Diplotaxis erucoides and Oxalis pes-caprae: Two Wild Edible Plants as a New and Valuable Source of Carotenoids, Tocols and B1 and B2 Vitamins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals
2.3. Determination of Carotenoids
2.4. Determination of Tocols
2.5. Thiamine and Riboflavin Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Profile of Carotenoids and Tocols
3.2. Contents of Thiamine and Riboflavin
3.3. Vitamin A and Vitamin E Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reyes-García, V.; Menendez-Baceta, G.; Aceituno-Mata, L.; Acosta-Naranjo, R.; Calvet-Mir, L.; Domínguez, P.; Garnatje, T.; Gómez-Baggethun, E.; Molina-Bustamante, M.; Molina, M.; et al. From famine foods to delicatessen: Interpreting trends in the use of wild edible plants through cultural ecosystem services. Ecol. Econom. 2015, 120, 303–311. [Google Scholar] [CrossRef]
- Clemente-Villalba, J.; Burló, F.; Hernández, F.; Carbonell-Barrachina, Á.A. Valorization of wild edible plants as food ingredients and their economic value. Foods 2023, 12, 1012. [Google Scholar] [CrossRef] [PubMed]
- Asfaw, A.; Lulekal, E.; Bekele, T.; Debella, A.; Tessema, S.; Meresa, A.; Debebe, E. Ethnobotanical study of wild edible plants and implications for food security. Trees People 2023, 14, 100453. [Google Scholar] [CrossRef]
- El-Desouky, T.A. Evaluation of effectiveness aqueous extract for some leaves of wild edible plants in Egypt as anti-fungal and anti-toxigenic. Heliyon 2021, 7, e06209. [Google Scholar] [CrossRef] [PubMed]
- Seal, T.; Chaudhuri, K.; Pillai, B. Nutritional and toxicological aspects of selected wild edible plants and significance for this society. S. Afr. J. Bot. 2023, 159, 219–230. [Google Scholar] [CrossRef]
- Seal, T.; Pillai, B.; Chaudhuri, K. DNA damage preventive activity of wild edible plants. Food Chem. Adv. 2022, 1, 100060. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, E.; Bermejo, L.M.; Ortega, R.M. Carotenoids: Chemistry, sources and physiology. In Encyclopedia of Human Nutrition, 4th ed.; Caballero, B., Ed.; Academic Press: New York, NY, USA, 2023; pp. 144–153. [Google Scholar]
- Tanumihardjo, S.A. Carotenoids: Health effects. In Encyclopedia of Human Nutrition, 4th ed.; Caballero, B., Ed.; Academic Press: New York, NY, USA, 2023; pp. 154–161. [Google Scholar]
- Górnaś, P.; Baškirovs, G.; Siger, A. Free and esterified tocopherols, tocotrienols and other extractable and non-extractable tocochromanol-related molecules: Compendium of knowledge, future perspectives and recommendations for chromatographic techniques, tools, and approaches used for tocochromanol determination. Molecules 2022, 27, 6560. [Google Scholar] [CrossRef] [PubMed]
- Bora, J.; Tongbram, T.; Mahnot, N.; Mahanta, C.L.; Badwaik, L.S. Chapter 14—Tocopherol. In Nutraceuticals and Health Care; Kour, J., Nayik, G.A., Eds.; Academic Press: New York, NY, USA, 2022; pp. 259–278. [Google Scholar] [CrossRef]
- Jain, P.; Singh, I.; Surana, S.J. Chapter 6-Tocopherols and tocotrienols: The essential vitamin E. In Bioactive Food Components Activity in Mechanistic Approach; Cazarin, C.B.B., Bicas, J.L., Pastore, G.M., Marostica, M.R., Jr., Eds.; Academic Press: New York, NY, USA, 2022; pp. 139–154. [Google Scholar]
- Combs, J.G.F.; McClung, J.P. Chapter 10-Thiamin. In The Vitamins, 6th ed.; Combs, J.G.F., McClung, J.P., Eds.; Academic Press: New York, NY, USA, 2022; pp. 313–336. [Google Scholar] [CrossRef]
- Combs, J.G.F.; McClung, J.P. Chapter 11-Riboflavin. In The Vitamins, 6th ed.; Combs, J.G.F., McClung, J.P., Eds.; Academic Press: New York, NY, USA, 2022; pp. 337–360. [Google Scholar] [CrossRef]
