Integrative Approach of Treating Early Undernutrition with an Enriched Black Corn Chip, Study on a Murine Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Black Corn Samples and Nixtamalization
2.2. Local Ingredients
2.3. Elaboration of Black Corn Chip (BC)
2.4. Bromatological Analysis
2.5. Antioxidant Capacity
2.5.1. Phenolic Compound Extraction
2.5.2. Antioxidant Capacity by DPPH
2.6. Animal Model
Experimental Groups
2.7. Glucose Postprandial Test
2.8. Physical Activity Test
2.9. Short-Term Memory Test
2.10. Tissue Obtaining and Evaluations
2.11. Histological Images
2.12. mRNA Expression of Energy Balance and Inflammation
2.12.1. RNA Extraction
2.12.2. cDNA Synthesis
2.12.3. qPCR
2.13. Statistical Analysis
3. Results
3.1. Bromatological Composition
3.2. Phenolic Content and Antioxidant Capacity of Black Corn Chip
3.3. Undernutrition Induction
3.3.1. Black Corn Chip Treatment’s Effects on Murinometric Parameters
3.3.2. Body Weight
3.3.3. Body Length
3.3.4. Cephalic Development
3.4. Glucose Postprandial Test
3.5. Physical Activity
3.6. Short-Term Memory
3.7. Histological Analysis
3.8. Gene Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Alamgir, K.; Sami, U.K.; Salahuddin, K. Nutritional complications and its effects on human health. J. Food Sci. Nutr. 2018, 1, 17–20. [Google Scholar] [CrossRef]
- World Health Organization. Malnutrition. Fact Sheets. 9 June 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/malnutrition (accessed on 15 December 2023).
- Martins, V.J.; Toledo Florêncio, T.M.; Grillo, L.P.; Franco, M.D.C.P.; Martins, P.A.; Clemente, A.P.G.; Santos, C.D.L.; Vieira, M.d.F.A.; Sawaya, A.L. Long-lasting effects of undernutrition. Int. J. Environ. Res. Public Health 2011, 8, 1817–1846. [Google Scholar] [CrossRef]
- Lam, B.Y.H.; Williamson, A.; Finer, S.; Day, F.R.; Tadross, J.A.; Gonçalves Soares, A.; Wade, K.; Sweeney, P.; Bedenbaugh, M.N.; Porter, D.T.; et al. MC3R links nutritional state to childhood growth and the timing of puberty. Nature 2021, 599, 436–441. [Google Scholar] [CrossRef]
- Yeo, G.S.; Chao, D.H.M.; Siegert, A.M.; Koerperich, Z.M.; Ericson, M.D.; Simonds, S.E.; Larson, C.M.; Luquet, S.; Clarke, I.; Sharma, S.; et al. The melanocortin pathway and energy homeostasis: From discovery to obesity therapy. Mol. Metab. 2021, 48, 101206. [Google Scholar] [CrossRef]
- Hill, J.W.; Faulkner, L.D. The role of the melanocortin system in metabolic disease: New developments and advances. Neuroendocrinology 2017, 104, 330–346. [Google Scholar] [CrossRef]
- Coupe, B.; Bouret, S.G. Development of the hypothalamic melanocortin system. Front. Endocrinol. 2013, 4, 38. [Google Scholar] [CrossRef]
- Haissaguerre, M.; Ferrière, A.; Simon, V.; Saucisse, N.; Dupuy, N.; André, C.; Clark, S.; Guzman-Quevedo, O.; Tabarin, A.; Cota, D. mTORC1-dependent increase in oxidative metabolism in POMC neurons regulates food intake and action of leptin. Mol. Metab. 2018, 12, 98–106. [Google Scholar] [CrossRef]
