Regulations of Citrus Pectin Oligosaccharide on Cholesterol Metabolism: Insights from Integrative Analysis of Gut Microbiota and Metabolites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. In Vitro Fermentation
2.3. DNA Extraction, PCR Amplification and Illumina MiSeq Sequencing
2.4. Processing of Sequencing Data
2.5. Metabolite Extraction and UPLC-MS/MS Analysis
2.6. Data Preprocessing and Annotation
2.7. Multivariate Statistical Analysis
2.8. Differential Metabolites Analysis
2.9. Determination of the Concentration of SCFAs in Intestinal Flora Fermentation Products
2.10. Statistical Analysis
3. Results
3.1. Changes in the Dilution Curve
3.2. The Effects of POSH1 on the α-Diversity of Intestinal Microorganisms
3.3. The Effects of POSH1 on Intestinal Microbial β Diversity
3.4. The Effects of POSH1 on the Abundance of Gut Microbial Phylum, Genus and Species
3.5. The Effect of POSH1 on the Composition of Fermentation Products of Intestinal Flora
3.6. Analysis of Differential Fermentation Products
3.7. The Effects of POSH1 on SCFAs in the Fermentation Products of Intestinal Flora
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aziz, T.; Hussain, N.; Hameed, Z.; Lin, L. Elucidating the role of diet in maintaining gut health to reduce the risk of obesity, cardiovascular and other age-related inflammatory diseases: Recent challenges and future recommendations. Gut Microbes 2024, 16, 2297864. [Google Scholar] [CrossRef] [PubMed]
- Aziz, T.; Khan, A.A.; Tzora, A.; Voidarou, C.; Skoufos, I. Dietary implications of the Bidirectional Relationship between the gut microflora and inflammatory diseases with special emphasis on irritable bowel disease: Current and future perspective. Nutrients 2023, 15, 2956. [Google Scholar] [CrossRef] [PubMed]
- Duvallet, C.; Gibbons, S.M.; Gurry, T.; Irizarry, R.A.; Alm, E.J. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat. Commun. 2017, 8, 1784. [Google Scholar] [CrossRef] [PubMed]
- Aziz, T.; Naveed, M.; Makhdoom, S.I.; Ali, U.; Mughal, S.M.; Sarwar, A.; Khan, A.A.; Zhennai, Y.; Sameeh, M.Y.; Dablool, A.S.; et al. Genome investigation and functional annotation of Lactiplantibacillus plantarum YW11 revealing streptin and ruminococcin-A as potent nutritive bacteriocins against gut symbiotic pathogens. Molecules 2023, 28, 491. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.J.; Li, R.Q.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464, 59-U70. [Google Scholar] [CrossRef] [PubMed]
- Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 2012, 489, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.Q. Gut microbiota: A new world for the prevention and control of metabolic disease. J. Med. Postgrad. 2016, 6, 115–123. [Google Scholar]
- Zhang, X.; Coker, O.O.; Chu, E.S.; Fu, K.; Lau, H.C.H.; Wang, Y.X.; Chan, A.W.H.; Wei, H.; Yang, X.; Sung, J.J.; et al. Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites. Gut 2021, 70, 761–774. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Xiao, C.; Peng, C.; Liang, L.F.; He, X.F.; Zhao, S.C.; Zhang, G.Y. Probiotic strains improve high-fat diet-induced hypercholesterolemia through modulating gut microbiota in ways different from atorvastatin. Food Funct. 2019, 10, 6098–6109. [Google Scholar]
- Hoving, L.R.; Katiraei, S.; Heijink, M.; Pronk, A.; Wee, L.; Streefland, T.; Giera, M.; Dijk, K.W.; Harmelen, V. Dietary Mannan Oligosaccharides Modulate Gut Microbiota, Increase Fecal Bile Acid Excretion, and Decrease Plasma Cholesterol and Atherosclerosis Development. Mol. Nutr. Food Res. 2018, 62, 765–778. [Google Scholar] [CrossRef]