- Basque Culinary Center. Silvestre; Planeta Gastro: Barcelona, Spain, 2022. [Google Scholar]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- Panfili, G.; Fratianni, A.; Irano, M. Normal phase high-performance liquid chromatography method for the determination of tocopherols and tocotrienols in cereals. J. Agric. Food Chem. 2003, 51, 3940–3944. [Google Scholar] [CrossRef] [PubMed]
- Panfili, G.; Fratianni, A.; Irano, M. Improved normal-phase high-performance liquid chromatography procedure for the determination of carotenoids in cereals. J. Agric. Food Chem. 2004, 52, 6373–6377. [Google Scholar] [CrossRef]
- Fratianni, A.; D’Agostino, A.; Niro, S.; Bufano, A.; Paura, B.; Panfili, G. Loss or gain of lipophilic bioactive compounds in vegetables after domestic cooking? Effect of steaming and boiling. Foods 2021, 10, 960. [Google Scholar] [CrossRef]
- Mouly, P.P.; Gaydou, E.M.; Corsetti, J. Determination of the geographical origin of Valencia orange juice using carotenoid liquid chromatographic profiles. J. Chromatogr. A 1999, 844, 149–159. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies. Scientific Opinion on Dietary Reference Value for vitamin A. EFSA J. 2015, 13, 4028. [Google Scholar] [CrossRef]
- Sheppard, A.J.; Pennington, J.A.T.; Weihrauch, J.L. Analysis and distribution of vitamin E in vegetable oil and foods. In Vitamin E in Health and Disease; Packer, L., Fuchs, J., Eds.; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Panfili, G.; Niro, S.; Bufano, A.; D’Agostino, A.; Fratianni, A.; Paura, B.; Falasca, L.; Cinquanta, L. Bioactive compounds in wild Asteraceae edible plants consumed in the Mediterranean diet. Plant Food Hum. Nutr. 2020, 75, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Reif, C.; Arrigoni, E.; Schärer, H.; Nyström, L.; Hurrell, R.F. Carotenoid database of commonly eaten Swiss vegetables and their estimated contribution to carotenoid intake. J. Food Compos. Anal. 2013, 29, 64–72. [Google Scholar] [CrossRef]
- Zeb, A.; Imran, M. Carotenoids, pigments, phenolic composition and antioxidant activity of Oxalis corniculata leaves. Food Biosc. 2019, 32, 100472. [Google Scholar] [CrossRef]
- Pereira, L.V.; Salvador, M.R.; Silva, B.S.; Pinheiro-Sant’Ana, H.M.; Della Lucia, C.M.; Teixeira, R.D.B.L.; Cardoso, L.d.M. Nutritional aspects of non-conventional edible plants from Brazil: Caruru (Amaranthus spinosus L.) and trapoeraba (Commelina benghalensis). Food Res. Int. 2023, 166, 112583. [Google Scholar] [CrossRef]
- Yimer, A.; Forsido, S.F.; Addis, G.; Ayelign, A. Phytochemical profile and antioxidant capacity of some wild edible plants consumed in Southwest Ethiopia. Heliyon 2023, 9, e15331. [Google Scholar] [CrossRef]
- Fratianni, A.; Albanese, D.; Ianiri, G.; Vitone, C.; Malvano, F.; Avino, P.; Panfili, G. Evaluation of the content of minerals, B-group vitamins, tocols, and carotenoids in raw and in-house cooked wild edible plants. Foods 2024, 13, 472. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Mata, M.; Tardío, J. Mediterranean Wild Edible Plants. Ethnobotany and Food Composition Tables; Springer Nature: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Walsh, R.P.; Bartlett, H.; Eperjesi, F. Variation in carotenoid content of kale and other vegetables: A review of pre- and post-harvest effects. J. Agric. Food Chem. 2015, 63, 9677–9682. [Google Scholar] [CrossRef]
- Šircelj, H.; Mikulič-Petkovšek, M.; Batič, F. Antioxidants in spring leaves of Oxalis acetosella L. Food Chem. 2010, 123, 351–357. [Google Scholar] [CrossRef]
- Datta, S.; Sinha, B.K.; Bhattacharjee, S.; Seal, T. Nutritional composition, mineral content, antioxidant activity and quantitative estimation of water soluble vitamins and phenolics by RP-HPLC in some lesser used wild edible plants. Heliyon 2019, 5, e01431. [Google Scholar] [CrossRef] [PubMed]
- Regulation EU No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers; Official Journal of the European Union: Maastricht, The Netherlands, 2011.