- Morentin, P.B.; Martinez-Sanchez, N.; Roa, J.; Ferno, J.; Nogueiras, R.; Tena-Sempere, M.; Dieguez, C.; Lopez, M. Hypothalamic mTOR: The rookie energy sensor. Curr. Mol. Med. 2014, 14, 3–21. [Google Scholar] [CrossRef]
- Palit, P.; Gazi, M.A.; Das, S.; Hasan, M.M.; Noor, Z.; Ferdous, J.; Alam, A.; Nuzhat, S.; Islam, R.; Mahfuz, M.; et al. Exploratory Analysis of Selected Components of the mTOR Pathway Reveals Potentially Crucial Associations with Childhood Malnutrition. Nutrients 2022, 14, 1612. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef]
- Zhang, Y.; Roh, Y.J.; Han, S.J.; Park, I.; Lee, H.M.; Ok, Y.S.; Lee, B.C.; Lee, S.R. Role of selenoproteins in redox regulation of signaling and the antioxidant system: A review. Antioxidants 2020, 9, 383. [Google Scholar] [CrossRef] [PubMed]
- Aly, G.S.; Shaalan, A.H.; Mattar, M.K.; Ahmed, H.H.; Zaki, M.E.; Abdallah, H.R. Oxidative stress status in nutritionally stunted children. Egypt. Pediatr. Assoc. Gaz. 2014, 62, 28–33. [Google Scholar] [CrossRef]
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global maize production, consumption and trade: Trends and R&D implications. Food Secur. 2022, 14, 1295–1319. [Google Scholar] [CrossRef]
- Fisberg, R.M.; Fontanelli, M.M.; Kowalskys, I.; Gómez, G.; Rigotti, A.; Cortés, L.Y.; Pareja, R.G.; Herrera-Cuenca, M.; Fisberg, M.; Kovalskys, I.; et al. Total and whole grain intake in Latin America: Findings from the multicenter cross-sectional Latin American Study of Health and Nutrition (ELANS). Eur. J. Nutr. 2022, 61, 489–501. [Google Scholar] [CrossRef] [PubMed]
- García-Lara, S.; Serna-Saldivar, S.O. Corn history and culture. In Corn; AACC International Press: Amsterdam, The Netherlands, 2019; pp. 1–18. [Google Scholar] [CrossRef]
- Mendoza-Mendoza, C.G.; Mendoza-Castillo, M.; Delgado-Alvarado, A.; Sánchez-Ramírez, F.J.; Kato-Yamakake, T.Á. Anthocyanins content in the kernel and corncob of Mexican purple corn populations. Maydica 2020, 65, 20219969435. [Google Scholar]
- Montemayor-Mora, G.; Hernández-Reyes, K.E.; Heredia-Olea, E.; Pérez-Carrillo, E.; Chew-Guevara, A.A.; Serna-Saldívar, S.O. Rheology, acceptability and texture of wheat flour tortillas supplemented with soybean residue. J. Food Sci. Technol. 2018, 55, 4964–4972. [Google Scholar] [CrossRef] [PubMed]
- Bressani, R.; Turcios, J.C.; de Ruiz, A.S.C. Nixtamalization effects on the contents of phytic acid, calcium, iron and zinc in the whole grain, endosperm and germ of maize. Food Sci. Technol. Int. 2002, 8, 81–86. [Google Scholar] [CrossRef]
- Servín-Campuzano, H.; González-Avilés, M.; Rodríguez-Morales, J.Á.; Juárez, M.A.S.; Castro, J.G.M.; Hidalgo, V.G.; García Avilés, M. Preservation of Antioxidant Properties of Endemic Dark Corn Using Solar Energy for Nixtamalization. Processes 2021, 9, 401. [Google Scholar] [CrossRef]
- NMX-F-083-1986; Food. Determination of Humidity in Food Products. Official Diary of the Federation: Ciudad de México, Mexico, 2018.