- Gerard, P.; Lepercq, P.; Leclerc, M.; Gavini, F.; Raibaud, P.; Juste, C. Bacteroides sp strain D8, the first cholesterol-reducing bacterium isolated from human feces. Appl. Environ. Microbiol. 2007, 73, 5742–5749. [Google Scholar] [CrossRef] [PubMed]
- Bordoni, A.; Amaretti, A.; Leonardi, A.; Boschetti, E.; Danesi, F.; Matteuzzi, D.; Roncaglia, L.; Raimondi, S.; Rossi, M. Cholesterol-lowering probiotics: In vitro selection and in vivo testing of bifidobacteria. Appl. Microbiol. Biotechnol. 2013, 97, 8273–8281. [Google Scholar] [CrossRef] [PubMed]
- Ha, C.-G.; Cho, J.K.; Lee, C.H.; Chai, Y.G.; Ha, Y.A.; Shin, S.H. Cholesterol lowering effect of Lactobacillus plantarum isolated from human feces. J. Microbiol. Biotechnol. 2006, 16, 1201–1209. [Google Scholar]
- Aziz, T.; Sarwar, A.; Fahim, M.; Din, J.; Zhennai, Y. Dose-dependent production of linoleic acid analogues in food derived Lactobacillus plantarum K25 and in silico characterization of relevant reactions. Acta Biochim. Pol. 2020, 67, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Aziz, T.; Sarwara, A.; Fahimb, M.; Dalalia, S.; Dinc, Z.U.; Dina, J.U.; Filld, T.U.; Yang, Z.N. Conversion of linoleic acid to different fatty acid metabolites by Lactobacillus plantarum 13-3 and in silico characterization of the prominent reactions. J. Chil. Chem. Soc. 2020, 65, 4879–4884. [Google Scholar] [CrossRef]
- Aziz, T.; Sarwar, A.; Fahim, M.; Dalali, S.A.; Din, Z.; Din, J.U.; Xin, Z.; Jian, Z.; Fill, T.P.; Yang, Z.N. In silico characterization of linoleic acid biotransformation to rumenic acid in food derived Lactobacillus plantarum YW11. Acta Biochim. Pol. 2020, 67, 99–109. [Google Scholar] [CrossRef]
- Marín-Aguilar, F.; Pavillard, L.E.; Giampieri, F.; Bullón, P.; Cordero, M.D. Adenosine Monophosphate (AMP)-Activated Protein Kinase: A New Target for Nutraceutical Compounds. Int. J. Mol. Sci. 2017, 18, 288. [Google Scholar] [CrossRef]
- Scarpellini, E.; Ianiro, G.; Attili, F.; Bassanelli, C.; De Santis, A.; Gasbarrini, A. The human gut microbiota and virome: Potential therapeutic implications. Dig. Liver Dis. 2015, 47, 1007–1012. [Google Scholar] [CrossRef]
- Ðanić, M.; Stanimirov, B.; Pavlović, N.; Goločorbin-Kon, S.; Al-Salami, H.; Stankov, K.; Mikov, M. Pharmacological Applications of Bile Acids and Their Derivatives in the Treatment of Metabolic Syndrome. Front. Pharmacol. 2018, 9, 1382. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, J.; Hao, W.; Zhu, H.; Liang, N.; He, Z.; Ma, K.Y.; Chen, Z.Y. Structure-Specific Effects of Short-Chain Fatty Acids on Plasma Cholesterol Concentration in Male Syrian Hamsters. J. Agric. Food Chem. 2017, 65, 10984–10992. [Google Scholar] [CrossRef]
- Gelissen, I.C.; Harris, M.; Rye, K.A.; Quinn, C.; Brown, A.J.; Kockx, M.; Cartland, S.; Packianathan, M.; Kritharides, L.; Jessup, W. ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-I. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 534–540. [Google Scholar] [CrossRef]
- Du, Y.; Li, X.; Su, C.; Xi, M.; Zhang, X.; Jiang, Z.; Wang, L.; Hong, B. Butyrate protects against high-fat diet-induced atherosclerosis via up-regulating ABCA1 expression in apolipoprotein E-deficiency mice. Br. J. Pharmacol. 2020, 177, 1754–1772. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Campaniello, D.; Speranza, B.; Racioppo, A.; Sinigaglia, M.; Corbo, M.R. An Update on Prebiotics and on Their Health Effects. Foods 2024, 13, 446. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Mao, S.; Zeng, Y.; Chen, S.; Tian, J.; Ye, X. Pectin from Citrus unshiu Marc. Alleviates Glucose and Lipid Metabolism by Regulating the Gut Microbiota and Metabolites. Foods 2023, 12, 4094. [Google Scholar] [CrossRef]
