol Reverses Doxorubicin Resistance by Inhibiting Epithelial-Mesenchymal Transition (EMT) through Modulating PTEN/Akt Signaling Pathway in Gastric Cancer. J. Exp. Clin. Cancer Res. 2017, 36, 19. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Latif, G.A.; Al-Abd, A.M.; Tadros, M.G.; Al-Abbasi, F.A.; Khalifa, A.E.; Abdel-Naim, A.B. The Chemomodulatory Effects of Resveratrol and Didox on Herceptin Cytotoxicity in Breast Cancer Cell Lines. Sci. Rep. 2015, 5, 12054. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Zhang, R.; Zhao, X.; Zheng, G.; Wang, Z.; Wang, P. Resveratrol Raises in Vitro Anticancer Effects of Paclitaxel in NSCLC Cell Line A549 through COX-2 Expression. Korean J. Physiol. Pharmacol. 2017, 21, 465. [Google Scholar] [CrossRef] [PubMed]
- Türkmen, N.B.; Yüce, H.; Şahin, Y.; Taşlıdere, A.Ç.; Özek, D.A.; Ünüvar, S.; Çiftçi, O. Protective Effect of Resveratrol against Pembrolizumab-induced Hepatotoxicity and Neurotoxicity in Male Rats. J. Biochem. Mol. Toxicol. 2023, 37, e23263. [Google Scholar] [CrossRef] [PubMed]
- Ostwal, V.; Ramaswamy, A.; Bhargava, P.; Srinivas, S.; Mandavkar, S.; Chaugule, D.; Peelay, Z.; Baheti, A.; Tandel, H.; Jadhav, V.K.; et al. A Pro-Oxidant Combination of Resveratrol and Copper Reduces Chemotherapy-Related Non-Haematological Toxicities in Advanced Gastric Cancer: Results of a Prospective Open Label Phase II Single-Arm Study (RESCU III Study). Med. Oncol. 2022, 40, 17. [Google Scholar] [CrossRef] [PubMed]
- Rahimifard, M.; Baeeri, M.; Mousavi, T.; Azarnezhad, A.; Haghi-Aminjan, H.; Abdollahi, M. Combination Therapy of Cisplatin and Resveratrol to Induce Cellular Aging in Gastric Cancer Cells: Focusing on Oxidative Stress, and Cell Cycle Arrest. Front. Pharmacol. 2023, 13, 1068863. [Google Scholar] [CrossRef]
- Ren, M.; Zhou, X.; Gu, M.; Jiao, W.; Yu, M.; Wang, Y.; Liu, S.; Yang, J.; Ji, F. Resveratrol Synergizes with Cisplatin in Antineoplastic Effects against AGS Gastric Cancer Cells by Inducing Endoplasmic Reticulum Stress-mediated Apoptosis and G2/M Phase Arrest. Oncol. Rep. 2020, 44, 1605–1615. [Google Scholar] [CrossRef]
- Qin, H.; Zhang, H.; Zhang, X.; Zhang, S.; Zhu, S.; Wang, H. Resveratrol Attenuates Radiation Enteritis through the SIRT1/FOXO3a and PI3K/AKT Signaling Pathways. Biochem. Biophys. Res. Commun. 2021, 554, 199–205. [Google Scholar] [CrossRef]
- Wang, L.; Long, L.; Wang, W.; Liang, Z. Resveratrol, a Potential Radiation Sensitizer for Glioma Stem Cells Both in Vitro and in Vivo. J. Pharmacol. Sci. 2015, 129, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, L.; Ni, Z.; Sun, J.; Gao, H.; Cheng, Z.; Xu, J.; Yin, P. Resveratrol Induces AMPK-Dependent MDR1 Inhibition in Colorectal Cancer HCT116/L-OHP Cells by Preventing Activation of NF-ΚB Signaling and Suppressing CAMP-Responsive Element Transcriptional Activity. Tumor Biol. 2015, 36, 9499–9510. [Google Scholar] [CrossRef] [PubMed]
- Juan, M.E.; Alfaras, I.; Planas, J.M. Colorectal Cancer Chemoprevention by Trans-Resveratrol. Pharmacol. Res. 2012, 65, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Liu, H.; Ma, L.; Zhang, X.; Jiang, Z.; Jiang, C. Inhibition of Autophagy by 3-MA Enhances Endoplasmic Reticulum Stress-Induced Apoptosis in Human Nasopharyngeal Carcinoma Cells. Oncol. Lett. 2013, 6, 1031–1038. [Google Scholar] [CrossRef]
- Pan, J.; Shen, J.; Si, W.; Du, C.; Chen, D.; Xu, L.; Yao, M.; Fu, P.; Fan, W. Resveratrol Promotes MICA/B Expression and Natural Killer Cell Lysis of Breast Cancer Cells by Suppressing c-Myc/MiR-17 Pathway. Oncotarget 2017, 8, 65743–65758. [Google Scholar] [CrossRef]
Treatment | Advantages | Disadvantages | References |
---|---|---|---|
Surgery | Curative in early stages of GC. | Complications: infections, bleeding, thrombus, impaired gastric function. | [26,27] |
Chemotherapy: Fluorouracil, Leucovorin, Oxaliplatin and Docetaxel | Reduces tumor size before surgery. Eliminate remaining cells after surgery. | Side effects: nausea, vomiting, fatigue, hair loss, and suppression of the immune system. Drug resistance. | [27,28] |
Molecular therapeutic agent: Apatinib, PD-1 inhibitors | Useful in refractory cases and metastatic gastric cancer. | Side effects: proteinuria and hypertension. | [27,29,30] |
Radiotherapy | Metastatic GC. Useful as a palliative effect and for control of the bleeding from the primary tumor. | Side effects: nausea, diarrhea, loss of appetite, and fatigue. Resistance. | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trautmann, D.; Suazo, F.; Torres, K.; Simón, L. Antitumor Effects of Resveratrol Opposing Mechanisms of Helicobacter pylori in Gastric Cancer. Nutrients 2024, 16, 2141. https://doi.org/10.3390/nu16132141
Trautmann D, Suazo F, Torres K, Simón L. Antitumor Effects of Resveratrol Opposing Mechanisms of Helicobacter pylori in Gastric Cancer. Nutrients. 2024; 16(13):2141. https://doi.org/10.3390/nu16132141
Chicago/Turabian StyleTrautmann, Daniela, Francesca Suazo, Keila Torres, and Layla Simón. 2024. "Antitumor Effects of Resveratrol Opposing Mechanisms of Helicobacter pylori in Gastric Cancer" Nutrients 16, no. 13: 2141. https://doi.org/10.3390/nu16132141
APA StyleTrautmann, D., Suazo, F., Torres, K., & Simón, L. (2024). Antitumor Effects of Resveratrol Opposing Mechanisms of Helicobacter pylori in Gastric Cancer. Nutrients, 16(13), 2141. https://doi.org/10.3390/nu16132141