- Food, C.; Kjeldahl, T.M.C. Changes in AOAC® Official Methods of Analysis. J. AOAC Int. 2020, 79, 1060–3271. [Google Scholar]
- López-Cobo, A.; Gómez-Caravaca, A.M.; Pasini, F.; Caboni, M.F.; Segura-Carretero, A.; Fernández-Gutiérrez, A. HPLC-DAD-ESI-QTOF-MS and HPLC-FLD-MS as valuable tools for the determination of phenolic and other polar compounds in the edible part and by-products of avocado. LWT 2016, 73, 505–513. [Google Scholar] [CrossRef]
- Tavares, R.L.; De Vasconcelos, M.H.A.; da Veiga Dutra, M.L.; D’Oliveira, A.B.; Lima, M.D.S.; da Silva Stiebbe Salvadori, M.G.; de Alencar Pereira, R.; Alves, A.F.; do Nascimento, Y.M.; Tavares, J.F.; et al. Mucuna pruriens administration minimizes neuroinflammation and shows anxiolytic, antidepressant and slimming effects in obese rats. Molecules 2020, 25, 5559. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Salces, R.M.; Ndjoko, K.; Queiroz, E.F.; Ioset, J.R.; Hostettmann, K.; Berrueta, L.A.; Gallo, B.; Vicente, F. On-line characterization of apple polyphenols by liquid chromatography coupled with mass spectrometry and ultraviolet absorbance detection. J. Chromatogr. A 2004, 1046, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Bondet, V.; Brand-Williams, W.; Berset, C. Kinetics and mechanisms of antioxidant activity using the DPPH. free radical method. LWT-Food Sci. Technol. 1997, 30, 609–615. [Google Scholar] [CrossRef]
- Sirivibulkovit, K.; Nouanthavong, S.; Sameenoi, Y. Paper-based DPPH assay for antioxidant activity analysis. Anal. Sci. 2018, 34, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Reeves, P.G.; Nielsen, F.H.; Fahey, G.C., Jr. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 1993, 123, 1939–1951. [Google Scholar] [CrossRef]
- Salameh, E.; Morel, F.B.; Zeilani, M.; Déchelotte, P.; Marion-Letellier, R. Animal models of undernutrition and enteropathy as tools for assessment of nutritional intervention. Nutrients 2019, 11, 2233. [Google Scholar] [CrossRef] [PubMed]
- Lao, F.; Sigurdson, G.T.; Giusti, M.M. Health benefits of purple corn (Zea mays L.) phenolic compounds. Compr. Rev. Food Sci. Food Saf. 2017, 16, 234–246. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Martinez, L.X.; Oliart-Ros, R.M.; Valerio-Alfaro, G.; Lee, C.H.; Parkin, K.L.; Garcia, H.S. Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize. LWT-Food Sci. Technol. 2009, 42, 1187–1192. [Google Scholar] [CrossRef]
- Leger, M.; Quiedeville, A.; Bouet, V.; Haelewyn, B.; Boulouard, M.; Schumann-Bard, P.; Freret, T. Object recognition test in mice. Nat. Protoc. 2013, 8, 2531–2537. [Google Scholar] [CrossRef]
- Marquez Hernandez, R.A.; Ohtani, J.; Fujita, T.; Sunagawa, H.; Kawata, T.; Kaku, M.; Motokawa, M.; Tanne, K. Sex hormones receptors play a crucial role in the control of femoral and mandibular growth in newborn mice. Eur. J. Orthod. 2011, 33, 564–569. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Velázquez-González, F.G.; Urquiza-Martínez, M.V.; Manhaes-de-Castro, R.; Romero-Juárez, P.A.; Bedolla-Valdez, Z.I.; Ponce-Pérez, J.M.; Farías-Gaytán, E.; Vázquez-Garcidueñas, M.S.; Vázquez-Marrufo, G.; Toscano, A.E.; et al. Chronic consumption of avocado seed (Persea americana) promotes a negative energy balance and body weight reduction in high-fat diet exposed mice: Implications for functional foods. J. Funct. Foods 2023, 108, 105751. [Google Scholar] [CrossRef]
- Van Zutphen, T.; Ciapaite, J.; Bloks, V.W.; Ackereley, C.; Gerding, A.; Jurdzinski, A.; de Moraes, R.A.; Zhang, L.; Wolters, J.C.; Bischoff, R.; et al. Malnutrition-associated liver steatosis and ATP depletion is caused by peroxisomal and mitochondrial dysfunction. J. Hepatol. 2016, 65, 1198–1208. [Google Scholar] [CrossRef] [PubMed]