- Abdo, A.; Zhang, C.; Al-Dalali, S.; Hou, Y.; Gao, J.; Yahya, M.A.; Saleh, A.; Aleryani, H.; Al-Zamani, Z.; Sang, Y. Marine Chitosan-Oligosaccharide Ameliorated Plasma Cholesterol in Hypercholesterolemic Hamsters by Modifying the Gut Microflora, Bile Acids, and Short-Chain Fatty Acids. Nutrients 2023, 15, 2923. [Google Scholar] [CrossRef]
- Zhang, S.S.; Hu, H.J.; Wang, L.F.; Liu, F.X.; Pan, S.Y. Preparation and prebiotic potential of pectin oligosaccharides obtained from citrus peel pectin. Food Chem. 2018, 244, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.J.; Zhang, S.S.; Liu, F.X.; Zhang, P.P.; Muhammad, Z.; Pan, S.Y. Role of the Gut Microbiota and Their Metabolites in Modulating the Cholesterol-Lowering Effects of Citrus Pectin Oligosaccharides in C57BL/6 Mice. J. Agric. Food Chem. 2019, 67, 11922–11930. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, S.; Pan, S. Characterization of citrus pectin oligosaccharides and their microbial metabolites as modulators of immunometabolism on macrophages. J. Agric. Food Chem. 2021, 69, 8403–8414. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Jia, G. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Backhed, F.; Sonnenburg, J.L. Diet-microbiota interactions as moderators of human metabolism. Nature 2016, 535, 56–64. [Google Scholar]
- Sonnenburg, E.D.; Smits, S.A.; Tikhonov, M.; Higginbottom, S.K.; Wingreen, N.S.; Sonnenburg, J.L. Diet-induced extinctions in the gut microbiota compound over generations. Nature 2016, 529, 212-U208. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Zhang, W.; Shen, Z.; Li, M.; Yin, J.; Tang, Y.; Zhou, X.; Sun, Z. The association between alpha diversity of gut microbiota, neuroimaging markers and cognitive function in cerebral small vessel disease. Brain Res. 2024, 1827, 148757. [Google Scholar] [CrossRef] [PubMed]
- Afzaal, M.; Saeed, F.; Shah, Y.A.; Hussain, M.; Rabail, R.; Socol, C.T.; Abdo, H.; Mirian, P.; Jose, L.; Alexandru, V.R.; et al. Human gut microbiota in health and disease: Unveiling the relationship. Front. Microbiol. 2022, 13, 999001. [Google Scholar] [CrossRef]
- Hughes, E.R.; Winter, M.G.; Duerkop, B.A.; Spiga, L.; Winter, S.E. Microbial Respiration and Formate Oxidation as Metabolic Signatures of Inflammation-Associated Dysbiosis. Cell Host Microbe 2017, 21, 208–219. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, L.; Xia, B.; Tang, S.; Xie, J.; Zhang, H. Modulation of Pectin on Mucosal Innate Immune Function in Pigs Mediated by Gut Microbiota. Microorganisms 2020, 8, 535. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, F.; Larsen, N.; de Mello Tieghi, T.; Tallarico, A. Modulation of gut microbiota from obese individuals by in vitro fermentation of citrus pectin in combination with Bifidobacterium longum BB-46. Appl. Microbiol. Biotechnol. 2018, 102, 8827–8840. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lei, S.; Pang, W.; Liu, W.; Shi, G. Dietary Fiber Intake Regulates Intestinal Microflora and Inhibits Ovalbumin-Induced Allergic Airway Inflammation in a Mouse Model. PLoS ONE 2016, 11, e0147778. [Google Scholar] [CrossRef] [PubMed]
- Pascale, N.; Gu, F.; Larsen, N.; Jespersen, L.; Respondek, F. The Potential of Pectins to Modulate the Human Gut Microbiota Evaluated by In Vitro Fermentation: A Systematic Review. Nutrients 2022, 14, 3629. [Google Scholar] [CrossRef]
- Larsen, N.; de Souza, C.B.; Krych, L.; Cahu, T.B.; Wiese, M.; Kot, W.; Hansen, K.M.; Blennow, A.; Venema, K.; Jespersen, L. Potential of Pectins to Beneficially Modulate the Gut Microbiota Depends on Their Structural Properties. Front. Microbiol. 2019, 10, 223. [Google Scholar] [CrossRef]