- European Commission-Scientific Committee on Food. Opinion of the Scientific Committee on Food on the Safety of Use of Beta Carotene from All Dietary Sources; European Commission-Scientific Committee on Food: Maastricht, The Netherlands, 2000. [Google Scholar]
ANOVA | p-Value | Fresh (mg/100 g f.w.) | ANOVA | p-Value | Dry (mg/100 g d.w.) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Diplotaxis erucoides | ||||||||||
Pods | Leaves | Stems | Pods | Leaves | Stems | |||||
Lutein | *** | 0.0000 | 2.12 ± 0.03 b | 8.23 ± 0.96 a | 1.53 ± 0.02 b | *** | 0.0000 | 9.38 ± 0.14 b | 47.38 ± 5.50 a | 8.52 ± 0.13 b |
Zeaxanthin | *** | 0.0000 | 0.24 ± 0.01 b | 0.37 ± 0.00 a | 0.11 ± 0.01 c | *** | 0.0000 | 1.04 ± 0.06 b | 2.14 ± 0.01 a | 0.63 ± 0.08 c |
Violaxanthin | *** | 0.0000 | 0.11 ± 0.01 b | 2.28 ± 0.19 a | 0.20 ± 0.03 b | *** | 0.0000 | 0.50 ± 0.05 b | 13.10 ± 1.09 a | 1.10 ± 0.15 b |
Neoxanthin | *** | 0.0000 | nd | 1.07 ± 0.04 a | 0.15 ± 0.02 b | *** | 0.0000 | nd | 6.14 ± 0.26 a | 0.82 ± 0.11 b |
β-Cryptoxanthin | ns | 0.2879 | nd | 0.09 ± 0.01 a | 0.08 ± 0.01 a | ns | 0.1846 | nd | 0.53 ± 0.09 a | 0.43 ± 0.06 a |
Antheraxanthin | *** | 0.0000 | 0.15 ± 0.00 b | 0.38 ± 0.04 a | 0.15 ± 0.02 b | *** | 0.0000 | 0.67 ± 0.01 b | 2.19 ± 0.20 a | 0.39 ± 0.05 b |
α-Carotene | *** | 0.0000 | 0.18 ± 0.02 b | 1.00 ± 0.06 a | 0.04 ± 0.00 c | *** | 0.0000 | 0.79 ± 0.10 b | 5.77 ± 0.35 a | 0.23 ± 0.01 c |
13-cis-β-Carotene | *** | 0.0000 | 0.05 ± 0.01 b | 1.28 ± 0.08 a | nd | *** | 0.0000 | 0.24 ± 0.02 b | 7.38 ± 0.44 a | nd |
β-Carotene | *** | 0.0000 | 1.32 ± 0.14 b | 9.47 ± 0.57 a | 0.39 ± 0.01 c | *** | 0.0000 | 5.82 ± 0.63 b | 54.48 ± 3.27 a | 2.18 ± 0.01 b |
9-cis-β-Carotene | *** | 0.0000 | 0.57 ± 0.07 a | 0.09 ± 0.01 b | 0.13 ± 0.01 b | *** | 0.0000 | 2.54 ± 0.32 a | 0.51 ± 0.03 b | 0.72 ± 0.01 b |
Totals | *** | 0.0000 | 4.75 ± 0.28 b | 24.26 ± 1.85 a | 2.70 ± 0.05 b | *** | 0.0000 | 20.97 ± 1.25 b | 139.63 ± 10.62 a | 15.04 ± 0.33 b |
Oxalis pes-caprae | ||||||||||
Flowers | Leaves | Stems | Flowers | Leaves | Stems | |||||
Lutein | *** | 0.0000 | 0.10 ± 0.02 b | 4.76 ± 0.29 a | 0.38 ± 0.05 b | *** | 0.0000 | 0.72 ± 0.12 c | 34.20 ± 2.07 a | 4.25 ± 0.59 b |
Zeaxanthin | ** | 0.0085 | 0.17 ± 0.01 a | 0.15 ± 0.03 a | 0.10 ± 0.01 b | ns | 0.6089 | 1.21 ± 0.08 a | 1.12± 0.21 a | 1.11 ± 0.01 a |