- Dalvi, P.S.; Yang, S.; Swain, N.; Kim, J.; Saha, S.; Bourdon, C.; Zhang, L.; Chami, R.; Bandsma, R.H.J. Long-term metabolic effects of malnutrition: Liver steatosis and insulin resistance following early-life protein restriction. PLoS ONE 2018, 13, e0199916. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yan, M.H.; Liu, Y.; Liu, Z.; Wang, Z.; Chen, C.; Zhang, J.; Sun, Y.S. Ginsenoside Rg5 ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of inflammation, oxidative stress, and apoptosis. Nutrients 2016, 8, 566. [Google Scholar] [CrossRef] [PubMed]
- Ballatori, N.; Li, N.; Fang, F.; Boyer, J.L.; Christian, W.V.; Hammond, C.L. OST alpha-OST beta: A key membrane transporter of bile acids and conjugated steroids. Front. Biosci. 2009, 14, 2829. [Google Scholar] [CrossRef] [PubMed]
- Palou, M.; Sánchez, J.; Rodríguez, A.M.; Priego, T.; Picó, C.; Palou, A. Induction of NPY/AgRP orexigenic peptide expression in rat hypothalamus is an early event in fasting: Relationship with circulating leptin, insulin and glucose. Cell. Physiol. Biochem. 2009, 23, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Olson, B.; Marks, D.L.; Grossberg, A.J. Diverging metabolic programmes and behaviours during states of starvation, protein malnutrition, and cachexia. J. Cachexia Sarcopenia Muscle 2020, 11, 1429–1446. [Google Scholar] [CrossRef] [PubMed]
- Anitha, S.; Govindaraj, M.; Kane-Potaka, J. Balanced amino acid and higher micronutrients in millets complements legumes for improved human dietary nutrition. Cereal Chem. 2020, 97, 74–84. [Google Scholar] [CrossRef]
- Binou, P.; Yanni, A.E.; Karathanos, V.T. Physical properties, sensory acceptance, postprandial glycemic response, and satiety of cereal based foods enriched with legume flours: A review. Crit. Rev. Food Sci. Nutr. 2020, 62, 2722–2740. [Google Scholar] [CrossRef]
- Cunha, L.M.; Fonseca, S.C.; Lima, R.C.; Loureiro, J.; Pinto, A.S.; Vaz Patto, M.C.; Brites, C. Consumer-Driven Improvement of Maize Bread Formulations with Legume Fortification. Foods 2019, 8, 235. [Google Scholar] [CrossRef]
- Hu, X.; Liu, J.; Li, W.; Wen, T.; Li, T.; Guo, X.; Liu, R.H. Biosynthesis and accumulation of multi-vitamins in black sweet corn (Zea mays L.) during kernel development. J. Sci. Food Agric. 2020, 100, 5230–5238. [Google Scholar] [CrossRef] [PubMed]
- Albanese, L.; Bonetti, A.; D’Acqui, L.P.; Meneguzzo, F.; Zabini, F. Affordable production of antioxidant aqueous solutions by hydrodynamic cavitation processing of silver fir (Abies alba Mill.) needles. Foods 2019, 8, 65. [Google Scholar] [CrossRef] [PubMed]
- Haworth, S.; Shapland, C.Y.; Hayward, C.; Prins, B.P.; Felix, J.F.; Medina-Gomez, C.; Rivadeneira, F.; Wang, C.; Ahluwalia, T.S.; Vrijheid, M.; et al. Low-frequency variation in TP53 has large effects on head circumference and intracranial volume. Nat. Commun. 2019, 10, 357. [Google Scholar] [CrossRef] [PubMed]
- Connery, A.; Colbert, A.; Lamb, M. Head circumference may be the best proxy for neurodevelopmental risk in children in low-resource settings. Arch. Dis. Child. 2022, 108, 287–288. [Google Scholar] [CrossRef] [PubMed]
- Soliman, A.; De Sanctis, V.; Alaaraj, N.; Ahmed, S.; Alyafei, F.; Hamed, N.; Soliman, N. Early and long-term consequences of nutritional stunting: From childhood to adulthood. Acta Biomed. 2021, 92, e2021168. [Google Scholar] [PubMed]
- Woldehanna, T.; Behrman, J.R.; Araya, M.W. The effect of early childhood stunting on children’s cognitive achievements: Evidence from young lives Ethiopia. Ethiop. J. Health Dev. 2017, 31, 75–84. [Google Scholar] [PubMed]