- Ata, B.; Yildiz, S.; Turkgeldi, E.; Brocal, V.P.; Dinleyici, E.C.; Moya, A.; Urman, B. The Endobiota Study: Comparison of Vaginal, Cervical and Gut Microbiota Between Women with Stage 3/4 Endometriosis and Healthy Controls. Sci. Rep. 2019, 9, 2204. [Google Scholar] [CrossRef] [PubMed]
- Montealegre, M.C.; Talavera, R.A.; Roy, S.; Hossain, M.I.; Islam, M.A.; Lanza, V.F.; Julian, T.R. High Genomic Diversity and Heterogenous Origins of Pathogenic and Antibiotic-Resistant Escherichia coli in Household Settings Represent a Challenge to Reducing Transmission in Low-Income Settings. mSphere 2020, 5, 10–1128. [Google Scholar] [CrossRef]
- Peng, L.; Gao, X.; Nie, L.; Xie, J.; Sheng, J. Astragalin Attenuates Dextran Sulfate Sodium (DSS)-Induced Acute Experimental Colitis by Alleviating Gut Microbiota Dysbiosis and Inhibiting NF-κB Activation in Mice. Front. Immunol. 2020, 11, 2058. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, S.; Toh, H.; Hase, K.; Oshima, K.; Nakanishi, Y.; Yoshimura, K.; Tobe, T.; Clarke, J.M.; Topping, D.L.; Suzuki, T.; et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011, 469, 543–547. [Google Scholar] [CrossRef]
- García-Solache, M.; Rice, L.B. The Enterococcus: A Model of Adaptability to Its Environment. Clin. Microbiol. Rev. 2019, 32, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Xing, Y.; Liu, L.K.; Li, X.L. Prebiotic-like effects of chitosan on the intestinal microflora in mice. Pak. J. Pharm. Sci. 2020, 33, 909–913. [Google Scholar] [PubMed]
- Shahi, S.K.; Freedman, S.N.; Murra, A.C.; Zarei, K.; Sompallae, R.; Gibson-Corley, K.N.; Karandikar, N.J.; Murray, J.A.; Mangalam, A.K. Prevotella histicola, A Human Gut Commensal, Is as Potent as COPAXONE in an Animal Model of Multiple Sclerosis. Front. Immunol. 2019, 10, 462. [Google Scholar] [CrossRef] [PubMed]
- Hikawczuk, T.M.; Wróblewska, P.; Szuba-Trznadel, A.; Rusiecka, A.; Zinchuk, A.; Laszki-Szczachor, K. Pectin and Pectin Oligosaccharides Obtained from Agro-Wastes as a Constituents of Soluble Dietary Fibre: Effect on the Stabili-Zation of Intestinal Microbiome and Immunity of Humans and Animals—A Review. Preprints 2024, 2024031062. [Google Scholar] [CrossRef]
- Wu, W.-K.; Ivanova, E.A.; Orekhov, A.N. Gut microbiome: A possible common therapeutic target for treatment of atherosclerosis and cancer. Semin. Cancer Biol. 2021, 70, 85–97. [Google Scholar] [CrossRef]
- Li, T.P.; Chen, X.J.; Huang, Z.; Xie, W.Y.; Tong, C.N.; Bao, R.W.; Sun, X.; Li, W.J.; Li, S.H. Pectin oligosaccharide from hawthorn fruit ameliorates hepatic inflammation via NF-kappa B inactivation in high-fat diet fed mice. J. Funct. Foods 2019, 57, 345–350. [Google Scholar] [CrossRef]
- Wahlstrom, A.; Sayin, S.I.; Marschall, H.U.; Backhed, F. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metab. 2016, 24, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Gomez, B.; Gullon, B.; Remoroza, C.; Schols, H.A.; Parajo, J.C.; Alonso, J.L. Purification, Characterization, and Prebiotic Properties of Pectic Oligosaccharides from Orange Peel Wastes. J. Agric. Food Chem. 2014, 62, 9769–9782. [Google Scholar] [CrossRef] [PubMed]
- Mao, G.; Li, S.; Orfila, C.; Shen, X.; Zhou, S.; Linhardt, R.J.; Ye, X.; Chen, S. Depolymerized RG-I-enriched pectin from citrus segment membranes modulates gut microbiota, increases SCFA production, and promotes the growth of Bifidobacterium spp., Lactobacillus spp. and Faecalibaculum spp. Food Funct. 2019, 10, 7828–7843. [Google Scholar] [CrossRef]