Violaxanthin | nd | nd | 0.04 ± 0.01 | nd | nd | 0.49 ± 0.03 | ||||
Neoxanthin | nd | nd | nd | nd | nd | nd | ||||
β-Cryptoxanthin | *** | 0.0001 | 0.16 ± 0.03 b | 1.35 ± 0.24 a | 0.32 ± 0.05 b | *** | 0.0000 | 1.11 ± 0.23 c | 9.74 ± 1.74 a | 3.53 ± 0.06 b |
Antheraxanthin | *** | 0.0001 | nd | 0.43 ± 0.06 a | 0.02 ± 0.01 b | *** | 0.0004 | nd | 3.12 ± 0.46 a | 0.24 ± 0.02 b |
α-Carotene | *** | 0.0004 | 0.05 ± 0.01 b | 0.34 ± 0.08 a | 0.05 ± 0.01 b | *** | 0.0006 | 0.37 ± 0.01 b | 2.45 ± 0.61 a | 0.58 ± 0.01 b |
13-cis- β-Carotene | *** | 0.0000 | 0.05 ± 0.01 a | 0.01 ± 0.01 b | 0.01 ± 0.01 b | *** | 0.0000 | 0.34 ± 0.01 a | 0.10 ± 0.01 c | 0.13 ± 0.01 b |
β-Carotene | *** | 0.0005 | 0.49 ± 0.01 b | 4.50 ± 1.19 a | 0.44 ± 0.05 b | *** | 0.0006 | 3.48 ± 0.03 b | 32.23 ± 8.55 a | 4.90 ± 0.56 b |
9-cis-β-Carotene | ** | 0.0014 | 0.12 ± 0.01 b | 0.93 ± 0.29 a | 0.11 ± 0.01 b | *** | 0.0000 | 0.88 ± 0.01 c | 6.69 ± 0.22 a | 1.26 ± 0.08 b |
Totals | *** | 0.0000 | 1.47 ± 0.07 b | 12.50 ± 1.71 a | 1.49 ± 0.11 b | *** | 0.0000 | 8.11 ± 0.47 c | 89.73 ± 10.23 a | 16.49 ± 1.21 b |
ANOVA | p-Value | Fresh (mg/100 g f.w.) | ANOVA | p-Value | Dry (mg/100 g d.w.) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Diplotaxis erucoides | ||||||||||
Pods | Leaves | Stems | Pods | Leaves | Stems | |||||
α-Tocopherol | *** | 0.0000 | 1.81 ± 0.13 b | 4.13 ± 0.44 a | 0.65 ± 0.06 c | *** | 0.0000 | 7.97 ± 0.57 b | 23.79 ± 2.53 a | 3.62 ± 0.33 c |
β-Tocopherol | *** | 0.0000 | nd | 0.10 ± 0.01 a | 0.01 ± 0.01 b | *** | 0.0000 | nd | 0.60 ± 0.02 a | 0.06 ± 0.01 b |
γ-Tocopherol | *** | 0.0000 | 0.56 ± 0.03 a | 0.50 ± 0.07 a | 0.04 ± 0.01 b | *** | 0.0000 | 2.47 ± 0.12 a | 2.89 ± 0.40 a | 0.21 ± 0.02 b |
Totals | *** | 0.0000 | 2.37 ± 0.16 b | 4.74 ± 0.51 a | 0.70 ± 0.05 c | *** | 0.0000 | 10.44 ± 0.70 b | 27.28 ± 2.94 a | 3.89 ± 0.25 c |
Oxalis pes-caprae | ||||||||||
Flowers | Leaves | Stems | Flowers | Leaves | Stems | |||||
α-Tocopherol | *** | 0.0000 | 1.17 ± 0.13 b | 6.81 ± 0.44 a | 1.41 ± 0.01 b | *** | 0.0000 | 8.25 ± 0.92 c | 48.89 ± 3.16 a | 15.55 ± 0.02 b |
β-Tocopherol | nd | nd | nd | nd | nd | nd | ||||
γ-Tocopherol | *** | 0.0003 | 3.05 ± 0.56 a | 3.91 ± 0.28 a | 1.11 ± 0.16 b | *** | 0.0002 | 21.59 ± 2.96 b | 28.09 ± 1.99 a | 12.23 ± 1.81 c |
Totals | *** | 0.0000 | 4.22 ± 0.33 b | 10.72 ± 0.11 a | 2.51 ± 0.16 c | *** | 0.0000 | 29.84 ± 1.89 b | 76.98 ± 1.17 a | 27.78 ± 1.83 b |