- Sánchez, A.; Favara, M.; Sheridan, M.; Behrman, J. Does early nutrition predict cognitive skills during later childhood? Evidence from two developing countries. World Dev. 2024, 176, 106480. [Google Scholar] [CrossRef] [PubMed]
- Ip, P.; Ho FK, W.; Rao, N.; Sun, J.; Young, M.E.; Chow, C.B.; Tso, W.; Hon, K.L. Impact of nutritional supplements on cognitive development of children in developing countries: A meta-analysis. Sci. Rep. 2017, 7, 10611. [Google Scholar] [CrossRef]
- Roberts, S.B.; Franceschini, M.A.; Silver, R.E.; Taylor, S.F.; De Sa, A.B.; Có, R.; Sonco, A.; Krauss, A.; Taetzsch, A.; Webb, P.; et al. Effects of food supplementation on cognitive function, cerebral blood flow, and nutritional status in young children at risk of undernutrition: Randomized controlled trial. BMJ 2020, 370, m2397. [Google Scholar] [CrossRef]
- Sánchez-Nuño, Y.A.; Zermeño-Ruiz, M.; Vázquez-Paulino, O.D.; Nuño, K.; Villarruel-López, A. Bioactive Compounds from Pigmented Corn (Zea mays L.) and Their Effect on Health. Biomolecules 2024, 14, 338. [Google Scholar] [CrossRef] [PubMed]
- Dos Reis Araujo, T.; Alves, B.L.; dos Santos, L.M.B.; Gonçalves, L.M.; Carneiro, E.M. Association between protein undernutrition and diabetes: Molecular implications in the reduction of insulin secretion. Rev. Endocr. Metab. Disord. 2023, 25, 259–278. [Google Scholar] [CrossRef] [PubMed]
- Clifford, M.N. Anthocyanins–nature, occurrence and dietary burden. J. Sci. Food Agric. 2000, 80, 1063–1072. [Google Scholar] [CrossRef]
CHOW | CHOW-BC | LPD | LPD-BC | |
---|---|---|---|---|
Corn Starch | 621 | 510.8 | 710 | 595 |
Sucrose | 100 | 100 | 100 | 100 |
Casein | 140 | 123.2 | 65 | 48.5 |
Oil (Soy) | 44 | 11.2 | 30 | 2.5 |
Vitamin Mix | 10 | 10 | 10 | 10 |
Mineral Mix | 35 | 30.8 | 35 | 30.8 |
Celulose | 50 | 45.8 | 50 | 45.8 |
Black Corn Chip | 0 | 170 | 0 | 170 |
Carbohydrate | 75.10% | 75.10% | 84.85% | 84.85% |
Protein | 14.58% | 14.58% | 6.85% | 6.85% |
Lipids | 10.31% | 10.31% | 8.30% | 8.30% |
Kcal/g | 3.84 | 3.84 | 3.8 | 3.79 |
Component | Black Corn Chip | Baked White Corn Chip |
---|---|---|
Humidity | 1.58 ± 0.36 | 2.32 ± 0.26 |
Crude protein | 9.80 ± 0.18 * | 7. 0 ± 0.4 |
Crude fiber | 3.64 ± 0.48 | 2.13 ± 0.56 |
Ethereal extract | 22.62 ± 2.00 * | 19.0 ± 0.27 |
Mineral matter | 2.32 ± 0.02 | 0.98 ± 0.06 |
Carbohydrate a | 60.04 * | 68.57 |
Total phenols b | 0.84 * | 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urquiza-Martínez, M.-V.; Fabián-Avilés, I.M.; Torner, L.; Servín-Campuzano, H.; González-Avilés, M. Integrative Approach of Treating Early Undernutrition with an Enriched Black Corn Chip, Study on a Murine Model. Nutrients 2024, 16, 2001. https://doi.org/10.3390/nu16132001
Urquiza-Martínez M-V, Fabián-Avilés IM, Torner L, Servín-Campuzano H, González-Avilés M. Integrative Approach of Treating Early Undernutrition with an Enriched Black Corn Chip, Study on a Murine Model. Nutrients. 2024; 16(13):2001. https://doi.org/10.3390/nu16132001
Chicago/Turabian StyleUrquiza-Martínez, Mercedes-Victoria, Imelda M. Fabián-Avilés, Luz Torner, Hermelinda Servín-Campuzano, and Mauricio González-Avilés. 2024. "Integrative Approach of Treating Early Undernutrition with an Enriched Black Corn Chip, Study on a Murine Model" Nutrients 16, no. 13: 2001. https://doi.org/10.3390/nu16132001
APA StyleUrquiza-Martínez, M. -V., Fabián-Avilés, I. M., Torner, L., Servín-Campuzano, H., & González-Avilés, M. (2024). Integrative Approach of Treating Early Undernutrition with an Enriched Black Corn Chip, Study on a Murine Model. Nutrients, 16(13), 2001. https://doi.org/10.3390/nu16132001