- Yu, S.N.; Wang, H.; Cui, L.; Wang, J.; Zhang, Z.; Wu, Z.; Lin, X.; He, N.; Zou, Y.; Li, S. Pectic oligosaccharides ameliorate high-fat diet-induced obesity and hepatic steatosis in association with modulating gut microbiota in mice. Food Funct. 2023, 14, 9892–9906. [Google Scholar] [CrossRef]
- Luis, A.S.; Briggs, J.; Zhang, X.; Farnell, B.; Ndeh, D.; Labourel, A.; Basle, A.; Cartmell, A.; Terrapon, N.; Stott, K.; et al. Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nat. Microbiol. 2018, 3, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.M.; Sun, E.W.; Rogers, G.B.; Keating, D.J. The Influence of the Gut Microbiome on Host Metabolism Through the Regulation of Gut Hormone Release. Front. Physiol. 2019, 10, 428. [Google Scholar] [CrossRef] [PubMed]
- Agus, A.; Clément, K.; Sokol, H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut 2021, 70, 1174–1182. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wang, D.; Wang, Y.; Ling, W.; Feng, X.; Xia, M. Adenosine Monophosphate-activated Protein Kinase Induces Cholesterol Efflux from Macrophage-derived Foam Cells and Alleviates Atherosclerosis in Apolipoprotein E-deficient Mice. J. Biol. Chem. 2010, 285, 33499–33509. [Google Scholar] [CrossRef]
- Chen, W.; Silver, D.L.; Smith, J.D.; Tall, A.R. Scavenger receptor-BI inhibits ATP-binding cassette transporter 1- mediated cholesterol efflux in macrophages. J. Biol. Chem. 2000, 275, 30794–30800. [Google Scholar] [CrossRef]
- Ballerini, P.; Ciccarelli, R.; Iorio, P.D.; Buccella, S.; Alimonte, I.D.; Giuliani, P.; Masciulli, A.; Nargi, E.; Beraudi, A.; Rathbone, M.P. Guanosine effect on cholesterol efflux and apolipoprotein E expression in astrocytes. Purinergic Signal. 2006, 2, 637–649. [Google Scholar] [CrossRef]
- Sun, M.J.; Xing, J.H.; Yan, Q.S.; Zou, B.S.; Wang, Y.J.; Niu, T.M.; Yu, T.; Huang, H.B.; Zhang, D.; Zhang, S.M.; et al. The Acetic Acid Produced by Lactobacillus Species Regulates Immune Function to Alleviate PEDV Infection in Piglets. Probiotics Antimicrob. Proteins 2024, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Meyers, G.R.; Samouda, H.; Bohn, T. Short Chain Fatty Acid Metabolism in Relation to Gut Microbiota and Genetic Variability. Nutrients 2022, 14, 5361. [Google Scholar] [CrossRef] [PubMed]
- Louis, P.; Hold, G.L.; Flint, H.J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 2014, 12, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–1012. [Google Scholar] [CrossRef] [PubMed]
- Stackebrandt, E.; Goebel, B.M. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 1994, 44, 846–849. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef]
Metabolite | KEGG Pathway Description | Fold Change (P24/N24) | p-Value | VIP Value |
---|---|---|---|---|
Glycocholic Acid | Bile secretion; cholesterol metabolism; secondary bile acid biosynthesis; primary bile acid biosynthesis | 1.17 | 0.001 | 1.24 |
Taurocholic acid | Cholesterol metabolism; taurine and hypotaurine metabolism; secondary bile acid biosynthesis; bile secretion; primary bile acid biosynthesis | 2.20 | 0.000 | 2.34 |
Sphinganine | Sphingolipid metabolism; metabolic pathways; sphingolipid signaling pathway | 0.61 | 0.000 | 2.21 |
CGMP | Purine metabolism; bile secretion; salivary secretion; gap junction; thermogenesis; vascular smooth muscle contraction; oxytocin signaling pathway; circadian entrainment; regulation of lipolysis in adipocytes; aldosterone synthesis and secretion; renin secretion; cGMP-PKG | 1.68 | 0.000 | 2.16 |
Signaling pathway; olfactory transduction; long-term depression; phototransduction; platelet activation | ||||