ANOVA | p-Value | Fresh (mg/kg f.w.) | ANOVA | p-Value | Dry (mg/kg d.w.) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Diplotaxis erucoides | ||||||||||
Pods | Leaves | Stems | Pods | Leaves | Stems | |||||
Thiamine | *** | 0.0000 | nd | 0.64 ± 0.06 b | 1.46 ± 0.04 a | *** | 0.0000 | nd | 3.72 ± 0.15 b | 8.13 ± 0.21 a |
Riboflavin | *** | 0.0000 | 0.23 ± 0.02 a | 0.14 ± 0.01 b | 0.03 ± 0.01 c | *** | 0.0000 | 1.02 ± 0.10 a | 0.83 ± 0.05 b | 0.18 ± 0.06 c |
Oxalis pes-caprae | ||||||||||
Flowers | Leaves | Stems | Flowers | Leaves | Stems | |||||
Thiamine | *** | 0.0000 | 1.17 ± 0.05 a | 0.33 ± 0.02 b | nd | *** | 0.0000 | 8.25 ± 0.33 a | 2.36 ± 0.16 b | nd |
Riboflavin | *** | 0.0000 | 0.10 ± 0.01 b | 0.16 ± 0.01 a | 0.02 ± 0.01 c | *** | 0.0000 | 0.69 ± 0.01 b | 1.14 ± 0.06 a | 0.26 ± 0.01 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clemente-Villalba, J.; Fratianni, A.; Issa-Issa, H.; Ianiri, G.; Hernández, F.; Vitone, C.; Carbonell-Barrachina, Á.A.; Panfili, G. Diplotaxis erucoides and Oxalis pes-caprae: Two Wild Edible Plants as a New and Valuable Source of Carotenoids, Tocols and B1 and B2 Vitamins. Nutrients 2024, 16, 2293. https://doi.org/10.3390/nu16142293
Clemente-Villalba J, Fratianni A, Issa-Issa H, Ianiri G, Hernández F, Vitone C, Carbonell-Barrachina ÁA, Panfili G. Diplotaxis erucoides and Oxalis pes-caprae: Two Wild Edible Plants as a New and Valuable Source of Carotenoids, Tocols and B1 and B2 Vitamins. Nutrients. 2024; 16(14):2293. https://doi.org/10.3390/nu16142293
Chicago/Turabian StyleClemente-Villalba, Jesús, Alessandra Fratianni, Hanán Issa-Issa, Giuseppe Ianiri, Francisca Hernández, Caroline Vitone, Ángel A. Carbonell-Barrachina, and Gianfranco Panfili. 2024. "Diplotaxis erucoides and Oxalis pes-caprae: Two Wild Edible Plants as a New and Valuable Source of Carotenoids, Tocols and B1 and B2 Vitamins" Nutrients 16, no. 14: 2293. https://doi.org/10.3390/nu16142293
APA StyleClemente-Villalba, J., Fratianni, A., Issa-Issa, H., Ianiri, G., Hernández, F., Vitone, C., Carbonell-Barrachina, Á. A., & Panfili, G. (2024). Diplotaxis erucoides and Oxalis pes-caprae: Two Wild Edible Plants as a New and Valuable Source of Carotenoids, Tocols and B1 and B2 Vitamins. Nutrients, 16(14), 2293. https://doi.org/10.3390/nu16142293