Adenine | Purine metabolism; zeatin biosynthesis | 2.64 | 0.000 | 2.57 |
Inosine | ABC transporters; purine metabolism | 1.17 | 0.000 | 1.14 |
Sphingosine | Sphingolipid metabolism; metabolic pathways; sphingolipid signaling pathway; apoptosis; necroptosis | 0.82 | 0.006 | 1.01 |
3-ketosphinganine | Sphingolipid metabolism | 0.24 | 0.000 | 2.57 |
3a,7a,12a-Trihydroxy-5b-cholestan-26-al | Primary bile acid biosynthesis | 0.83 | 0.000 | 1.12 |
L-Phenylalanine | Mineral absorption; biosynthesis of secondary metabolites; aminoacyl-tRNA biosynthesis; cyanoamino acid metabolism; tropane, piperidine and pyridine alkaloid biosynthesis; ABC transporters; biosynthesis of various secondary metabolites—part 2; biosynthesis of amino acids; glucosinolate biosynthesis; 2-oxocarboxylic acid metabolism; phenylpropanoid biosynthesis; biosynthesis of plant hormones; phenylalanine metabolism; protein digestion and absorption; phenylalanine, tyrosine and tryptophan biosynthesis; biosynthesis of alkaloids derived from ornithine, lysine and nicotinic acid; biosynthesis of alkaloids derived from shikimate pathway; central carbon metabolism in cancer; biosynthesis of phenylpropanoids; biosynthesis of plant secondary metabolites | 0.43 | 0.000 | 1.86 |
Guanine | Purine metabolism | 398.08 | 0.000 | 2.90 |
Guanosine | ABC transporters; purine metabolism | 2.73 | 0.000 | 2.70 |
L-5-Hydroxytryptophan | Serotonergic synapse; biosynthesis of alkaloids derived from shikimate pathway; tryptophan metabolism; axon regeneration | 1.30 | 0.000 | 1.48 |
5′-Deoxy-5′-(methylthio) adenosine | Cysteine and methionine metabolism; biosynthesis of plant secondary metabolites; zeatin biosynthesis | 1.23 | 0.000 | 1.32 |
L-Carnitine | Bile secretion; thermogenesis | 1.25 | 0.000 | 1.25 |
Glycerophosp | Ether lipid metabolism; glycerophospholipid | 2.40 | 0.000 | 2.73 |
hocholine | metabolism; choline metabolism in cancer | |||
Spermine | Bile secretion; glutathione metabolism; arginine and proline metabolism; beta-alanine metabolism | 0.25 | 0.000 | 2.26 |
Cadaverine | Lysine degradation; biosynthesis of secondary metabolites; microbial metabolism in diverse environments; tropane, piperidine and pyridine alkaloid biosynthesis; glutathione metabolism; protein digestion and absorption; biosynthesis of alkaloids derived from ornithine, lysine and nicotinic acid; biosynthesis of plant secondary metabolites | 0.03 | 0.000 | 2.97 |
2-Hydroxycinnamic acid | Biosynthesis of secondary metabolites; metabolic pathways; phenylpropanoid biosynthesis; microbial metabolism in diverse environments; phenylalanine metabolism | 1.13 | 0.029 | 1.02 |
Adenosine monophosphate | Biosynthesis of secondary metabolites; purine metabolism; longevity regulating pathway; zeatin biosynthesis; Parkinson’s disease; regulation of lipolysis in adipocytes; aldosterone synthesis and secretion; renin secretion; cortisol synthesis and secretion; parathyroid hormone synthesis, secretion and action; biosynthesis of alkaloids derived from histidine and purine; taste transduction; morphine addiction; biosynthesis of plant secondary metabolites; metabolic pathways; FoxO signaling pathway; cGMP-PKG signaling pathway; olfactory transduction; cAMP signaling pathway; biosynthesis of plant hormones; antifolate resistance; Cushing syndrome; mTOR signaling pathway; PI3K-Akt signaling pathway; AMPK signaling pathway | 6.11 | 0.000 | 2.56 |
L-Fucose | Microbial metabolism in diverse environments; amino sugar and nucleotide | 0.66 | 0.000 | 1.75 |
sugar metabolism; quorum sensing; fructose and mannose metabolism; two-component system; C-type lectin receptor signaling pathway | ||||
N2-Acetyl-L-ornithine | 2-Oxocarboxylic acid metabolism; arginine biosynthesis; biosynthesis of secondary metabolites; biosynthesis of amino acids | 1.15 | 0.000 | 1.03 |
cAMP | Human T-cell leukemia virus 1 infection; cell cycle—yeast; Chagas disease (American trypanosomiasis); meiosis—yeast; oocyte meiosis; purine metabolism; inflammatory mediator regulation of TRP channels; Rap1 signaling pathway; Ras signaling pathway; pancreatic secretion; gap junction; MAPK signaling pathway; insulin secretion; human papillomavirus infection; apelin signaling pathway; longevity regulating pathway—multiple species; phospholipase D-signaling pathway | 1.17 | 0.000 | 1.17 |
N-Acetylornithine | 2-Oxocarboxylic acid metabolism; arginine biosynthesis; biosynthesis of secondary metabolites; biosynthesis of amino acids | 3.00 | 0.000 | 2.56 |
5-Hydroxy-L-tryptophan | Serotonergic synapse; biosynthesis of alkaloids derived from shikimate pathway; tryptophan metabolism; axon regeneration | 1.24 | 0.000 | 1.33 |
LysoPC (16:1(9Z)/0:0) | Glycerophospholipid metabolism; choline metabolism in cancer | 4.19 | 0.000 | 2.16 |
LysoPC (16:0) | Glycerophospholipid metabolism; choline metabolism in cancer | 3.88 | 0.000 | 1.86 |
LysoPC (14:1(9Z)) | Glycerophospholipid metabolism; choline metabolism in cancer | 5.45 | 0.000 | 2.06 |
L-Methionine | Mineral absorption; biosynthesis of secondary metabolites; 2-oxocarboxylic acid metabolism; cysteine and methionine metabolism; biosynthesis of amino acids; glucosinolate biosynthesis; protein digestion and absorption; aminoacyl-tRNA biosynthesis; antifolate resistance; central carbon metabolism in cancer; biosynthesis of plant hormones; biosynthesis of plant secondary metabolites | 0.06 | 0.000 | 2.07 |
P-salicylic acid | Degradation of aromatic compounds; | 1.27 | 0.000 | 1.20 |
biosynthesis of secondary metabolites; microbial metabolism in diverse environments; aminobenzoate degradation; ubiquinone and other terpenoid-quinone biosynthesis; toluene degradation; bisphenol degradation; benzoate degradation; folate biosynthesis; benzoic acid family; biosynthesis of phenylpropanoids | ||||
Pseudoegonine | Tropane, piperidine and pyridine alkaloid biosynthesis; | 0.27 | 0.000 | 1.96 |
L-Tryptophan | biosynthesis of secondary metabolites; glycine, serine and threonine metabolism; biosynthesis of various secondary metabolites—part 2; African trypanosomiasis; indole alkaloid biosynthesis; glucosinolate biosynthesis; Serotonergic synapse; biosynthesis of alkaloids derived from shikimate pathway; biosynthesis of phenylpropanoids; biosynthesis of plant secondary metabolites; metabolic pathways; 2-oxocarboxylic acid metabolism; biosynthesis of amino acids; axon | 3.66 | 0.000 | 2.64 |
Citric acid | Biosynthesis of various secondary metabolites—part 3; carbon metabolism; biosynthesis of secondary metabolites; citrate cycle (TCA cycle); glyoxylate and dicarboxylate metabolism; glucagon signaling pathway; biosynthesis of alkaloids derived from terpenoid and polyketide; biosynthesis of alkaloids derived from histidine and purine; taste transduction; biosynthesis of alkaloids derived from shikimate pathway; biosynthesis of terpenoids and steroids; biosynthesis of phenylpropanoids; biosynthesis of plant secondary metabolites; metabolic pathways; microbial metabolism in diverse environments; 2-oxocarboxylic acid metabolism; biosynthesis of amino acids; biosynthesis of alkaloids derived from | 1.48 | 0.000 | 2.02 |
ornithine, lysine and nicotinic acid; carbon fixation pathways in prokaryotes; two-component system; biosynthesis of siderophore group nonribosomal peptides; alanine, aspartate and glutamate metabolism; central carbon metabolism in cancer; biosynthesis of plant hormones | ||||
Uric acid | bile secretion; purine metabolism; microbial metabolism in diverse environments | 1.61 | 0.000 | 1.71 |
L-asparagine | Mineral absorption; biosynthesis of secondary metabolites; cyanoamino acid metabolism; biosynthesis of amino acids; alanine, aspartate and glutamate metabolism; protein digestion and absorption; aminoacyl-tRNA biosynthesis; central carbon metabolism in cancer; biosynthesis of plant secondary metabolites | 7.33 | 0.000 | 2.55 |
L-glutamate | Biosynthesis of various secondary metabolites—part 3; carbon metabolism; arginine and proline metabolism; glutathione metabolism; carbapenem biosynthesis; taste transduction; alanine, aspartate and glutamate metabolism; nicotine addiction; protein digestion and absorption; phospholipase D-signaling pathway; ferroptosis; glyoxylate and dicarboxylate metabolism; taurine and hypotaurine metabolism; proximal tubule bicarbonate reclamation; D-glutamine and D-glutamate metabolism; ABC transporters; porphyrin and chlorophyll metabolism; neuroactive ligand-receptor interaction; Huntington disease; spinocerebellar ataxia; amyotrophic lateral sclerosis (ALS); GABAergic synapse; biosynthesis of alkaloids derived from ornithine, lysine and nicotinic acid; retrograde endocannabinoid signaling; amphetamine addiction; synaptic vesicle cycle; biosynthesis of plant secondary metabolites; metabolic pathways; arginine biosynthesis; gap junction | 1.29 | 0.000 | 1.48 |
Microbial metabolism in diverse environments; 2-oxocarboxylic acid metabolism; histidine metabolism; neomycin, kanamycin and gentamicin biosynthesis; biosynthesis of amino acids; FoxO signaling pathway; alcoholism; biosynthesis of secondary metabolites; C5-branched dibasic acid metabolism; glutamatergic synapse; cocaine addiction; butanoate metabolism; nitrogen metabolism; two-component system; circadian entrainment; Aminoacyl-tRNA biosynthesis; central carbon metabolism in cancer; Long-term potentiation; Long-term depression | ||||
LysoPC(18:0) | Ether lipid metabolism; glycerophospholipid metabolism; choline metabolism in cancer; metabolic pathways | 1.61 | 0.010 | 1.16 |
Phenylacetic acid | Tropane, piperidine and pyridine alkaloid biosynthesis; phenylalanine metabolism; biosynthesis of alkaloids derived from ornithine, lysine and nicotinic acid | 0.72 | 0.000 | 1.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Zhang, P.; Liu, F.; Pan, S. Regulations of Citrus Pectin Oligosaccharide on Cholesterol Metabolism: Insights from Integrative Analysis of Gut Microbiota and Metabolites. Nutrients 2024, 16, 2002. https://doi.org/10.3390/nu16132002
Hu H, Zhang P, Liu F, Pan S. Regulations of Citrus Pectin Oligosaccharide on Cholesterol Metabolism: Insights from Integrative Analysis of Gut Microbiota and Metabolites. Nutrients. 2024; 16(13):2002. https://doi.org/10.3390/nu16132002
Chicago/Turabian StyleHu, Haijuan, Peipei Zhang, Fengxia Liu, and Siyi Pan. 2024. "Regulations of Citrus Pectin Oligosaccharide on Cholesterol Metabolism: Insights from Integrative Analysis of Gut Microbiota and Metabolites" Nutrients 16, no. 13: 2002. https://doi.org/10.3390/nu16132002
APA StyleHu, H., Zhang, P., Liu, F., & Pan, S. (2024). Regulations of Citrus Pectin Oligosaccharide on Cholesterol Metabolism: Insights from Integrative Analysis of Gut Microbiota and Metabolites. Nutrients, 16(13), 2002. https://doi.org/10.3390/nu16132002